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Multi-view radiomics and deep
learning modeling for prostate
cancer detection based on
multi-parametric MRI

Chunyu Li1†, Ming Deng1†, Xiaoli Zhong1, Jinxia Ren1,
Xiaohui Chen1, Jun Chen2, Feng Xiao1* and Haibo Xu1*

1Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China, 2GE Healthcare,
Shanghai, China
Introduction: This study aims to develop an imaging model based on multi-

parametric MR images for distinguishing between prostate cancer (PCa) and

prostate hyperplasia.

Methods: A total of 236 subjects were enrolled and divided into training and test

sets for model construction. Firstly, a multi-view radiomics modeling strategy was

designed in which different combinations of radiomics feature categories (original,

LoG, and wavelet) were compared to obtain the optimal input feature sets.

Minimum-redundancy maximum-relevance (mRMR) selection and least absolute

shrinkage selection operator (LASSO) were used for feature reduction, and the next

logistic regression method was used for model construction. Then, a Swin

Transformer architecture was designed and trained using transfer learning

techniques to construct the deep learning models (DL). Finally, the constructed

multi-view radiomics and DL models were combined and compared for model

selection and nomogram construction. The prediction accuracy, consistency, and

clinical benefit were comprehensively evaluated in the model comparison.

Results: The optimal input feature set was found when LoG and wavelet features

were combined, while 22 and 17 radiomic features in this set were selected to

construct the ADC and T2 multi-view radiomic models, respectively. ADC and T2

DL models were built by transferring learning from a large number of natural

images to a relatively small sample of prostate images. All individual and combined

models showed good predictive accuracy, consistency, and clinical benefit.

Compared with using only an ADC-based model, adding a T2-based model to

the combined model would reduce the model’s predictive performance. The

ADCCombinedScore model showed the best predictive performance among all

and was transformed into a nomogram for better use in clinics.

Discussion: The constructed models in our study can be used as a predictor in

differentiating PCa and BPH, thus helping clinicians make better clinical

treatment decisions and reducing unnecessary prostate biopsies.
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Introduction

As the most common malignancy of the male genitourinary

system, prostate cancer (PCa) has become the second leading cause

of cancer death in men (1, 2). Early diagnosis of PCa allows patients

to choose the best treatment options, which can improve treatment

effectiveness, reduce mortality, and improve quality of life.

However, it is not easy to detect PCa because there are many

similar clinical symptoms between PCa and other prostate diseases,

such as benign prostatic hyperplasia (BPH), prostatitis, urinary tract

infection, cystitis, and urethral stricture (3). Traditional methods

(4) for detecting PCa mainly include the serum prostate-specific

antigen (PSA) test, digital rectal examination (DRE), and a routine

method of puncture biopsy guided by transrectal ultrasound

(TRUS). However, these methods have been reported to be of low

sensitivity and specificity (5) and/or may cause infection, bleeding,

and pain (6, 7). Many patients are undergoing unnecessary biopsies

for BPH. Furthermore, possible false-negatives remain a problem

for TRUS-guided biopsies (8). Therefore, a noninvasive and exact

diagnosis method for PCa is of great significance.

MRI is considered one of the most promising imaging methods

for PCa detection because of its noninvasiveness and the rich

information about soft tissue contrast contained in different

sequences (9, 10). The latest Prostate Imaging Reporting And

Data System (PI-RADS) v2.1 recommends bi-parameters, T2-

weighted imaging (T2WI) and diffusion-weighted imaging

(DWI), for PCa detection. DWI is one of the most important

image sequences in MRI and quantifies the diffusion motion

characteristics of water molecules in tissues through the apparent

diffusion coefficient (ADC), which can provide useful diagnostic

information such as cell density, cell membrane integrity, and

intercellular substances in tissues and helps to distinguish

cancerous and non-cancerous lesions (11). However, at present,

MRI interpretation relies on radiologists with specialized training

and subjective clinical experience, which lack quantitative

evaluation and objective tools.

With the development of computer science, image processing

technology and artificial intelligence (AI) method has been more

and more widely used in the precise diagnosis and treatment of

diseases, which extends research ideas and provides effective tools

for the early diagnosis, treatment, and prognosis analysis of

diseases. The connotative characteristics of disease can be

discovered through in-depth data mining (12, 13). Radiomics is a

quantitative image analysis method that can extract high-

throughput features from medical images to quantify

characteristics of major diseases such as tumors, and shows great

advantages in tumor phenotype typing, treatment decision, and

prognosis analysis (14–17). Compared to the radiomic method,

deep learning methods (18) can adaptively learn and extract useful

feature information from a large amount of data. The constructed

multi-layer deep neural network model can achieve high

classification and prediction accuracy for clinical use. So far, both

methods have been applied to prostate disease-related domains,

including PCa detection, grading, tumor habitats (19, 20), and so

on. However, combining these two methods to handle prostate
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clinical problems based on the use of multi-parametric MR images

has not been reported in the previous literature.

Thus, in the present study, a multi-parametric MR image

prediction model based on radiomics and a deep learning method

was developed, aiming to discriminate PCa from BPH. With this

non-invasive early diagnosis, patients with PCa can receive timely

treatment and management, while patients with BPH can avoid

unnecessary biopsies.
Method

This study was a retrospective study that was implemented at

Zhongnan Hospital of Wuhan University, Wuhan, China.
Patients

All patients were searched in the Picture Archiving and

Communications System (PACS) of Zhongnan Hospital of

Wuhan University between January 2018 and December 2021.

These enrolled patients underwent multi-parameter MRI image

acquisition before the prostate pathology examination and were

pathology-proven to have PCa or BPH. The exclusion criteria were

a) patients received endocrine therapy, radiotherapy, cryotherapy,

or surgery prior to MRI scanning; b) MRI images are of poor quality

because of motion artifacts, metal artifacts, or susceptibility

artifacts; and c) the clinical records, such as age and/or PSA, were

incomplete. It should be noted that the patients having both

diseases were categorized as PCa groups.
Pathological examination

All patients underwent a TRUS-guided 13-core prostate biopsy.

The pathological results were evaluated using Gleason grading and

scoring. The Gleason score is the sum of the two most widely used

levels of cell structure, such as 3 + 4, 4 + 3, etc., and is commonly

used for PCa diagnosis and treatment strategy decision-

making (21).
Data flowchart

The workflow of this study mainly contained two parts: multi-

view radiomics and deep learning. As shown in Figure 1, the

procedures before these two methods were image acquisition and

segmentation. The multi-view radiomics modeling consists of four

steps: 1) radiomics feature extraction, 2) optimal input feature set

combination, 3) feature selection, and 4) statistical modeling. A

multi-stage Swin transformer architecture is designed for deep

learning modeling. In this study, both modeling strategies were

adopted for the ADC maps and T2WI images, respectively. Finally,

all constructed models were randomly combined and compared

with each other to find the best way to distinguish PCa patients

from BPH patients.
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All 236 subjects were split into a training set (164, 70%) and a

test set (72, 30%) using a stratified random sampling method, in

which the samples are stratified according to the ratio between

different groups of PCa and BPH and then randomly sampled. The

samples from the training set were used for model construction,

while the performance of the models was verified and compared

using the training set and the test set, respectively.
Image acquisition and processing

MRI examinations of all patients were performed using the

same 1.5T MRI scanner (Aera, Siemens Healthcare, Erlangen,

Germany), with an 18-channel body phased array coil above the

pelvis and a spine coil under the pelvis. Patients defecated and

urinated before the MRI examination to ensure high image quality.

MRI acquisition sequences include transverse, coronal, and sagittal

T2-weighted imaging (T2WI), transverse fat-suppressed T2-

weighted imaging, and transverse diffusion-weighted imaging

(DWI). DWI includes two b-values of 0 and 1,500. An apparent

diffusion coefficient (ADC) map was generated after DWI

completion in the scanner. In this study, only transverse T2WI

images and ADC maps are included for the data analysis.

The protocol parameters of T2WI images are as follows:

repetition time (TR) = 6,910 ms, echo time (TE) = 112 ms,

thickness = 3 mm, field of view (FOV) = 180 × 180 mm, number

of excitations (NEX) = 3, matrix = 320 × 320, pixel spacing = 0.6 ×

0.6 mm, flip angle = 160. The parameters of DWI: repetition time

(TR) = 4,620 ms, echo time (TE) = 58 ms, thickness = 3.5 mm, field

of view (FOV) = 200 × 200 mm, number of excitations (NEX) = 2,

matrix = 116 × 116, pixel spacing = 1.7 × 1.7 mm, flip angle = 180.

First, the linear interpolation method was used to resample

images of the same sequence to the same voxel size (0.6 mm ∗
0.6 mm ∗ 3 mm for T2WI images, 1.7 mm ∗ 1.7 mm ∗ 3.5 mm for

ADC maps). Then the whole prostate in the images was segmented

as the volumes of interest (VOI) using ITK-SNAP software (http://

www.itksnap.org/). Manual segmentation of the VOIs was
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performed slice by slice on transverse T2WI images and ADC

maps, respectively. The procedure was completed independently by

two radiologists with more than 10 years of experience in the

genitourinary system (MD and JR) to ensure the repeatability and

reliability of the results, which can be evaluated using inter-class

and intra-class correlation coefficients (ICC) (details in

Supplementary Methods). The Pyradiomics package (https://

pyradiomics.readthedocs.io/en/latest/) was used to calculate the

radiomic features of the VOIs and resulted in 1,561 radiomic

features (details in Supplementary Methods) for the prostate of

each patient.
Feature reduction and radiomics
model construction

Feature reduction in this study contained three steps: 1) ICC

analysis was used to screen the radiomic features with better

reliability and repeatability; 2) the maximum relevance minimum

redundancy (mRMR) algorithm was used to select an optimal subset

from the inputted features that maximized their relevance to the

classification variable while minimizing redundancy between

features, to reduce computational cost and improve predictive

performance. The parameter of optimal feature subset size in

mRMR (NmRMR) was determined using grid search and

bootstrapping with 100 replicates; 3) the least absolute shrinkage

and selection operator (LASSO) (22) model was used for further

feature selection. LASSO was a linear regression method whose basic

idea was to penalize unimportant variables in the model by adding an

L1 regularization term, thus making the model simpler and sparser

and reducing the risk of overfitting. In this study, the LASSO method

used 10-fold cross-validation and minimum prediction error criteria.

In the results, the features with non-zero coefficients were retained in

the radiomics model construction with a multi-variate logistic

regression method. In this study, two individual radiomics models,

ADCScore and T2Score, were constructed based on the ADC maps

and T2WI images, respectively.
FIGURE 1

Image analysis flow chart for this study. From left to right, the complete image analysis process could be divided into three parts: image acquisition,
region of interest (ROI) segmentation, and predictive modeling. Two strategies were adopted in the predictive modeling. Multi-view radiomics
strategy(top-right) contained radiomics features extraction, feature reduction and statistical modeling while deep learning strategy (right-bottom)
contained a 4-stages Swin Transformer architecture design. Finally, The models constructed using different strategy and based on different modes of
images were combined and compared for clinical use.
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The high dimension complexity and possible inner collinearity

caused by many features could easily lead to overfitting of the

established model. To eliminate or alleviate the effects of this issue, a

multi-view radiomics (Figure S1) modeling scheme was designed

(23). Firstly, three categories of radiomics features (C1: original, C2:

LoG, and C3: wavelet; detailed in Supplementary Methods) were

used in model construction independently or in random

combination, which resulted in seven models with different input

radiomics feature categories (C1, C2, C3, C1 + C2, C1 + C3, C2 +

C3, and C1 + C2 + C3). Then, these models were compared to

determine the most appropriate input radiomics feature category or

category combination in radiomics model construction.
Deep learning model construction

In this study, a DL network architecture called Swin

Transformer (24, 25) was designed to construct a DL model for

the prediction of PCa. Figure 2 illustrates the architecture of the

Swin Transformer, which is also detailed in Supplementary

Methods. Firstly, a three-dimensional rectangular bounding box

was defined in the image according to the prostate VOI to ensure

that the entire prostate was completely contained in the bounding

box. Then, each image slice within the bounding box was then

resampled to 224 × 224 pixels using bilinear interpolation. In this

study, three adjacent image slices in a bounding box were combined

into a three-channel image, which was used as the input of the DL

model, and the model output was the PCa risk probability. To

obtain a more stable prediction, all the three-channel images of the

prostate in a bounding box were inputted into the DL model, and

the mean value of all output PCa risk probabilities was calculated as

the final output score of this DL model.

The transfer learning technique (26) was used in the

development of the DL model. The pre-training model was

trained based on many natural images in the public dataset of

ImageNet. Then the final model was fine-tuned using our prostate

MRI images. In this study, two individual DL models, ADCDLScore

and T2DLScore, were built based on the ADC maps and T2WI

images, respectively.
Combined models and nomogram
construction

As independent risk factors, the four constructed image models

(ADCScore, T2Score, ADCDLScore, and T2DLScore) were
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combined using a multivariate logistic regression approach,

resulting in five different combined models (RadScore, DLScore,

ADCCombinedScore, T2CombinedScore, and CombinedScore; see

Table 1 for details). After model performance comparison, the

combined model with the best predictive performance was

transformed into a nomogram for better visualization,

interpretation, and clinical use.
Model comparison and validation

A series of metrics were used to evaluate and compare the

diagnostic performance of the models. First, the predictive accuracy

of all constructed models was evaluated using four receiver operator

characteristic (ROC)-related indicators: area under the curve

(AUC), accuracy, sensitivity, and specificity, and the Delong test

was used to compare whether the difference in prediction accuracy

between the models was significant. Then the calibration curve and

Hosmer–Lemeshow test evaluated the consistency between the

model predictions and actual observations. Finally, decision

authority was used to evaluate the net benefit of using the model

for diagnosis in clinical practice.
Statistics

In this study, we implemented the Swin Transformer DL model

in the Pytorch framework using Python 3.7.0. The R 4.0.5

environment was used to construct the multi-view radiomics

model and the combined models, specifically: the “mRMRe” and

“glmnet” packages were used to realize the screening and further

selection of radiomics features, respectively, and the “pROC”

package was used to draw the ROC curve and compute relevant

indicators for model validation and comparison.
Results

Patient characteristics

As shown in Figure S2, a total of 236 subjects (PCa: 100 and

BPH: 136) were included in this study. The stratified random

sampling method was then used to divide all subjects into a

training set (164) and a test set (72). Table 2 shows the detailed

demographic characteristics of all subjects and their distribution in

the training and test sets.
FIGURE 2

The architecture of the 4-stages Swin Transformer used in deep learning modeling.
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Image analysis and model construction

As shown in Figure 1, the whole prostate in the ADC maps and

T2WI images was manually segmented as VOIs by two radiologists.

Then, a total of 1,561 quantitative features (C1: 106; C2: 701; C3:

754) were extracted from the VOIs. A total of 1,210 features (C1: 97;

C2: 369; C3: 744) in the ADC map and 1,206 features (C1: 104; C2:

370; C3: 732) in the T2 image showed good repeatability and

stability (ICC >0.8) and were retained for subsequent radiomics

modeling. Through the predictive performance comparison of the

models constructed based on different input feature categories

(Table 3), C1 + C3 were selected as the optimal input feature

categories for the radiomics modeling in this study. The number of

features was first reduced to 50 using the mRMR method and then

input into the LASSO model, which finally resulted in 22 and 17

features (Figure 3) for ADC and T2 radiomics model construction,
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respectively. The final selected features were listed in Tables S1, S2

in detail. ADCScore and T2Score were the output probability scores

for the corresponding radiomics model constructed based on ADC

map and T2 images, respectively, which can be used for model

performance evaluation and further combined model construction.

Transfer learning was employed in DL model construction:

firstly, the Swin Transformer model was pre-trained based on

millions of natural images in the ImageNet dataset; subsequently,

secondary training (fine-tuning) was performed based on the ADC

maps and T2 images of patients in our training set to make the DL

model well-suited to in the prediction task of this study.

ADCDLScore and T2DLScore were expressed as the output

probability scores of the DL models and could be used in model

performance evaluation and further combined model construction.

As shown in Tables S3–S7, five combined models (RadScore,

DLScore, ADCCombinedScore, T2CombinedScore, and

CombinedScore) were finally constructed using the logistic

regression model.
Model validation and comparison

Figure 4 shows the ROC of the nine models constructed in this

paper, and Table 4 lists their ROC-related indicators (accuracy,

sensitivity, specificity, and their 95% confidence interval) in detail,

which fully assesses the prediction accuracy of the constructed

models. The p-value map shown in Figure 5 further illustrated the

predictive accuracy difference between different models, and p

<0.05 indicated that the difference between the corresponding

two models was significant. The calibration curves with Hosmer–

Lemeshow test results shown in Figures S3, S4 exhibited the
TABLE 1 Construction details for different combined models.

Models Variables methods

RadScore ADCScore+ T2Score
Logistic
Regression

DLScore ADCDLScore+ T2DLScore
Logistic
Regression

ADCCombinedScore ADCScore+ ADCDLScore
Logistic
Regression

T2CombinedScore T2Score+T2DLScore
Logistic
Regression

CombinedScore
ADCScore+ ADCDLScore+ T2Score+
T2DLScore

Logistic
Regression
TABLE 2 Patients demographics for training and test set.

Characteristic
Training set (164)

p-value
Test set (72)

p-value
Ca(n=69) BPH (n=95) Ca (n=31) BPH (n=41)

Age 72.81±7.14 69.86±7.53 0.012 71.06±7.95 69.80±8.21 0.514

PV (cm3) 46.37±42.41 65.79±44.03 0.005 43.76±36.80 58.56±27.41 <0.001

TPSA(ng/mL) 24.08±21.67 13.32±10.95 <0.001 25.74±24.27 13.11±7.13 0.008

FPSA(ng/mL) 3.28±3.34 2.76±3.92 0.363 3.09±2.87 2.41±1.73 0.247

Gleason Score

3+3=6 21(30.43%)

– –

9(29.03%)

– –

3+4=7 6(8.70%) 4(12.90%)

4+3=7 11(15.94%) 3(9.68%)

3+5=8 5(7.25%) 2(6.45%)

5+3=8 3(4.35%) 1(3.23%)

4+4=8 11(15.94%) 4(12.90%)

4+5=9 2(2.90%) 4(12.90%)

5+4=9 5(7.25%) 3(9.68%)

5+5=10 5(7.25%) 1(3.23%)
fron
PV, Prostate Volume; TPSA, total prostate specific antigen; FPSA, free prostate specific antigen.
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consistency between the model prediction and actual observation

for all models.

Overall, except for T2Score (AUC = 0.751), T2DLScore (AUC =

0.764), and T2CombinedScore (AUC = 0.803), all other six models

showed excellent prediction accuracy (AUC >0.92 for the test set in

Figure 4 and Table 4). The calibration curves and Hosmer–

Lemeshow test (p >0.05 in Figures S2, S3) showed good

uniformity between their observed and predicted values for all
Frontiers in Oncology 06
models. Combining the results of the Delong test (Figure 5), we

found during the modeling process:

(1) When only ADC maps were used, the DL strategy

(ADCDLScore) was better than the radiomics strategy

(ADCScore), but the difference between them was not

significant; when only T2WI images were used, the radiomics

strategy (T2Score) significantly outperformed the DL

strategy (T2DLScore).
TABLE 3 AUC comparison of different radiomics model inputted with different subcategorizing radiomics features for the ADC maps and
T2WI images.

ADC T2

Rad_train Rad_test N_mRMR N_LASSO Rad_train Rad_test N_mRMR N_LASSO

C1 0.969 0.926 50 24 0.8805 0.753 100 16

C2 0.8863 0.8442 50 13 0.8321 0.7278 50 8

C3 0.9464 0.9315 100 17 0.8853 0.7333 50 17

C1+C2 0.9448 0.9339 200 21 0.8704 0.7467 50 14

C1+C3 0.9684 0.9355 50 22 0.895 0.764 50 17

C2+C3 0.9509 0.919 100 17 0.9099 0.7404 50 25

C1+C2+C3 0.9653 0.9182 50 21 0.8856 0.7545 200 11
fr
C1: original radiomics features; C2: radiomics features for the images after LoG transformation; C3: radiomics features for the images after wavelet transformation; N_mRMR: the number of
features retained using mRMR method; N_LASSO: the number of features retained using LASSO method.
B2

A1 A2

B1

FIGURE 3

Further screening of radiomics features using the LASSO method. (A) The determination of the key parameter (penalty coefficient: l) in the LASSO
model using 10-fold cross-validation. Two rules resulted in two l values (lmin: when the predicion error reached the minimum and l1se: the value
within one standard error from the minimum) and two vertical dashed lines at their position were drawn. lmin was adopted in the feature selection
of LASSO in this study; (B) Feature coefficients profiles as the l value changes. According to the 10-fold cross-validation in (A), the features with
non-zero coefficients were further selected at the position of lmin. (A1-B1) lmin=0.0224 with log( lmin)=-3.7991 was selected for the ADC radiomics
model (ADCScore) construction, in which 22 features with nonzero coefficients were finally selected. (A2-B2) lmin=0.0275 with log( lmin)=-3.5953
was selected for the T2 radiomics model (T2Score) construction, in which 17 features with nonzero coefficients were finally selected.
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(2) The three T2WI image-based models, T2Score, T2DLScore,

and T2CombinedScore, were significantly worse than the other

models in prediction performance;

(3) Compared with using only the ADC-based model, adding

the T2-based model to the combined model would reduce the
Frontiers in Oncology 07
model’s predictive performance, but this performance degradation

was not significant;

(4) The ADCCombinedScore model showed the best predictive

performance among all, but the difference between it and other

ADC map-based models was not significant.
A B

FIGURE 4

ROCs drawn for different models. The gray diagonal lines in (A) training set and (B) test set indicate an AUC value of 0.5, which means the prediction
result of completely random.
TABLE 4 Detailed ROC-related metrics for all constructed models.

Models AUC Accuracy(95%CI) Sensitivity(95%CI) Specificity(95%CI)

ADCScore
train 0.968 0.921(0.918-0.924) 0.9(0.892-0.908) 0.936(0.931-0.941)

test 0.935 0.861(0.852-0.871) 0.806(0.781-0.831) 0.902(0.888-0.917)

ADCDLScore
train 0.981 0.945(0.942-0.948) 0.986(0.982-0.989) 0.915(0.909-0.921)

test 0.946 0.819(0.809-0.830) 0.839(0.815-0.862) 0.805(0.786-0.824)

T2DLScore
train 0.810 0.707(0.702-0.713) 0.843(0.833-0.853) 0.606(0.596-0.617)

test 0.751 0.639(0.626-0.652) 0.774(0.748-0.801) 0.537(0.513-0.56)

T2Score
train 0.895 0.835(0.831-0.840) 0.871(0.862-0.881) 0.809(0.8-0.817)

test 0.764 0.750(0.738-0.762) 0.710(0.681-0.738) 0.780(0.761-0.8)

RadScore
train 0.973 0.927(0.924-0.930) 0.914(0.906-0.922) 0.936(0.931-0.941)

test 0.923 0.875(0.866-0.884) 0.839(0.815-0.862) 0.902(0.888-0.917)

DLScore
train 0.985 0.957(0.955-0.960) 0.971(0.967-0.976) 0.947(0.942-0.951)

test 0.940 0.875(0.866-0.884) 0.774(0.748-0.801) 0.951(0.941-0.962)

ADCCombinedScore
train 0.990 0.951(0.949-0.954) 0.957(0.951-0.963) 0.947(0.942-0.951)

test 0.958 0.889(0.880-0.897) 0.839(0.815-0.862) 0.927(0.914-0.939)

T2CombinedScore
train 0.911 0.841(0.837-0.846) 0.886(0.877-0.895) 0.809(0.8-0.817)

test 0.803 0.694(0.682-0.707) 0.677(0.648-0.707) 0.707(0.686-0.729)

CombinedScore
train 0.986 0.945(0.942-0.948) 0.971(0.967-0.976) 0.926(0.92-0.931)

test 0.954 0.875(0.866-0.884) 0.839(0.815-0.862) 0.902(0.888-0.917)
Youden criterion: The best operating point of the ROC was chosen at the point whose Youden index (Sensitivity+Specificity-1) is maximal.
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Clinical use and explanation

Figure 6 compares the net benefit obtained when the

constructed models were used in the clinic:

(1) All models (except the T2DL model) could bring more

benefits than the “treat all” or “treat none” strategies used for almost

all the risk thresholds (except the “treat none” strategies at some of

the high threshold intervals).

(2) All models based only on T2WI images (T2Score,

T2DLScore, and the T2CombinedScore models) obtained less

benefit than the other models for almost all the risk thresholds

(except some of the high threshold intervals).

Figure 7 shows the nomogram drawn based on the

ADCCombinedScore model (best predictive performance), in
Frontiers in Oncology 08
which ADCScore and ADCDLScore were represented as two

independent risk factors in the prediction of PCa. By adding the

individual scores corresponding to ADCScore and ADCDLScore,

the total score could finally be used to quantitatively predict the risk

probability of PCa.
Discussion

In this study, we develop and validate a multi-parameter

prostate MRI-based model for noninvasive, quantitative

prediction of PCa. The ADCCombinedScore model showed better

predictive performance in distinguishing PCa with BPH than any

other model (ADCScore, T2Score, ADCDLScore, T2DLScore,
A B

FIGURE 5

Delong test results (p-value maps) between different constructed models. (A) training set; (B) test set. The closer the map color is to black, the
smaller the p-value and the more significant the performance difference between the models; the closer the map color is to white, the larger the p-
value and the more insignificant performance difference between the models.
A B

FIGURE 6

The comparison of decision curves for the different models. (A) training set; (B) test set. Treat-all strategy: All patients were diagnosed as positive;
treat-none: All patients were diagnosed as negative.
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RadScore, DLScore, T2CombinedScore, and CombinedScore).

Among all, the ADCCombinedScore model showed the highest

predictive accuracy (AUC = 0.958 in the test set) and was finally

transformed into a nomogram for better clinical use, in which ADC

radiomics and deep learning scores were used as independent

risk factors.

Until now, many radiomics and deep learning methods have

been used for prostate detection and diagnosis. Most radiomics

studies developed radiomics models by combining different feature

reduction methods and machine learning models. Wu et al. (27)

built an LR model to evaluate the quantitative image features for the

diagnosis of transition zone PCa and achieved high predictive

performance (AUC = 0.989). However, there is no independent

validation set to guarantee the reliability of their results. The

radiomics model constructed by Chen et al. (28) obtained the

highest predictive performance (AUC = 0.985, 0.982, and 0.999)

on T2, ADC, and their combination T2&ADC. However, their ROIs

were manually depicted along the boundaries of the lesion, slice by

slice, in reference to the pathological findings of the biopsy. This

histological–radiological matching was tedious and difficult to

perform, which inevitably introduced bias and limited the

stability, repeatability, and clinical utility of the constructed

model. Ji et al. (29), He et al. (30), and Xu et al. (31) also

constructed radiomics models with high predictive performance,

respectively. The AUC of their models ranged from 0.86 to 0.93 but

was lower than the AUC of our multi-view model (AUC = 0.958).

This may be due to the adoption of multi-view schemes for

radiomic features to avoid overfitting to some extent and the

complementarity of radiomic methods and deep learning

methods in mining image information at different depths. Hu

et al.’s (32) work showed that the type and size of samples have a

great influence on the performance of the DL models established

using transfer learning techniques. The transfer models learned

from disease-related images perform better than those learned from
Frontiers in Oncology 09
natural images. This provides us with ideas to improve the

performance of deep learning modeling in the future.

In this study, we adopted two imaging modeling strategies:

multi-view radiomics and deep learning. Overfitting may occur

when using many radiomic features. Even if we utilized mRMR and

LASSO for feature selection, collinearity between features and their

high dimensionality may have impaired model performance (33).

To address this issue, we designed a multi-view radiomics strategy

that tried to determine optimal input feature subsets by

subcategorizing and combining different features and could finally

improve the performance of a radiomics model. The comparison

results also confirmed that the final constructed multi-view model

(C1 + C3) was better than the single-view model (C1 + C2 + C3). In

general, higher-order features (LoG and wavelet) could provide

more diagnostic information and thus play a more important role in

radiomics modeling (34). However, results in this study showed that

not every combination of high-order features could always result in

a high-performance model. For example, adding LoG features to the

combined model reduced the model’s performance. This may be

because the higher the level of features, the easier it is for various

complex linear or nonlinear correlations to appear between them

(35). Although several feature reduction strategies and methods

(multi-view radiomics strategy, mRMR, and LASSO) were used in

this study, it is still a difficult problem to solve properly, and more

research and exploration in this area are needed in the future.

Multi-layer convolution and filtering of images in deep learning

methods could generate ultra-high-dimensional disease-related

features. These features were generally difficult to interpreted

clinically but showed a high correlation with patient grouping

labels. The constructed models based on these features usually

show a high clinical application value. In this study, multi-view

radiomics and deep learning methods were used at the same time to

extract a variety of interpretable or unexplainable multi-

dimensional imaging features for the prostate, which could
FIGURE 7

CombinedScore nomogram. The CombinedScore nomogram constructed by combining the ADCScore, ADCDLScore, T2Score and T2DLScore
models, which was used as independent risk factors.
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comprehensively reflect the heterogeneity of prostate lesions in

images and was also the basis for establishing a PCa risk prediction

or diagnosis model. In fact, radiomics and deep learning methods

could provide different perspectives on the data level for the

modeling of this paper. The dimensions and depths of the image

feature information excavated by them were not the same: the

radiomics method provided a moderate depth level of the image

feature information, while the deep learning method provided a

much deeper level. Therefore, modeling using a combination of

radiomics and deep learning methods was also a multi-

perspective strategy.

It is worth noting that the segmentation method used in this

study was manual segmentation of the whole prostate. Most current

studies (27–31) only focus on the segmentation of the lesion, which

leads to the predictive modeling of lesion classes and limits the

clinical usability of developing models. In real-life application

scenarios, many occult lesions in the prostate and their

boundaries are difficult to distinguish with the naked eye, which

could be solved by including the whole prostate in the modeling. In

addition, whole-prostate segmentation is more suitable for patients

with both PCa and BPH. As described in theMethods section of this

study, we categorized such patients as PCa patients during the

modeling analysis.

Most published studies suffer from the problem of data selection

bias. Many studies only investigated patients with clinically

significant PCa of Gleason Score 7 or greater, ignoring

clinically insignificant PCa of Gleason Score 6. In this study, 30

clinically insignificant cases make up 30% of PCa patients, enriching

the sample variety. The finding may be more reliable for a wider

population of patients with PCa. Prostate tumors have poorly

defined margins, which makes manual segmentation challenging.

Furthermore, clinically insignificant PCa generally have low-

volume cancerous tissue and may have no obvious lesions,

leading to the absence of tumors for radiologists. As an

improvement to this problem, we segmented the whole prostate

gland instead of lesions in this study, ensuring stability and

reproducibility. Most studies have used 3T MRI scanners for data

acquisition, and studies using 1.5TMRI systems for data acquisition

are currently very limited. This study could provide a supplement to

the present research data for 1.5T MRI, and the results show that

1.5T magnetic resonance scanners also have high application value

in the detection and identification of PCa.

T2WI radiomics and DL models were all excluded from the

final model construction and achieved the best predictive

performance. Compared to ADC maps, T2WI has relatively little

effect on the predictive model, which is consistent with previous

work (36). Cancerous tissue shows low signal intensity on T2WI,

which is the same for BPH, leading to a lack of specificity for T2WI.

DWI and ADCmaps can reveal water molecules diffusion in tissues,

which indicates a possible change in cell density and/or intercellular

substance in prostate tissues, while T2WI only provides structural

information. Previous studies have proven the usefulness of ADC

maps for evaluating PCa (37, 38).

To comprehensively evaluate the research quality of our study,

we did a self-assessment with the Radiomics Quality Score (RQS)
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(39), and obtained an RQS of 15 (41.67%) (details in Table S8),

which was higher than the average level of the radiomics studies on

prostate MRI (23% ± 13%) (40) and the radiomics studies in general

(median = 21%, IQR = 11.50) (41). As seen from the items without

any scores in Table S5, we found the main problem of this study was

that the number of subjects included in this study was limited,

providing limited statistical power. More external data from

multiple centers are needed to validate our results and

conclusions. Furthermore, validation using prospective data can

provide the highest level of evidence supporting the clinical validity

and usefulness of the constructed models.

Besides, there are the following limitations in this study: Firstly,

PCa staging is not involved in this study. Although the Gleason

score of every histologic core in a biopsy is acquired, it is difficult to

locate the exact region on MRI images. PCa staging is important

and requires investigation. MRI-targeted biopsy is the trend for the

future. Secondly, the prognosis of these patients is also important.

But the follow-up time of this study is too short, which makes this

work impossible to implement right now and needs to be

investigated in the future.
Conclusion

Our study suggests that multi-parameter MRI (especially the

ADC map)-based radiomics and deep learning models can be used

as predictors in differentiating PCa and BPH, thus helping clinicians

make better clinical treatment decisions and reducing unnecessary

prostate biopsies. The adoption of multi-view radiomics and the

eventual combination of deep learning and radiomics methods can

effectively improve the diagnostic performance of the

constructed models.
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