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Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of

the digestive tract. The most effective method of reducing the disease burden in

areas with a high incidence of esophageal cancer is to prevent the disease from

developing into invasive cancer through screening. Endoscopic screening is key

for the early diagnosis and treatment of ESCC. However, due to the uneven

professional level of endoscopists, there are still many missed cases because of

failure to recognize lesions. In recent years, along with remarkable progress in

medical imaging and video evaluation technology based on deep machine

learning, the development of artificial intelligence (AI) is expected to provide

new auxiliary methods of endoscopic diagnosis and the treatment of early ESCC.

The convolution neural network (CNN) in the deep learning model extracts the

key features of the input image data using continuous convolution layers and

then classifies images through full-layer connections. The CNN is widely used in

medical image classification, and greatly improves the accuracy of endoscopic

image classification. This review focuses on the AI-assisted diagnosis of early

ESCC and prediction of early ESCC invasion depth under multiple imaging

modalities. The excellent image recognition ability of AI is suitable for the

detection and diagnosis of ESCC and can reduce missed diagnoses and help

endoscopists better complete endoscopic examinations. However, the selective

bias used in the training dataset of the AI system affects its general utility.

KEYWORDS

artificial intelligence, convolutional neural network, endoscopy, esophageal squamous
cell carcinoma, diagnosis
1 Introduction

Esophageal cancer (EC) is a malignant tumor originating from the esophageal mucosal

epithelium and is one of the most common malignant tumors of the digestive tract. The

incidence rate and incidence patterns of esophageal cancer vary significantly among

different countries and regions. East Asia has the highest incidence rate, which can reach
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twice that of the world average level (12.2/100,000) (1). The

pathological type is mainly esophageal squamous cell carcinoma

(ESCC), which accounts for more than 90% of cases in China (2). In

relatively low-incidence areas, such as Europe and the United States,

the pathological type is mainly adenocarcinoma (3). It was

estimated that in 2020 there would be 604,000 new cases of

esophageal cancer worldwide (accounting for 3.1% of all cancers),

along with its incidence rate ranking tenth among all malignant

tumors (the standardized incidence rate is 9.3/100,000 for males

and 3.6/100,000 for females), and 544,000 deaths (accounting for

5.5%), and the mortality rate would rank sixth among malignant

tumors (the standardized mortality rate is 8.3/100,000 for males and

3.2/100,000 for females) (1). China is an important country for

esophageal cancer and according to the latest cancer report released

by the National Cancer Center in 2019, 246,000 new cases of

esophageal cancer and 188,000 deaths were recorded in China in

2015 (4). The incidence rate and mortality rate ranked sixth and

fourth, respectively, among all malignant tumors, accounting for

53.7% and 55.7% of the global total, respectively (5). A total of 70%

of patients with esophageal cancer had lost the opportunity for

surgery due late detection and a high tumor burden (4).

Most early ESCC and precancerous lesions can be treated using

minimally invasive methods of treatment performed under an

endoscope, with a 5-year survival rate of patients being as high as

90% (6–8). Patients with advanced ESCC have a low quality of life

and a poor prognosis, and the overall 5-year survival rate is less than

20% (9). At present, the early diagnosis rate of esophageal cancer is

still low (4). Most patients are diagnosed after developing

progressive dysphagia or metastatic symptoms, and the tumor is

often in the middle or late stages by this time. The most effective

method of reducing the disease burden in areas with a high

incidence of esophageal cancer is to prevent the disease from

developing into invasive cancer. Due to the lack of typical clinical

symptoms during early esophageal cancer, the key to improving the

early diagnostic rate of ESCC is to screen high-risk populations.

However, because of the uneven professional level of endoscopists,

there are still many missed cases due to failure to recognize lesions.

Endoscopic screening program in high-risk areas of ESCC also leads

to an increased workload of endoscopists. Studies have showed

computer-aided endoscopic monitoring can help detect and classify

suspicious lesions, thereby improving the detection rate of ESCC

(10–13). Artificial intelligence (AI)-assisted endoscopic diagnosis

has shown promising prospects to solve the problems of the sharp

increase in the workload and low inspection efficiency (14–16). In

this review, we summarize the current status of utilizing AI for

endoscopic detecting of early ESCC.

2 Current endoscopic screening
techniques for esophageal squamous
cell carcinoma

In regions with a high incidence of esophageal cancer, early

detection of esophageal cancer and intraepithelial neoplasia are

recommended as the primary objective for screening. The screening

guidelines in China suggest an initial age of 45 years for esophageal
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cancer screening, with screening to be ceased at 75 years old or

when life expectancy is less than 5 years. For those who meet the

screening age, screening should be focused on the following high-

risk groups: 1) individuals born or residing in areas with a high

incidence of ESCC; 2) those who have a family history of ESCC; 3)

those with known high-risk factors for esophageal cancer, such as

smoking, excessive alcohol consumption, squamous cell carcinoma

of the head and neck or respiratory tract, preference for high-

temperature and pickled foods, and poor oral hygiene (17).

Upper gastrointestinal endoscopy is still the gold standard for

the diagnosis of esophageal cancer (17). Along with the

popularization of endoscopy and pathological biopsy, the

detection and diagnosis rates of early esophageal cancer have

increased significantly. Among them, ordinary white light

imaging (WLI) endoscopy is a widely used routine examination

method, and the early cancer diagnosis rate can reach 80% along

with the assistance of a biopsy (18). It is a basic technology used for

screening early cancer and is of great significance for the discovery

and diagnosis of esophageal cancer.

However, due to limitations of macroscopic morphological

judgment by the naked eye, the accuracy of biopsy, and the

expertise of examiners, WLI endoscopy can lead to missed

diagnoses of precancerous lesions and early esophageal cancer.

WLI endoscopy combined with Lugol chromoendoscopy (LCE) is

currently the standard method used for screening ESCC and

precancerous lesions (17). This method is based on the principle

that glycogen in the non-keratinized epithelium turns brown when

it encounters iodine. When the esophageal mucosa is diseased, the

amount of glycogen decreases, so the color becomes lighter or even

disappears, forming a sharp contrast with normal stained mucosa,

which is helpful for the identification, positioning, and targeted

biopsy of the lesion. This method can improve the detection rate of

early esophageal cancer, microcarcinoma, and precancerous lesions

with an accuracy rate of 90–100% (19, 20). However, some patients

experience discomfort, including heartburn, chest pain, or even

severe allergic reactions after iodine staining.

At well-equipped endoscopic centers, upper gastrointestinal

WLI endoscopy combined with electronic staining imaging can

be used as the preferred screening method. Among them, narrow-

band imaging (NBI) improves the sensitivity of early EC diagnosis

to more than 90% compared with ordinaryWLI endoscopy (19, 21).

Electronic staining imaging technology mainly conducts special

optical processing on the digestive tract mucosa to more clearly

display the fine structure and superficial blood vessels on the

mucosal surface. At the same time, there is no adverse reaction to

chromoendoscopy dyes, so it is widely used in clinical practice to

guide the determination of the range of suspected early esophageal

cancer lesions and tissue biopsy. During recent years, the

combination of magnifying endoscopy and electronic staining

endoscopy has created powerful image enhancement technology

that has been widely used in the field of digestive endoscopy. Using

a magnifying electronic staining endoscope after ordinary WLI

endoscopic observations can first define the range of the lesion and

then aid the observation of the morphology of mucosal capillaries in

the lesion area. It is an efficient early cancer diagnosis method, and

its sensitivity to lesions can reach 95% (21).
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Based on magnified electron chromoendoscopic images of

intrapapillary capillary loop (IPCL), the Japanese Esophagus

Society proposed an easy-to-understand JES classification for

early ESCC (22). Blood vessels found in normal or inflammatory

tissues are Type A, while those found in cancer tissues are Type B.

Type B is further divided into B1, B2, and B3 subtypes. Type A IPCL

showed no change or a slight change, while Type B IPCL showed

obvious morphological changes. B1: IPCL dilation, bending,

different diameters, and inconsistent shapes, mainly involves the

epithelium (M1) and lamina propria (M2); B2: abnormal IPCL that

is difficult to form a ring, mainly involves mucosal muscular (M3)

and the superficial submucosa (SM1); B3: highly dilated, irregular

blood vessels, mainly involves the submucosa that is 200 mm (SM2)

or deeper (SM2) (Figure 1). The AB classification of IPCL in

esophageal lesions under magnification NBI endoscopy (ME-NBI)

is helpful to predict the nature and infiltration depth of esophageal

lesions, to achieve comprehensive assessment of the disease and to

develop the best treatment strategy for patients (23). This

classification is often used clinically to determine the depth of

invasion of superficial ESCC.
3 Limitations of endoscopy for early
esophageal cancer screening

Along with the development of high-definition digital

technology, standard high-definition WLI endoscopes (HD-WLI)

can produce high-definition image signals with resolutions up to

megapixel level. Assessment of mucosal surface morphology and

vascular status using endoscopic images allows for the timely
Frontiers in Oncology 03
diagnosis of dysplasia or early cancer, improving our ability to

detect subtle esophageal mucosal lesions. However, the visual

identification of dysplasia and early esophageal cancer using HD-

WLI endoscopy is still a very challenging task because endoscopic

diagnosis is highly subjective and requires a lot of technical learning

and accumulated experience.

According to statistics, ordinary WLI endoscopy has a

misdiagnosis rate of up to 40% for early esophageal squamous

cell dysplasia or early ESCC (24). Iodine chromoendoscopy is

recommended for ESCC screening in high-risk groups for

esophageal cancer. Although the sensitivity of this method is >

90%, it only has a low specificity of about 70%, and this method is

time-consuming and laborious, increases the workload of clinicians,

and also brings the risk of allergic reactions (25). The compliance

rate during the daily examinations is also not high. Advanced

endoscopic imaging using NBI, and other image enhancement

systems can detect ESCC with a high degree of sensitivity, but a

randomized controlled trial showed that its specificity is only about

50%, and there is still much room for improvement of diagnostic

accuracy (26).

Limitations of current methods for identifying esophageal

tumors have spurred the development of several new techniques

with enhanced diagnostic capabilities (11, 27–31). Some

commercially available imaging techniques, such as probe-based

confocal endoscopy (pCLE) have claimed to be comparable to

pathological slides and have aimed to replace random biopsy

imaging techniques, but a lot of specialized training is needed to

interpret the results (31). Moreover, they are not accurate enough

and too expensive at present, which limits their application, and

currently, their clinical application is not common. Furthermore,
B

A

FIGURE 1

Prediction of the invasion depth of early esophageal squamous cell carcinoma according to the morphology of intrapapillary capillary loops.
(A) Diagram of superficial vascular network of normal esophageal mucosa (quoted from Inoue H et al., Ann Gastroenterol 2015; 28: 41-48).
(B) Magnified endoscopic images under NBI of different IPCL types. M1, M2 and M3 are epithelium infiltration, lamina propria infiltration and
Muscularis mucosa infiltration, respectively. SM1 and SM2 refer to the lesion infiltrating the upper 1/3 of the submucosa and the middle 1/3 of the
submucosa, respectively.
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even pathologists have poor consistency in identifying low-grade

dysplasia (LGD), which also leads to missed diagnoses and

disease progression.

The accuracy of endoscopy results largely depends on the

professional level of the endoscopist. Studies have shown that

inexperienced endoscopists (less than 5 years and 1000 cases of

endoscopy) caused missed diagnoses of early esophageal cancer

presenting as smaller lesions (32). The large demand for endoscopy

examination in screening for early esophageal cancer increases the

burden of clinical work, and thus the increase in endoscopist fatigue

may affect the efficiency and accuracy of the examination.

Endoscopic diagnosis assisted by artificial intelligence (AI) is an

effective way to solve the problem of a sharp increase in the

workload of endoscopic examinations and low inspection efficiency.
4 Basic concept of convolutional
neural network

Due to the limitations of current methods of detecting

esophageal tumors, technologies are being developed, and an

increasing number of computer-aided diagnostic (CAD)

techniques for assessing endoscopic images have evolved into

auxiliary endoscopy tools. The auxiliary diagnosis system based

on the latest artificial intelligence technology has become the focus

of attention. However, for those without a background in computer

science, the term “artificial intelligence” seems daunting.

The concept of artificial intelligence first refers to the ability of

computers to perform tasks that may imitate human thinking,

mainly through the “cognitive” function, to obtain the ability to

“learn” and “solve problems”. Later, scientists came up with the

term “machine learning” (ML), which means that computer

systems without specific programming can acquire the ability to

“learn” by using data and develop predictive mathematical models

based on input data by identifying “features” (33). ML is a subset of

AI that empowers machines or systems to automatically enhance

their ability to make decisions by processing data. “ML models” can

adapt to new situations and predict and make decisions in new

situations. For example, if thousands of car and truck images are

provided to the ML algorithm, the algorithm will eventually be able

to classify new images as cars or trucks (34).

Deep learning (DL) is a subset of ML and an artificial neural

network in ML. Multiple neural nodes in the network (similar to

human neurons) are connected, and the neural nodes in the network

are the characteristic faces of the given dataset identified in the data

conversion layer. DL imitates the neurons of the human brain to

learn data and transmit information, to learn how to classify data. For

example, we once again provide the DL algorithm with images of cars

and trucks. This time, it will learn to recognize the features of each

type of vehicle (this is the key point of DL) to classify new vehicle

images. DL’s ability to recognize features and learn without manual

supervision makes it widely used in the medical field because there is

sufficient visual data there that needs analysis and interpretation (35).

The key term in the AI field is “convolutional neural network”

(CNN). CNN is a type of deep feedforward neural network with
Frontiers in Oncology 04
convolutional computation that is developed based on a depth

neural network (36). It can better obtain the spatial position and

shape information of images and is conducive to image

classification. It is one of the most common methods modern DL

algorithms use to complete its feature recognition. CNN is based on

the way that neurons in the visual cortex react specifically in the

presence of certain visual stimuli (36). The basic structure of CNN

consists of an input layer, a convolutional layer, a pooling layer (also

called a sampling layer), a full connection layer, and an output layer.

The “convolution layer” is a filter hovering over the image (i.e.,

convolved on the image) that extracts the key features of the image.

Each feature of the image extracted by these “filters” will generate an

“activation map,” which essentially highlights the extraction

function of the “filter.” This “activation map” is also a pooling

layer, which plays the role of secondary feature extraction. Such a

convolution layer is connected to a pooling layer to form a

convolution unit. Since each neuron of the output feature surface

in the convolution unit is locally connected with its input graph, the

corresponding connection weight value is weighted and summed

based on the local input to obtain the input value of the neuron (37).

Each subsequent layer of the CNN works on the activation map

of the previous layer, resulting in the recognition of increasingly

complex features as the network gets deeper and deeper. The goal of

a CNN is to develop filters that hover over an image to identify

features. In the CNN model, there are multi-layer image

perceptrons (equivalent to artificial optic neurons), multiple

neural network layers, continuous convolutional layers, and rear

pooling layers. The convolution layer mainly extracts key features

from the input image. After multiple image features enter the model

and pass through multiple layers of CNN, the unimportant features

are automatically filtered out to complete the extraction of key

features in the image (37). Finally, CNN outputs the classification

decision results through the full connection layer by associating

specific features with each category (Figure 2). To effectively carry

out such correlation and assign appropriate weights to the given

features, CNN requires the data to be self-trained. After multiple

trainings on labeled images, CNNs are capable of testing new

datasets by fine-tuning their layers. The larger the number and

the higher the quality of the dataset in the training phase, the more

accurate the CNN is likely to be in the testing phase.
5 Application status of AI for the
diagnosis of early ESCC

Based on HD-WLI endoscopy, electronic chromoendoscopy,

chemical chromoendoscopy, magnifying endoscopy, and other

methods, AI-assisted diagnosis technology realizes the functions

of lesion recognition, analysis, and real-time marking of lesion areas

during the process of endoscopic examination through the deep

learning of the characteristics of pathological endoscopic images. At

present, researchers have conducted extensive exploration of AI-

assisted lesion detection, lesion extent marking, depth of invasion

prediction, and real-time identification of early ESCC. As shown in

Table 1, most of the studies at present are mainly focused on the
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establishment of AI algorithms based on the retrospective study of

single-center data. Table 1 summarizes all the studies investigating

the development of deep learning algorithms for the diagnosis of

ESCC up to date. All the ESCCs included in the studies were

confirmed histologically by endoscopic submucosal dissection,

surgery or biopsy.
5.1 Application of AI-assisted WLI in early
ESCC detection

WLI has become the first choice for the diagnosis of early ESCC.

AI can help inexperienced endoscopists intelligently analyze medical

images to better detect and classify lesions. In 2019, Cai et al. used

CNN to develop a computer-aided detection (CAD) system for

identifying early ESCC based on conventional WLI endoscopy. The

system was trained on 2,428 (1,332 abnormal and 1,096 normal)

esophageal endoscopic images of 746 patients obtained from 2

centers. The validation dataset contained 187 images from 52

patients. The results showed that the diagnostic sensitivity,

specificity, and accuracy of the CAD system were 97.8%, 85.4%,

and 91.4%, respectively. The area under the receiver operating

characteristic curve (AUC) was >96%. The diagnostic accuracy of

senior endoscopists was 88.8%, while that of junior endoscopists was

77.2%. The average diagnostic ability of endoscopists improved after

referring to CAD results, especially in terms of sensitivity (74.2% vs.

89.2%), accuracy (81.7% vs. 91.1%), and NPV (79.3% vs. 90.4%) (41).

This suggests that the CNN-CAD system has high accuracy and

sensitivity for early ESCC screening and can help endoscopists detect

lesions that were previously overlooked under WLI.
Frontiers in Oncology 05
Another study from China in 2021 reported on the diagnosis of

early-stage ESCC using WLI based on a real-time deep

convolutional neural network (DCNN) system. A total of 4,002

images from 1,078 patients were used to train and cross-validate the

DCNN model. The diagnostic performance of the model was

validated with a total of 1,033 images from internal and external

datasets of 243 patients. It was found that the DCNN model

performed excellently in diagnosing early ESCC, with a sensitivity

of 0.979, a specificity of 0.886, and an AUC of 0.954. The diagnostic

accuracy of endoscopists was significantly improved after referring

to the prediction results of the DCNN model (48). The research

results in 2021 and 2022 also suggest that the AI model under WLI

can accurately identify early ESCC (50, 58). Since WLI is the most

widely used examination method in daily practice, AI-assisted

WLI for early diagnosis of ESCC has great clinical significance

and is a potential assistant for endoscopists, especially for

young endoscopists.
5.2 The value of AI-assisted non-magnified
electronic chromoendoscopy for the
diagnosis of early ESCC

The non-magnifying narrow-band imaging (NM-NBI)

endoscopy system improves the visualization of microvessels and

mucosal patterns in the digestive tract. The NM-NBI has been used

for routine screening of ESCC, which has higher accuracy and

specificity than ordinary WLI. Li et al. constructed an AI-aided

diagnosis system based on NBI images and compared the value of

their previously established AI-aided diagnosis system based on
FIGURE 2

Deep learning model of convolutional neural network (CNN). CNN extracts feature of endoscopic images through multiple neural layers to predict
whether there is esophageal cancer in the image.
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TABLE 1 Characteristics of studies investigating the AI for early ESCC.

References Study
design

Study aim Images
mode

AI model External
validation

Patients
in

training
set

Images
for

training

Patients
in

test set

Images for
test

Everson 2019
(38)

R Differentiation of
abnormal IPCL(B1/
B2/B3) from normal
(A)

ME-NBI CNN No 17 (10
ESCCs)

7046* 17 (10
ESCCs)

7046*

Zhao 2019
(39)

R Detection of ESCC ME-NBI CNN-SVM No 219(165
ESCCs)

1383& 219 (165
ESCCs)

1383&

Nakagawa
2019 (40)

R Determining the
invasion depth
Of ESCC

WLI, non-
ME and ME-
NBI/BLI,
LCE

DCNN Yes 804 ESCCs 14,338
(5678 ME
images)

155 ESCCs 914 (509 ME
images)

Cai
2019 (41)

R Localize and identify
ESCC

WLI DNN No 746 2428 (1332
ESCCs)

52 187

Guo
2019 (42)

R Real-time
diagnosis of ESCCs

NBI CNN-
SegNet

No 549 (191
ESCCs)

6473 60 (27
early
ESCCs)

80 videos

Ohmori
2020 (43)

R Detect and
differentiate ESCC.

WLI, non-
ME and ME
NBI/BLI,
LCE

CNN
-SSMD

No Unknown
(804
ESCCs)

22,562
(11279 ME
images)

135 (52
ESCCs)

727 (204 ME
images)

Tokai
2020 (44)

R Measure ESCC
invasion depth

WLI and
NBI

CNN-
GoogLeNet

No 55 1751 291 291

Fukuda
2020 (45)

R Diagnosing ESCC
with videos

NBI or BLI CNN-
SSMD

No 2002 (1544
ESCCs)

28,333 144 144 videos

Shimamoto
2020 (46)

R Calculate
cancer invasion depth

WLI, non-
ME and ME
NBI/BLI,
LCE

CNN
-PyTorch

No 909 23,977
(17,120
NBI/BLI)

102 102 ESCC
videos

Everson
2021 (47)

R Recognition of IPCL
patterns and predict
invasion depth

ME- NBI CNN-
ResNet-18

No 114 (69
dysplastic)

67,740
(39,662
dysplastic
, five-fold
cross
validation)

114 (69
dysplastic

67,740 (39,662
dysplastic
, five-fold cross
validation)

Tang
2021 (48)

R Real-time to
diagnose ESCC

WLI DCNN Yes 1,078
(337
ESCCs)

4,002 162 (58
ESCCs)

700 (207
ESCCs)

Ikenoyama
2021 (49)

R Predict multiple LVLs WLI and
NBI

CNN-
GoogLeNet
and Caffe

No 595 (188
with
multiple
LVLs)

6634 (2736
with
multiple
LVLs)

72 (32 with
multiple
LVLs)

667 (342 with
multiple LVLs)

Yang
2021 (50)

R Automatic
diagnosis of early
ESCC

WLI, non-
ME and ME-
OE images,
LCE

DCNN
-Yolo V3,
ResNet V2

No 5075 cases 10,988 1055 cases 2309 images,
104 videos

Uema
2021 (51)

R Classify the
microvessels of
ESCCs

ME-NBI CNN-
ResNeXt-
101

No 262 lesions 1777 (1134
B1, 557 B2,
86 B3)

131 lesions 747
(419 B1, 292 B2,
36 B3)

Waki
2021 (52)

R Detect ESCC with
Videos without
focusing on the lesion

WLI, NBI,
and BLI

DL-BiSeNet No 1763 (1567
ESCCs)

18,797
(17,336
ESCCs)

100 (50
ESCCs)

100 videos (50
ESCCs)

Shiroma
2021 (53)

R Detect ESCC from
enoscopic videos

WLI and
NBI

DCNN-
SSMD

No 397 ESCCs
(65

8428 72 patients 144 Videos

(Continued)
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WLI images for the diagnosis of early esophageal cancer. The

training dataset contains 2167 abnormal NBI images of 235 early-

stage ESCC patients and 2,568 NBI images of 412 normal patients

from three institutions. Then, they collected 316 pairs of images

(133 pairs of abnormal and 183 pairs of normal) as a test dataset,

each pair of images including WLI and NBI images at the same

position and angle. It was found that the AUC of CAD-NBI was

0.9761. The diagnostic sensitivity, specificity, accuracy, positive

predictive value, and negative predictive value of the CAD-NBI

system were 91.0%, 96.7%, 94.3%, 95.3%, and 93.6%, respectively,

while the CAD-WLI was 98.5%, 83.1%, 89.5%, 80.8%, and 98.7%.

CAD-NBI showed higher accuracy and specificity than CAD-WLI,

while CAD-WLI was more sensitive than CAD-NBI. By using

CAD-WLI and CAD-NBI together, endoscopists can improve

their diagnostic efficiency to the highest accuracy, sensitivity, and

specificity of 94.9%, 92.4%, and 96.7%, respectively (55).

Wang et al. constructed a single-shot multi-box detector (SSD)

system using a neural convolution algorithm and tested its accuracy

in the diagnosis of esophageal neoplasms and its performance in

differentiating histological grades. A total of 936 endoscopic images

were used to train the system, including 498 WLI images and 438
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NBI images. Esophageal neoplasms were divided into three

categories based on pathological diagnosis: low-grade squamous

dysplasia, high-grade squamous dysplasia, and squamous cell

carcinoma. The AI system analyzed 264 test images within 10

seconds, including 112 WLI images and 152 NBI images. SSD

accurately diagnosed 202 of 210 esophageal neoplasm images and

38 of 54 normal esophageal images. The diagnostic sensitivity,

specificity, positive predictive value (PPV), negative predictive

value (NPV), and accuracy were 96.2%, 70.4%, 92.7%, 82.6%, and

90.9%, respectively. Comparing the diagnostic performance

between WLI and NBI, SSD-WLI images showed higher

specificity and PPV, while NBI images showed higher sensitivity

and NPV. Overall, SSD diagnostic WLI images and NBI images had

similar accuracy. The overall accuracy of SSD in diagnosing

esophageal neoplasms of different histological grades was 92%,

and the accuracy of SSD in diagnosing NBI images was 95%,

which was higher than that of WLI images (89%). SSD showed

good sensitivity to ESCC, and the sensitivity of WLI and NBI

images to esophageal SCC was 97% and 100%, respectively (54).

Ohmori et al. found that an AI system can diagnose 52 (100%) of

52 SCC cases as cancer, 33 (100%) of 33 normal mucosa cases as
TABLE 1 Continued

References Study
design

Study aim Images
mode

AI model External
validation

Patients
in

training
set

Images
for

training

Patients
in

test set

Images for
test

advanced
cancers)

Wang
2021 (54)

R Detect and
differentiate
histological grade of
ESCC

WLI and
NBI

CNN-SSD No Unknown
(46 ESCC)

936 (162
normal
)

Unknown 264 (54 normal)

Li
2021 (55)

R Identify ESCC under
NBI imaging and
compare it with WLI

NBI and
WLI

CNN-VGG No 647 (235
ESCCs)

4735 (2167
ESCCs)

112 cases
(42 ESCCs)

316 pairs of
images (133
abnormal)

Yuan
2022 (56)

R Detecting ESCC WLI, non-
ME and ME
NBI, LCE

DCNN
-YOLO v3

Yes 2291
ESCCs

45,770 (29
248
cancerous
images)

119 2088 (1245
ESCCs),
142 videos (76
ESCCs)

Yuan
2022 (57)

R Predict IPCLs
subtypes of ESCC

ME-NBI DCNN
-HRNet
+OCR

Yes 496 lesions 5505 176
patients

1323

Liu
2022 (58)

R Detect and delineate
margins of ESCC

WLI DCNN-
YOLACT

Yes 977 10,467
(4885
ESCCs)

312 (96
external
validation)

3506 (890
external
validation)

Tajiri
2022 (59)

R Detect ESCC in
simulated
clinical situations

WLI, ME
and non-ME
NBI/BLI

BiT-M
(ResNet-
101×1)

No 1843 (1433
ESCCs)

29,794
(25,048
ESCCs)

147 lesions
(83 ESCCs)

147 videos (83
ESCC videos)

Wang
2022 (60)

R Diagnosis of ESCC WLI, NBI
and LCE

DL-
YOLOv5l

No 1025 11, 547 101 1462

Yuan
2023 (61)

R and P Detect and delineate
the extent of ESCC

NBI DCNN-
YOLACT

Yes 899 (802
ESCCs)

7530 (4512
ESCCs)

414 cases
(311
ESCCs)

2517 (1488
ESCCs) and 140
videos (70
ESCCs)
R, Retrospective; P, Prospective; ESCC, Esophageal squamous cell carcinoma; IPCL, Intrapapillary capillary loop; WLI, White light imaging; NBI: Narrow band imaging; LCE, Lugol
chromoendoscopy; ME: Magnifying endoscopy; LVL, Lugol-voiding lesions; CNN, Convolutional neural network; DCNN, Deep convolutional neural network; DNN, Deep neural network; DL,
Deep learning; OE optical enhancement; * The images were five-fold cross-validation; & The images were three-fold cross-validation.
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normal mucosa, and 19 (38%) of 50 non-cancerous esophageal

lesions as non-cancerous lesions through NBI/BLI images. On

average, experienced endoscopists diagnosed 48 (92%) of 52 SCCs

as cancer, 31 (94%) of 33 normal mucosae, and 26 (52%) of 50 non-

cancerous lesions as non-cancerous lesions. The AI system accurately

diagnosed SCC and normal esophagus in all samples without

producing false negative or false positive results. The sensitivity of

AI for SCC diagnosis was better than that of experienced

endoscopists, but its specificity for non-cancerous lesions was lower

than that of experienced endoscopists. The AUC of the validation

dataset using NBI/BLI is 93% (43).

Yuan et al. have recently reported an AI system for detecting and

delineating ESCC under NBI. The system was trained with 7530

images from 899 lesions, of which 4512 were ESCC images from 802

lesions. The retrospectively collected 1376 images from 130 lesions

containing 804 ESCC images and 1141 image from 111 lesions

containing 684 ESCC images were used as internal test dataset and

external test dataset, respectively. The accuracy of the system in

detecting ESCC in internal and external tests was 92.4% and 89.9%,

respectively, while the accuracy of the system in delineating extents in

internal and external tests was 88.9% and 87.0%, respectively. They

also prospectively collect 140 videos including 70 cancerous lesions to

perform clinical evaluation, the system also showed satisfactory

performance, with an accuracy of 91.4% in detecting lesions and an

accuracy of 85.9% in delineating extents (61). It can be seen from the

above research that endoscopists can improve diagnostic efficiency by

using AI-assisted NBI images. It helps to avoid missed diagnosis and

excessive biopsy, which may help endoscopists, especially those with

less experience, screen for early ESCC more effectively.
5.3 The role of AI-assisted magnifying
electronic chromoendoscopy in the
diagnosis of ESCC

Magnifying electronic chromoendoscopy (ME-NBI/BLI)

improves the visualization of subtle changes in intramucosal

capillary loops (IPCL), which play a key role in the diagnosis of

early ESCC (62). However, the accuracy of IPCL classification

depends on the operator’s experience and requires an objective

and accurate method to evaluate.

Everson et al. reported that a total of 7046 ME-NBI images

sampled at 30 fps from videos of 17 patients (10 ESCCs, 7 normal)

with 5-fold cross-cycle validation were used to train CNN. Three

endoscopic experts classified the IPCL pattern of the images into

normal (type A) and abnormal (types B1–3) using the Japanese

Society of Endoscopy criteria as the gold standard. All imaging was

verified histologically. The results showed that the accuracy of the

CNN in diagnosing normal and abnormal IPCL patterns was 93.7%

(86.2% to 98.3%), the sensitivity was 89.3% (78.1% to 100%), and

the specificity was 98% (92% to 99.7%). It shows that CNN can

accurately classify IPCL patterns as normal or abnormal. And the

prediction time of the CNN diagnosis is between 26.17 ms and

37.48 ms (38). The extremely fast diagnostic speed of the system

indicates that it can be used for real-time clinical decision-making

in vivo as a support tool to guide endoscopists to evaluate ESCC.
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Zhao et al. conducted a study on the diagnostic value of AI-

assisted ME-NBI images for early esophageal cancer in a total of 219

patients, including 30 inflammatory lesions, 24 low-grade

intraepithelial neoplasia, and 165 early esophageal cancers.

Endoscopy experts combined pathological results to determine

the gold standard diagnosis of IPCL. The endoscopic gold

standard for IPCL diagnosis in 219 patients was 31 type A, 143

type B1, and 45 type B2. The dataset was validated using a 3-fold

cross-validation in the study. Among the 1383 lesion images in the

study, the average accuracy of IPCL classification by advanced,

intermediate, and junior group endoscopists was 92.0%, 82.0%, and

73.3%, respectively. The model achieved an average diagnostic

accuracy of 93.0% at the image level. The diagnostic accuracy rate

of inflammatory lesions in the model (92.5%) was higher than that

of intermediate-level (88.1%) and primary-level (86.3%)

endoscopists. The diagnostic accuracy of the model for malignant

lesions (B1, 87.6%; B2, 93.9%) was significantly higher than that of

the intermediate (B1, 79.1%; B2, 90.0%) and junior (B1, 69.2%; B2,

79.3%) endoscopist groups (39).

Ohmori et al. developed a computer image analysis system to

detect and differentiate ESCC. They tested 204 ME-NBI/BLI images

from 135 patients. The diagnostic sensitivity, specificity, and

accuracy of ME-NBI/BLI assisted by a computer image analysis

system were 98%, 56%, and 77%, respectively, while the diagnostic

sensitivity, specificity, and accuracy of 15 experienced endoscopy

doctors were 83%, 70%, and 76%, respectively (43). There is no

significant difference in diagnostic performance between AI systems

and experienced endoscopists.

Everson MA used a dataset containing 67,742 high-quality ME-

NBI images to train CNN for IPCL classification. These images were

extracted at 30 frames per second from examination videos of 114

patients (45 with normal mucosa and 69 with dysplasia). Through

the method of five-fold cross training and verification, a total of

28,078 normal images and 39,662 dysplasia images were collected,

with an average of 593 frames per patient. This study also evaluated

the IPCL classification results of 158 representative images by 5

Asian and 4 European endoscopy experts. The results showed that

the F1 scores (the measurement accuracy of binary classification) of

European experts and Asian experts were 97.0% and 98%,

respectively. The sensitivity and accuracy of European and Asian

endoscopic specialists were 97% and 98% and 96.9% and 97.1%,

respectively. The average F1 score of CNNwas 94%, and the average

diagnostic sensitivity and accuracy were 93.7% and 91.7%,

respectively (47). It is shown that the CNN achieves diagnostic

performance comparable to that of an endoscopic expert panel.
5.4 The role of AI in the diagnosis of ESCC
invasion depth

The Paris classification based on white-light endoscopic

morphology has a certain value in judging the depth of tumor

invasion and guiding the choice of treatment, but it lacks accuracy

in judging the depth of invasion in early esophageal cancer. During

the progression of ESCC, the initial slender annular structure of

IPCLs becomes more tortuous and dilated and then forms a linearly
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dilated vascular structure. In the deeper submucosal infiltration

stage, these structures disappear and are replaced by

neovascularization consisting of tortuous, dilated, and acyclic

capillaries. The morphological changes of IPCL are related to the

depth of tumor invasion, which is the main factor in determining

endoscopic treatment. However, the current diagnosis of invasion

depth is subjective and has obvious individual differences (63).

Therefore, a computer-aided diagnosis system that can objectively

classify and diagnose is needed.

Nakagawa et al. developed an AI-assisted diagnostic system

based on SSD to evaluate the invasion depth of superficial ESCC.

The training dataset consists of 8,660 non-magnified and 5,678

magnified endoscopic images collected from 804 patients with

superficial ESCC with a pathologically confirmed depth of cancer

invasion. 405 non-magnified endoscopic images and 509 magnified

endoscopic images were selected from 155 patients for validation.

The results showed that the system had a sensitivity of 90.1%, a

specificity of 95.8%, a PPV of 99.2%, an NPV of 63.9%, and an

accuracy of 91.0% for correctly distinguishing intramucosal/slightly

invasive carcinoma (SM1) from submucosal deeply invasive (SM2/

3) carcinoma, whereas 16 experienced endoscopists using the same

validation set correctly differentiated intramucosal/micro-invasive

carcinoma (SM1) from submucosal deeply invasive (SM2/3)

carcinoma with 89.8% sensitivity, 88.3% specificity, 97.9% PPV,

65.5% NPV, and 89.6% accuracy (40). This shows that this AI

system has a good performance in diagnosing the invasion depth of

superficial ESCC, and its performance is comparable to that of

experienced endoscopists.

Uema et al. retrospectively collected a total of 393 ME-NBI

images of superficial ESCC and performed a diagnostic study on the

classification of IPCL morphology by a CNN-based AI diagnostic

system. All images were evaluated by three experts based on the

Japan Esophagus Society classification of IPCL and classified into

three categories: B1, B2, and B3. 1,777 images were used as a

training dataset, and the remaining 747 images were used as a

validation dataset. In the training dataset, 1,134 images were labeled

as type B1, 557 as type B2, and 86 as type B3. Correspondingly, in

the validation dataset, 419 images were labeled as type B1, 292 as

type B2, and 36 as type B3. The results showed that the accuracy of

the CAD system for microvessel classification was 84.2%, which was

higher than that of eight endoscopists (77.8%, P 0.001). The AUCs

for diagnosing B1, B2, and B3 vessel types were 0.969, 0.948, and

0.973, respectively (51). The CAD system shows superior

performance in the c lass ificat ion of microvesse ls in

superficial ESCC.

Yuan et al. recently reported an AI-assisted diagnosis system

based on a DCNN algorithm named HRNet+OCR to diagnose the

microvascular morphology of lesions. A total of 7,094 ME-NBI

images from 685 patients were used to train and validate the AI

system. The comprehensive accuracy of the AI diagnostic system

for diagnosing IPCL subtypes in the internal and external validation

datasets was 91.3% and 89.8%, respectively. It is superior to the

senior endoscope in diagnosing IPCL subtypes and predicting the

depth of lesion invasion. With the assistance of the AI system,

junior endoscopists significantly increased the comprehensive

accuracy of the diagnosis of IPCL subtypes from 78.2% to 84.7%
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and the comprehensive accuracy of the depth of invasion from

67.9% to 74.4%. Although there was no significant difference, the

diagnostic accuracy of senior endoscopes was improved with the

help of the AI system (57). From the above results, it can be seen

that the AI system can improve the diagnostic ability of

endoscopists for the IPCL classification of precancerous lesions

and superficial ESCC.
5.5 The role of AI in the real-time diagnosis
of ESCC

AI studies using static images may have some bias because these

studies typically select the best-imaged regions for analysis. The

performance of the AI diagnosis system on video images can be

evaluated in real-time and was found to be closer to the actual

situation in clinical application.

Guo et al. developed a CAD system to help with the real-time

automatic diagnosis of precancerous lesions and early ESCCs. The

system used 2,770 NBI images from 191 cases of early ESCCs or

precancerous lesions and 3703 NBI images from 358 cases of non-

cancerous lesions, including esophageal varices, ectopic gastric

mucosa, esophagitis, and normal esophagus, as training data sets.

Twenty-seven cases of precancerous lesions or early ESCC

confirmed by pathology, including 27 non-magnified videos and

20 magnified videos, and 33 cases of normal esophagus, including

30 non-magnified videos and 3 magnified videos, totaling 80 video

fragments in total, were randomly selected as the test dataset. The

results showed that the overall sensitivity and specificity of CAD per

frame were 91.5% and 99.9%, respectively. In precancerous lesions

or early esophageal cancer, the diagnostic sensitivity of non-

magnified video and magnified video per frame was 60.8% and

96.1%, respectively. The diagnostic sensitivity of a single lesion in

non-magnified and magnified video clips was 100%. In normal

esophageal cases, the diagnostic specificity of each case was 90.9%

(42). This demonstrates the high sensitivity and specificity of the

deep learning model for video dataset diagnosis.

Fukuda et al. reported on the results of using AI for the real-

time diagnosis of early ESCC. They used 23,746 images from 1,544

cases of pathologically confirmed superficial ESCCs and 4,587

images from 458 cases of non-cancerous and normal tissues to

build an artificial intelligence (AI) system. The 5- to 9-second video

clips of 144 patients taken with NBI or BLI were used as the

validation dataset. These video images were diagnosed by the AI

system and 13 certified endoscopists, respectively. The results

showed that the sensitivity, specificity, and accuracy of the AI

system and experts in diagnosing ESCC from non-magnified NBI

video were 91%, 51%, and 63%, and 79%, 72%, and 75%,

respectively. The sensitivity, specificity, and accuracy of the AI

system and experts in diagnosing early SCC with magnified NBI

video were 86%, 89%, 88%, and 74%, 76%, and 75%, respectively

(45). It shows that the sensitivity of the AI system is significantly

higher than that of experts, but its specificity is significantly lower

than that of experts.

Tajiri et al. reported the latest results of real-time diagnosis of

early ESCC. They used 25,048 images from 1,433 cases of superficial
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ESCC and 4,746 images from 410 cases of the non-cancerous

esophagus to build the AI system. The validation dataset is NBI

videos of suspected superficial ESCC. These videos correspond to

sequential videos of routine diagnostic procedures, including the

detection of lesions by non-magnified images, approaching lesions,

and observation of microvascular patterns by magnified images.

The AI system also used a zoomed-in, still image captured from

each video for diagnosis. The 147 videos in the validation dataset

included 83 cases of superficial ESCC and 64 cases of non-ESCC

lesions. The accuracy, sensitivity, and specificity of the AI system for

ESCC classification were 80.9% [95% CI 73.6–87.0], 85.5% [76.1–

92.3], and 75.0% [62.6–85.0], respectively, while the accuracy,

sensitivity, and specificity of the endoscopy were 69.2% [66.4–

72.1], 67.5% [61.4–73.6], and 71.5% [61.9–81.0], respectively (59).

It was suggested that the AI system showed higher accuracy than

endoscopists in diagnosing ESCC and non-ESCC. It can provide

valuable diagnostic support to endoscopists.

Shimamoto et al. developed an AI system for real-time

diagnosis of ESCC invasion depth. A total of more than 20,000

white light and magnified and non-magnified NBI/BLI images of

ESCC with pathologically determined infiltration depth were used

as training datasets. 102 ESCC video images serve as an

independent validation dataset. Each case included two types of

videos: a 4–12 second magnified NBI/BLI video and a non-

magnified WLE video. The diagnostic accuracy, sensitivity, and

specificity of the AI system and the endoscopist on non-magnified

videos were 87%, 50%, and 99%, and 85%, 45%, and 97%,

respectively. The accuracy, sensitivity, and specificity of the AI

system and the endoscopist on magnifying videos were 89%, 71%,

95%, and 84%, 42%, and 97%, respectively (53). It is suggested that

the two types of video AI systems have better diagnostic accuracy,

sensitivity, and specificity than those of the expert group. The AI

model can effectively assist in evaluating the depth of the ESCC

invasion in real-time.
6 Conclusions and perspectives

At present, AI diagnostic systems developed based on different

algorithms and image modalities (such as static images or dynamic

video, WLI/NBI, and magnified/non-magnified images) have

demonstrated equivalent or superior diagnostic accuracy,

sensitivity, and specificity compared to endoscopic experts.

However, the majority of studies have focused on establishing,

training, and validating AI algorithms utilizing retrospective data

from a single center. The quality of the learning resources within the

training dataset significantly impacts the diagnostic performance of

the model. The disparity between the training dataset and the actual

endoscopic working environment may limit its clinical applicability.

Currently, ESCC endoscopic screening relies primarily on WLI

and NBI endoscopy in common clinical practice. The establishment

of an AI system for real-time detection and delineation of the ESCC

based on WLI and NBI video is most suitable for clinical use. Yuan

et al. have reported an AI system established by the WLI and NBI

imaging modes can be directly connected to endoscopic monitor,
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and the AI system can detect and delineate very small flat lesions in

real-time fashion (64), which provides a model of the clinical

application of an AI in endoscopic diagnosis of ESCC in the

future. However, there is still a need to integrate diverse datasets

from multi-center, multi-equipment, and multiple imaging

modalities to optimize and iterate a more robust and compelling

AI system. Additionally, external multicenter validation, especially

prospective multicenter double-blind randomized controlled trials,

is required to confirm the accuracy of the results before AI can be

applied to clinical practice.

Although there are still many obstacles before the large-scale

application of AI in ESCC diagnosis, the application of AI during

early ESCC detection has shown promising prospects. The

increasing number of people participating in endoscopic

screening for ESCC leads to an increase in the workload of

endoscopists. An AI algorithm can achieve rapid and accurate

diagnosis in seconds or minutes, which is conducive to reducing

the workload of endoscopy doctors. Shortly, advanced AI systems

will be compulsorily incorporated into the composition of

endoscopic equipment for daily usage to improve clinical

outcomes. More and more patients and physicians will benefit

from the progress of endoscopic AI auxiliary diagnosis systems.
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