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Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the “DEPHENCE” system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the “DEPHENCE” system postulates.
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Introduction

Ovarian cancer, especially its type II according to the dualistic model proposed by Kurman and Shih (1), represented mostly by the high-grade serous ovarian cancer (HGSOC) is the most lethal tumor of the female genital tract. The cumulative 5-year survival in the population of patients with all clinical stages does not exceed 48% (2). Despite the fact that some cases of the HGSOC are primarily chemo-refractory, the most of the cancers belonging to this group are chemosensitive to first-line chemotherapy; however, they quickly acquire the secondary chemoresistance that constitutes the main problem in effective management. Moreover, the HGSOC possesses unique behavior that allows spreading of the tumor cells, mostly in the form of cellular spheroids, from the primary tumor into the distant localizations in the peritoneal cavity. Therefore, the HGSOC is a highly malignant, rapidly progressive tumor characterized by poor prognosis and mortality reaching 90% of all ovarian cancer cases (3).





Ovarian cancer stem cells

One of the main problems in the treatment of HGSOC is the existence of ovarian cancer stem cells (OCSCs) that reside inside tumor niches and cooperate with surrounding cells that compose tumor microenvironment (TME). The character of this cooperation shapes tumor behavior and influences several processes including dormancy, proliferation, metastasis, and, most of all, chemoresistance (4). Cancer stem cells are a population of cells capable of self-renewal and reproduction of the original phenotype of the tumor and are enriched especially in the advanced, disseminated, and recurrent tumors (5). There are two functionally distinct populations of CSCs, proliferating and quiescent, which occupy different niches inside the tumor. The proliferative CSCs are chemoresistant but vulnerable to overdoses of the chemotherapeutics; however, quiescent CSCs are in the autophagic state and could survive even high doses of anti-cancer drugs, thus enabling tumor relapse (6). One of the key phenomena responsible for regulation of stemness is epithelial–mesenchymal transition (EMT) viewed as a continuum of phenotype cellular states from complete epithelial and proliferative state, through several intermediate hybrid states to complete mesenchymal and invasive phenotype. Cancer stem cells could represent any of these steps due to the outstanding plasticity (7). This plasticity of CSCs is highly dependent on the patient’s immunosurveillance as well as on epigenetic and environmental signals from the TME (6). The most recognized stressors that could influence both phenotype and function of CSCs are hypoxia, acidity, mechanical stress, immunological response, epigenetic changes like DNA methylation, histone and non-coding RNA modifications, and, finally, activation of stemness signaling pathways (8–11).

The problem of the stemness is directly connected to the cancer dormancy that is dependent on the presence of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) that have partially overlapping functions and are enriched by the population of quiescent CSCs (12). CTCs, DTCs, and CSCs are able to produce micrometastases that migrate and home inside the target organs in the pre-metastatic niches composed from tumor cells and recruited local stromal and immune cells from the environment. Quiescent CSCs and dormant DTCs inside pre-metastatic niche show overexpression of signaling pathways, enabling them to survive in stressful conditions, including chemotherapeutics (13–15).

Ovarian CSCs are characterized by cell surface CD44, CD117, CD133, CD24, MyD88, epithelial cell adhesion molecule (EpCAM), leucine-rich repeat containing G protein–coupled receptor-5 (LGR5), and LGR6] and intracellular [aldehyde dehydrogenase (ALDH), sex determining region Y-box 2 (SOX2), octamer-binding transcription factor-4 (OCT4), homeobox protein NANOG transcription factor (NANOG), and forkhead box protein M1 (FOXM1)] markers, as well as by their specific behavior (“side-population” cells). The markers for characterization of OCSCs, their function, and clinical significance are presented in Table 1. The OCSC markers unfortunately are not cancer stem cell specific, as they are also present on normal stem cells. Another feature of OCSCs is activation of signaling pathways upregulating their stemness, cancer proliferative capability, and chemoresistance. The most important and studied pathways for preservation of OCSC function are Wnt/β-catenin, Hedgehog, Hippo/yes-associated protein (YAP), neurogenic locus notch homolog (NOTCH), nuclear factor-κ-light chain enhancer of activated B cells (NF-κB), hypoxia-induced factor-1α (HIF-1α), PI3K/protein kinase B (AKT), Janus kinase (JAK)/signal transducer and activator of transcription protein (STAT), transforming growth factor–β (TGF-β), and Rho/Rho-associated protein kinase (Rho/ROCK) pathways. The functional and clinical characterization of these pathways is included in Table 2.


Table 1 | The markers for characterization of OCSCs, their function, and clinical significance.




Table 2 | The functional and clinical characterization of ovarian cancer stem cell signaling pathways.







Tumor microenvironment in ovarian cancer

Ascites is a unique microenvironment for OCSCs and is responsible for exceptional biology of ovarian cancer, shaped by the transcoelomic spread of peritoneal implants. The EMT process enables the tumor cells from primary localization to seed in the form of multiform cellular conglomerates, mostly adopting the form of spheroids enriched in OCSCs. They are transported in fluid into distant places of peritoneal cavity, with the predisposition to home into the adipose tissue collections inside peritoneum, like “milky spots”, omental fat, mesentery, or bowel appendices (125). Sphere-forming cells express OCSC markers CD44v6, CD117, ALDH1, and NANOG and are resistant to anoikis despite lack of anchorage to the surface (16, 126). The presence of cytokines [interleukin-6 (IL-6), IL-8, IL-10, and vascular endothelial growth factor (VEGF)], osteoprotegerin, and exosomes containing micro RNAs (miRNAs), cytokines, and growth factors further enhances stemness in the spheroids (38, 68, 127–129). Spheroids adhere to and destroy the mesothelium, go through the mesenchymal/epithelial transition, and start to proliferate (130, 131). TGF-β, CD133, and CD44 from spheroids stimulate mesothelium to produce fibronectin for cancer cells adhesion, enhance attachment of floating cells to the epithelial surface, and stimulate secretion of metalloproteinase-9 (MMP-9) that supports mesothelial invasion (108, 132). The initial opinions on random transportation of cellular conglomerates have been replaced by the theory of collective invasion, according to that clusters of cancer cells migrate in a directed and coordinated way (133). Collective invasion is described by some characteristic features, mainly preservation of cell-cell junctions, interaction with surface cells and ECM on their way, cooperative cytoskeleton dynamics enabling migration of clusters as a single unit, and multicellular polarity (120, 133–135). Despite a collective behavior, not all cells in the cluster are invasion-competent, and the population of cells that rule invasion is called “leader cells”. These cells delineate the way, change cellular contractility, and grow invadopodia, as well as respond to environmental signals (120, 136–138). Their presence at the front of the cluster results in its polarization. The coordinated movement requires rearrangement of the cytoskeleton, actinomyosin contraction, and activation of PI3K and Rho/ROCK pathways (120, 135, 139). After adhesion to the mesothelial surface, “leader cells” express proteolytic enzymes and penetrate the basement membrane (120, 140). The phenotype of “leader cells” is characterized by the keratin-14 (KRT14) expression. Their functional phenotype resembles the OCSC phenotype but does not correlate to EMT. The KRT14+ cells are able to re-establish the epithelial cells, show clonogenicity, are abundant in metastases, are enriched in response to chemotherapy, and promote the chemoresistance (120, 140–143). Cancer-associated fibroblasts (CAFs) present in TME play important role in collective invasion by regulation of TME remodeling to “pave” the routs for migrating cell clusters (120, 144). After exposition to chemotherapy, the population of apoptosis-resistant “leader cells” increases and shows expression of ALDH1 and CD44v6 stemness markers together with chemoresistance. Functional impairment of the “leader cells” restores chemosensitivity in vitro (145). After homing into peritoneal environment, OCSCs reside inside the “metastatic niche” composed of several cell populations, ECM components, lipids, exosomes, regulatory RNAs, and hypoxia that are orchestrated to support the OCSCs. Table 3 presents the function and clinical significance of the main components of the TME inside the “metastatic niche”.


Table 3 | The function and clinical significance of the main components of the tumor microenvironment inside the “metastatic niche”.







Obstacles in the treatment of the HGSOC

The treatment of ovarian cancer is based on debulking cytoreductive surgery, platinum-taxane–based first line chemotherapy, second-line chemotherapy, and targeted therapy approved by the FDA (Food and Drug Administration) and EMA (European Medicines Agency) using bevacizumab and poly-ADP-ribose polymerase (PARP) inhibitors. Several others drugs are being tested in clinical trials including programmed death-1 (PD-1)/ programmed death ligand-1 (PD-L1) inhibitors. HGSOC is initially a chemosensitive tumor, especially in the cases of positive BRCA germinal or somatic mutations. However, recurrent tumors are mostly chemoresistant due to activation of many mechanisms associated with the exceptional function and proliferative activity of OCSCs or reverse BRCA mutations occurring during the treatment. Moreover, the unique pattern of cancer spread inside peritoneal cavity that utilizes both collective invasion and sanguiferous route is relatively early phenomena in the course of the disease. The important obstacle in the effective treatment of HGSOC is also tumor heterogeneity comprehended as spatial heterogeneity in the different areas of the tumor, the inter-patient heterogeneity, and temporal heterogeneity between primary tumors, metastases, and recurrent disease. Even OCSCs themselves exhibit unexpected phenotypic plasticity and may differ in the same patient or among different patients depending on the cancer molecular type, advancement of the disease, patient health, and treatment scheme. The conclusion from those observations is that the use of the uniform treatment for all patients or for all temporal stages of the tumor is an oversimplification that results in observed unsatisfactory results in the context of both OS and PFS. The complexity of interaction between tumor cells, OCSCs, and TME in metastatic niche is another factor of great importance for supporting tumor growth, enhancing chemoresistance and the immune attack defiance. Therefore, tumor environment with all its components should also be treated as a target for anti-cancer therapy.





Remarks on the targeting of the OCSCs

Taking the abovementioned reflections into consideration, the interesting targets for multidirectional treatment are OCSCs themselves and the components of OCSC microenvironment, particularly metastatic niche. One of the most explored areas of anti-OCSCs therapy is drugs directed against OCSC markers, signaling pathways, and epigenetic regulators. Targeting OCSC markers is important as chemotherapy, whereas decreasing tumor burden simultaneously increases the number of OCSCs. After exposition to chemotherapy, increased numbers of ascitic EpCAM+, CD44+, and OCT4+ cells were noted (248). Similarly, recurrent tumors contain more ALDHA1+, CD133+, and CD44+ OCSCs than primary tumors (49). These phenomena are observed not only in standard platinum/taxol-based chemotherapy but also in the tumors treated with PARP inhibitors (PARPis), where increased numbers of CD133+ and CD117+ OCSCs precede the acquired PARP resistance (249). However, targeting OCSC markers has to overcome two problems. The first one is that OCSC markers are not able to distinguish cancer stem cells exclusively, as about 75% of known cancer stem cell markers are also present on the surface of embryonic and adult stem cells (250). For instance, CD44 is present on hematopoietic cells, MSCs, and adipose-derived stem cells (251–253). CD117 is positive on 25% of embryonic stem cells (254), whereas CD166 is also found on epithelial cells, MSCs, and intestinal stem cells (255, 256). Intracellular cancer stem cell markers, like NANOG, OCT4, and SOX2, are also present in normal stem cells (257, 258). The second problem is associated with the fact that there is no universal cancer stem cell marker known. Tumor heterogeneity, differentiation status, and environment are reasons for OCSC different types. Therefore, the more effective strategy of elimination of OCSCs relies on targeting of at least two OCSC markers simultaneously. Targeting the signaling pathways used by OCSCs is also reasoned by the fact that many of them are likewise OCSC markers, activated after exposition to chemotherapy (259). Epigenetic regulation in ovarian cancer is associated with both hypermethylation and hypomethylation of DNA, as well as with histone methylation and acethylation. Hypermethylation of DNA contributes to formation of OCSCs (260). The CpG islands of many onco-suppressor genes were shown to be hypermethylated in ovarian cancer, leading to the loss of DNA-repair function and cell cycle control desynchronization (261). Upon chemotherapy, hypermethylation of genes responsible for cell resistance to apoptosis was detected (262). Gene hypomethylation is frequently observed in advanced HGSOC and correlates with worse survival (263). Histone methylation is engaged in upregulation of ATP-binding cassette drug membrane (ABC) transporters in chemoresistant OCSCs (264). Disturbed function of histone deacetylases promotes tumor progression (265). Table 4 contains data on both the experimental and clinical trials of targeting OCSCs.


Table 4 | Data on both the experimental and clinical trials devoted to targeting the OCSCs.







Remarks on the targeting of the tumor microenvironment

One of the most important targets in TME is CAFs. However, the past experience with anti-CAFs therapy has indicated that the aim in this approach should be to revert CAFs functionally back to normal fibroblasts, rather than eradicating them completely from the TME. Eradication of CAFs has proved to change the tumor into more aggressive phenotype, instead of eliminating tumor cells (350). It is even more important taking into consideration that CAF populations of different tumor-promoting abilities and phenotype (CD49e+, fibroblast activation protein FAP-high or FAP-low) have been identified (351). The reprogramming of M2 tumor-associated macrophages (TAMs), another key population of tumor-supporting cells, into M1 phenotype could be similarly to CAFs, which is a better option than eliminating them completely (352). Another, recently identified population of cells in TME is cancer-associated mesothelial cells (CAMs) that originate from peritoneal normal mesothelial cells activated by cancer-derived promoting factors that induce mesothelial–mesenchymal transition and secretion of factors, enhancing peritoneal metastases and chemoresistance (353). Hepatocyte growth factor (HGF) released from ovarian cancer cells in hypoxic conditions induces the senescence of mesothelial cells and downregulates the expression of junctional proteins that results in disintegration of mesothelial integrity and enables cancer invasion through the mesothelial barrier (354, 355). Phenotypic changes of mesothelial cells to CAMs are mediated by TGF-β and CD44 and annexin A2 secreted inside exosomes from cancer cells (356–358). In response to those changes, CAMs secrete VEGF and upregulate fibronectin expression in ECM, thus promoting tumor vascularization and binding of tumor cells’ integrins to ECM to support metastases (108, 359). Moreover, CAMs increase secretion of IL-8 and CCL2 that stimulate pyruvate dehydrogenase kinase-1 in cancer cells followed by increased expression of integrins to enhance adhesion and migration (360, 361). Interaction between intelectin-1 on CAMs and lipoprotein receptor–related protein-1 on cancer cells also contributes to invasion by upregulation of MMP-1 (362). CAMs pre-stimulated by cancer cell–derived TGF-β secret osteopontin, which, in turn, activates CD44/PI3K/AKT pathway in OCSCs, leading to ABC transporters’ overexpression and chemoresistance (363). M2-shifted TAMs also support CAMs activity by macrophage inflammatory protein-1β that activates P-selectin secretion by CAMs, followed by stimulation of CD24 on the cancer cells’ surface and increased adhesion (364). CAMs are, in turn, able to polarize the TAM phenotype into M2 type (365). CAMs are also capable to regulate the expression of glucose transporter type 4, resulting in increased glucose intake by cancer cells and growth promotion (362). Because of all above functions, CAMs are an interesting target for anti-TME therapy in ovarian cancer.

The next promising target for the therapy is metabolism of cancer cells. Cancer cells use both aerobic glycolysis (the Warburg effect) and oxidative phosphorylation (OXPHOS). Aerobic glycolysis protects cells from oxydative stress and fuels proliferation. However, OXPHOS and resistance to glucose deprivation in tumor environment are a metabolic adaptation enabling chemoresistance. Both ways of glucose metabolism are therefore used by cancer cells, including OCSCs and are another sign of their plasticity (366–368). The metabolic interactions between omental adipocytes and OCSCs are another reason for cancer progression and chemoresistance. Fatty acids could be very efficient source of energy that fuels the spread and growth of peritoneal implants (369). Adipocytes are stimulated by cancer cells to release fatty acids into metastatic niche, and, in turn, adipocytes induce expression of fatty acid receptor CD36 on cancer cells, thus enhancing uptake of fatty acids by cancer (370). Colonization of omental tissue depends on expression of salt-inducible kinase 2 (SIK2) in cancer cells. SIK2 kinase stimulates cell proliferation in PI3K/AKT-mediated manner and enhances paclitaxel resistance in HGSOC cells (371). Moreover, fatty acid oxidase and fatty acid synthase (FASN) have been shown to sustain survival of cancer cells in TME and increase resistance to anoikis and chemotherapy and spheroid formation in HGSOC lines (347, 372). Ovarian cancer CSCs indicate increased concentration of unsaturated lipids and what enhances cell membrane fluidity and facilitates OCSC plasticity and self-renewal. Inhibition of desaturases inhibits spheroid formation and abrogates tumor growth and metastases (373).

Another potential target for anti-TME therapy in HGSOC is exosomes. The identification of their origin inside TME and the recognition of their cargo have the key role in exosome-directed therapy. Exosomes could be also used as potential vehicles for the transportation of drugs into the tumor. It was also found that exosomes secreted from untreated tumors have a significant influence on the expression of many genes involved in functional change of fibroblasts into CAFs and in stimulation of tumor metastases. Such ability was less evident in exosomes secreted by pre-treated tumors (374). The situation is, therefore, complicated, as it seems that exosomes differ depending not only on the type of secreting cell but also on its functional status and temporal changes during therapy. Exosomes are able to influence several mechanisms of tumor growth. Their cargo, including proteins, neoantigens, cytokines, growth factors, and miRNAs, is responsible for cancer progression, metastases, and chemoresistance. Exosomes contain also modulators of immune response capable of inhibition of macrophages: natural killer (NK) cells, dendritic cells (DCs), and B and T lymphocytes (375, 376). Exosomes negatively regulate immunosurveillance of the host against tumor, through inhibition of T lymphocytes, NK cells, DCs, and monocytes in tumor environment and ascites (227, 377–379). Exosomes stimulate tumor angiogenesis affecting the VEGF and HIF-1α expression and by activation of Wnt/β-catenin and NF-κB signaling pathways (380, 381). Exosomes influence also stroma remodeling by cooperation with CAFs and adipocyte-derived stem cells (165). Recently, tumor-derived exosomal miR-141 was identified as a regulator of stromal-tumor interactions and inducer of tumor-promoting stromal niche by activation of YAP/chemokine (C-X-C motif) ligand 1 (GROα)/CXCR signaling pathway (382). One of the most interesting vectors of information between cancer cells and TME is non-coding miRNAs and long non-coding RNAs (lncRNAs). They were found in the serum and ascites of patients with ovarian cancer (227, 228); however, their presence in tumor-derived exosomes ensures safe and undisturbed transportation to the target cells. Non-coding RNAs play extremely important functions. Exosomes loaded with miR-1246 are able to enhance pro-tumorigenic effects of M2-shifted TAMs and to facilitate paclitaxel resistance (383). Cancer cell–derived miR-21-3p, miR-222, miR-125b-5p, miR-181d-5p, and miR-940 target TAMs and polarize them into M2 phenotype (172, 384). miR-99a-5p affects human peritoneal mesothelial cells and enhances cancer cell invasion (385). The Let-7a and miR-200a regulate tumor invasiveness (386). Exosomes containing lncRNAs ENST00000444164 and ENST0000043768 are responsible for activation of NF-κB signaling in cancer cells (387). Table 5 presents data on targeting the components of TME and OCSC niche.


Table 5 | Data on the experimental and clinical trials of drugs targeting the tumor microenvironment and OCSC metastatic niche.











A novel regimen of therapy

The urgent need for improvement of efficacy in the HGSOC treatment is obvious, and many researchers have called attention to the novel approaches in diagnosis, monitoring, and management of patients with ovarian cancer. We have learned from the experience from therapy of hematologic cancers and several solid tumors that the individual approach to the treatment based on genetic, molecular, or metabolic signatures of the patients and the cancer itself usually results in better treatment efficacy and improved outcome. However, such individualization of therapy is much more difficult to be used in solid tumors, compared to hematologic malignancies, and ovarian cancer due to its unique biology is even more demanding and challenging target.

In the recent article devoted to OCSCs and OCSC-targeted treatment (470), we proposed that the novel complex standard of ovarian cancer therapy called the “DEPHENCE” system (“Dynamic PHarmacologic survEillaNCE”) should be worked out. In our opinion, it ought to be based on the following rules:

	avoidance of monotherapy, as usually combination of several drugs directed against different targets, is more efficient and, if properly orchestrated, could be less toxic;

	identification of the markers for pharmacologic compliance or resistance of the tumor and stratification of the patients according to the prognosis of treatment efficacy;

	performing the sampling of the tumor (primary, metastatic, and recurrent) repetitively for characterization of genetic signature and TME features, which could change in the course of the disease and in the response to the treatment;

	using the repeated biopsy of the tumor, but preferentially liquid biopsy, which enables to obtain more complex picture of growing tumor, as compared to standard biopsy the results of liquid biopsy do not depend on the site of the harvest of the sample;

	such approach and individualization of the therapy could enable to restore the pharmacologic surveillance over the tumor that fits the actual status of both tumor and the patient;

	every line of treatment should simultaneously target cancer cells, OCSCs, and elements of TME, as well as should generate potentialization of the patient’s immune status;

	HGSOC molecular types and different phases of the disease need different approach to the therapy;

	at the beginning, such therapy could allow for stabilization of the disease, hopefully enabling prolongation of PFS and OS; however, in a distant future the goal of this approach should be complete curation.



We think that the necessary components incorporated into the DEPHENCE system should also be

	identification of the high-risk population of women (gene mutations, single-nucleotide polymorphisms, metabolic syndromes, and environmental factors);

	searching for the techniques of early detection or even for the screening tools both in the high-risk and general populations;

	searching for the infection factors responsible potentially for ovarian cancer origin (viruses, microbiome disturbances);

	looking for prognosis biomarkers of ovarian cancer.



The practical implementation of the “DEPHENCE” system in the diagnosis and therapy of ovarian cancer is still awaiting, although the first signs of its use can be seen in the attempts to classify the molecular signatures of the tumors and TME components (158, 458, 471–476), to personalize therapy according to the tumor origin, histology, and most of all to genomic and epigenomic disturbances. The first such studies grouped HGSOC tumors T into four subtypes: C1, high stromal response; C2, high immune signature; C4, low stromal response; and C5, mesenchymal, with low immune signature. These subtypes differed in the extent of immune infiltration, desmoplasia, and EMT predisposition, and what could suggest different approach to the treatment, including immunotherapy, and patients from the C1 and C5 subtypes showed poor survival compared with other subtypes (3). Another genomic classification was proposed by The Cancer Genome Atlas Research Network, which, based on the genomic pattern, divided the ovarian cancer into four subtypes: mesenchymal, immunoreactive, proliferative, and differentiated. Mesenchymal and proliferative subtypes showed profound desmoplasia and invasive gene expression pattern, with limited immune infiltration and activation of stemness markers. Both were characterized by unfavorable prognosis. Immunoreactive subtype showed extensive immune infiltration and, similar to differentiated more mature tumors, had better prognosis (477–479). The next analysis of tumor genome identified three novel ovarian cancer subtypes named tumor-enriched, immune-enriched, and mixed. The meaning of these subtypes for therapy implies that tumor-enriched tumors should be treated with tumor killing therapy, whereas immune-enriched tumors with immunotherapy or mixture of both approaches (480). Molecular characterization of platinum-refractory and platinum-resistant ovarian tumors identified three tumor clusters: cluster 1 with overrepresentation of growth factor signaling pathways, cluster 2 with pathways regulating cell survival in hypoxic conditions and senescence, and cluster 3 related to cellular senescence. A possible treatment of choice for cluster 1 could be tyrosine kinase or angiokinase inhibitors, cluster 2 could theoretically response to mTOR inhibitors, whereas cluster 3 could be treated with the deacetylase inhibitors (87, 481, 482). Another single-cell transcriptome study revealed the heterogeneity of HGSOC, which was found to be composed of several cell clusters. The first one called EC1 showed gene enrichment for glycolysis/gluconeogenesis and ECM-receptor interactions. The EC2 subtype expressed genes, suggesting their origin from tube epithelium. The EC3 subtype showed overexpression of genes associated with function of ABC transporters, suggesting a potential to be a drug-resistant subtype. EC4 subtype was characterized by the immune response-related pathways indicating the activity of EC4 cells in immune response. The chemoresistance responsible genes were strongly represented in EC5 cell population (483).

Epigenomic analysis of immune-related lncRNAs revealed RNAs having the potential to divide the population of patients with ovarian cancer into high-risk and low-risk groups characterized by a shorter or longer overall survival (OS), respectively. High-risk score tumors were positively correlated with abundant representation of checkpoint and immunosuppressive molecules, indicating the group of patients with compromised anti-tumor immune response (484). The DNA methylation signatures represent another epigenetic point of interest in ovarian tumors. The hypomethylated upregulated tumor necrosis factor (TNF), estrogen receptor 1 (ESR1), mucin 1 (MUC1) genes, and hypermethylated downregulated forkhead box O1 (FOXO1) gene could serve as targets for epigenetic therapy and were correlated with patients’ prognosis (485).

According to the TME components, the four different CAF subsets (S1 to S4) were identified in ovarian tumors. The HGSOC of mesenchymal subtype, defined by stromal gene signatures and poor survival, had high numbers of CAF-S1 cells, which attracted and sustained immunosuppressive infiltration of Treg CD25+FoxP3+ T lymphocytes (475). The study of immunological profile of HGSOC showed the presence of activated‐immune and CAF‐immune subtypes. Activated-immune subtype showed anti-tumor features exemplified by active immune response and better prognosis. The CAF‐immune subtype was characterized by tumor‐promoting signals like, activated stroma, M2 macrophages, and a poor prognosis. The activated‐immune subtype was more likely than the CAF‐immune subtype to respond to checkpoint blockade immunotherapy (486).

The most painful problem in ovarian cancer therapy is the acquired chemoresistance following the initial good response to the first-line chemotherapy. Therefore, identification of the biomarkers of chemoresistance is one of the most important activities in ovarian cancer surveillance. The classic biomarkers of platinum and PARP chemosensitivity are the germinal and somatic mutations of BRCA1/2 genes (487). However, the reversion mutations in BRCA genes and in other homologous recombination repair (HR) genes were found to be responsible for secondary resistance to platinum- and PARPi–based therapy (488, 489). On the basis of the homologous recombination deficiency, insertions and deletions, copy number changes, and mutational signatures, a combined predictor of platinum resistance, named DRDscore, was established, and, when validated in a cohort of patients with HGSOC, it reached sensitivity of 91% (490). Four miRNA biomarkers (miR-454-3p, miR-98-5p, miR-183-5p, and miR-22-3p) identified in ovarian cancer tissues were able to discriminate between platinum-sensitive and platinum-resistant patients with HGSOC (491). Treatment using PARPis results in acquired PARPi resistance. The reason for this is a promotion of STAT3 activity both in tumor cells and populations of immune and CAF cells, followed by creation of an immunosuppressive environment. Treatment of olaparib-resistant ovarian cancer cell line with napabucasin, the STAT3 inhibitor, improved PARPi sensitivity (492). Hypoxia and therapy-induced senescence are the key drivers of primary chemo-refractoriness and secondary chemoresistance of HGSOC (493). Hypoxic TME induces the M2-phenotype in TAMs, which, in turn, secrete exosomes containing miR-223 that, when transported into ovarian cancer cells, makes them chemoresistant (494). To overcome chemoresistance, there are plenty of different drug combinations tested in both experimental and clinical settings (Tables 4, 5). Simultaneously, identification of potentially resistant tumors is of the utmost importance for successful therapy. Identification of ovarian cancer cells with high-stress signature and disturbed drug responsiveness could optimize the subsequent therapy to attenuate their function or eliminate them from the tumor (493, 495, 496). Moreover, as HGSOC tumors are characterized by temporal heterogeneity, the repetitive circulating tumor DNA (ctDNA)/CTCs testing should be performed to have the most actual picture of the disease.

The exploration of the infection factors in the origin or predisposition to ovarian cancer is also being realized in the analysis of microbiome and viral infections (497–499). Another field of intensive investigation is searching for prognostic biomarkers (500–503). It is a lot of work to do to safely and effectively combine different drugs, but the practical use of the “DEPHENCE” system philosophy could, in our opinion, lead doctors and researchers in proper direction.
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escalation
human trial
EudraCT
Imatinib Inhibition of CD117/PDGF signaling pathway. Treatment was well-tolerated, but no complete or = Phase T (268)
mesylate partial responses were documented during a median follow-up of 6.6 months. However, 33% of NCT00510653
monotherapy patients had stable disease lasting from 4 to 8+ months. There was no relationship between best (269)
response (stable disease) and target expression
Treatment showed low toxicity but also unsatisfactory anti-tumor activity. There were no Gynecologic
objective responders. Median PFS was 2 months, and median OS was 10 months. Higher pre- Oncology (270)
cp117 treatment plasma concentrations of PDGF and VEGF were associated with shorter PFS and Group study
survival Southwest
Oncology
Group (271)
Protocol S0211
Imatinib Patients with heavily pre-treated recurrent ovarian cancer expressing CD117 or PDGFRa. Hoosier
mesylate + showed ORR of 22%, which included one complete and four partial responses, and additional Oncology
docetaxel three patients had stable disease for more than 4 months Group trial
Salinomycin Salinomycin is the mono carboxylic polyether antibiotic inhibiting ABC-transporter system and Experimental 272)
monotherapy promoting OCSC apoptosis. (273)
Encapsulated salinomycin in the form of salinomycin-loaded high-density lipoprotein showed (274)
il effective cellular uptake and reduced the EMT, stemness, and angiogenesis mediated by OCSCs
Salinomycin + Combined treatment reduced stemness and spheroid forming capability and enhanced apoptosis  Experimental
CD117 q e
paclitaxel of ascitic OCSCs
Metformin + Combination of drugs reduced a significant number of CD44+CD117+ OCSCs and inhibited Experimental
bevacizumab + tumor growth
cisplatin
CD44/ Nvi28 Isoflavone derivative causing depression of mitochondrial function and cellular starvation of Experimental (275)
MyD88 OCSCs
673A The result of ALDHIA inhibition is an accumulation of toxic aldehyde metabolites in OCSCs. Experimental (276)
The effects are stronger in combination with ATR inhibitors
CM37 ALDHIA inhibitor that disturbed spheroid production by the OCT4 and SOX2 downregulation Experimental 277)
ATRA + A vitamin A derivative, in combination with carboplatin, suppresses ALDH1 expression and Experimental (278)
ALDH carboplatin downregulates functionality of OCSCs Experimental (279)
673A The pan-ALDHIA inhibitor that preferentially kills CD133+ OCSCs through initiation of
necroptosis and sensitizes tumor to platinum-based chemotherapy
Disulfiram The anti-alcoholic medication, ALDH inhibitor, in combination with cisplatin, induced Experimental (280)
apoptosis and necrosis in ALDH+ cisplatin-resistant OCSCs
Selumetinib + Both Src and MEK signaling kinases are co-activated in 31% of HGSOC. Combined treatment Experimental (281)
Saracatinib with Src inhibitor saracatinib and MEK inhibitor selumetinib decreased ALDH1+ cell sphere
formation and loss of ALDHI+ OCSCs
PNA3 + LncRNA HOTAIR is upregulated in HGSOC and especially in ALDH1+ OCSCs. Peptide nucleic  Experimental ~ (282)
guadecitabine acid PNA3 inhibits HOTAIR, and enhancer of zeste homolog 2 (EZH2) interaction and when
combined with DNMT inhibitor guadecitabine abrogates ALDHI+ spheroid formation and
decreases their number and tumor-promoting ability
Salinomycin Graphene oxide-silver nanocomposite combined with salinomycin showed high toxicity against = Experimental (283
monotherapy ALDH+CD133+ OCSCs
Licofelone COX/5-LOX inhibitor that reversed stem-like properties in spheroids and augmented paclitaxel | Experimental | (284)
ALDH/ activity resulting in prolongation of mice survival
CD133 Metformin Ovarian cancer II-IV FIGO. Metformin in combination with standard chemotherapy in Phase 1T (285)
neoadjuvant and adjuvant setting. Median PFS of 18 months, and median OS of 58 months. NCT01579812
Tumors treated with metformin had a 2.4-fold decrease in ALDH+CD133+ CSCs and showed
increased sensitivity to cisplatin
Salinomycin Conjugates of salinomycin with anti-CD133 antibody and nanoparticles are effective in Experimental (286)
monotherapy transportation of the antibiotic into CD133+ OCSCs
dCD133KDEL Deimmunized Pseudomonas endotoxin conjugated to anti-CD133 antibody inhibits tumor Experimental (287)
CD133 growth
anti-CD133 Sequential treatment using CAR-NK cells and cisplatin eradicated CD133+ OCSCs from cell Experimental (288)
CAR-NK cells + lines and cell cultures obtained from ascites samples
cisplatin
EpCAM-specific | Infusion of CAR-T cells delayed tumor progression in xenograft mice model of peritoneal Experimental | (289)
CAR-T cells carcinomatosis
Catumaxomab Hybrid moAb against EpCAM/CD3. Intraperitoneal use of this moAb resulted in prolongation NCT00326885 | (290)
of puncture-free interval (two-fold from 12 to 27.5 days) and time to first therapeutic puncture Phase 11
(four-fold from 12 to 52 days) in heavily pre-treated patients with EpPCAM+ recurrent tumors European
complicated with malignant ascites. The median puncture-free survival and overall survival were | Medicines
EpCAM 29.5 and 111 days, respectively Agency
approved
Deterioration of quality of life appeared earlier in control than in catumaxomab-treated group of | Phase II/III (291)
patients with ascites (19-26 days vs. 47-49 days) NCT00836654
In patients with malignant ascites, peritoneal catumaxomab infusion enhanced the expression of = CASIMAS (292)
the CD69 and CD38 activation molecules in T CD4+ and T CD8+, NK cells, and macrophages Phase I1Ib
and enhanced T CD8+ accumulation into the peritoneal cavity NCT00822809
Ceralasertib ATR is a protein kinase involved in recognition of DNA damage and activation of DNA damage | Experimental (293)
(AZD6738) + checkpoint. Inhibitors of ATR combined with PARP inhibitors (PARPi) were able to overcome
olaparib PARPi and platinum resistance in BRCA and CCNEI wild and mutated cell lines
M6620 (VX- Well-tolerated therapy with reduction in tumor burden, especially in BRCA-mutated patients CAPRI phase | (294)
ATR 970) + (median PFS was 4.2 months overall and 8.2 months for patients with BRCAI mutations) I
carboplatin
Partial response in platinum-resistant patients with BRCAI mutation. A patient with advanced Phase I (295)
germline BRCA1 ovarian cancer achieved RECIST partial response despite being platinum-
refractory and PARP inhibitor-resistant
Defactinib (VS- FAK is a tyrosine kinase activated by matrix and integrin receptors controlling cell motility. Experimental (296)
6063) + FAK inhibitor VS-6063 enhances chemosensitivity and decreases CD44 OCSC marker.
paclitaxel Combination with paclitaxel reduces >90% tumor weight.
VS-4718 + Modest activity in advanced platinum-resistant ovarian cancer NCT01778803 (297)
platinum Phase [ (298)
FAK FAK inhibitor combined with platinum triggered ovarian cancer cell apoptosis and restored Experimental
chemosensitivity
APG-2449 A multikinase inhibitor of FAK, ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), and Experimental  (299)
anapestic lypmphoma kinase (ALK). Combination of APG-2449 and osimertinib (EGFR tyrosine
kinase inhibitor) and mitogen-activated extracellular signal-regulated kinase inhibitor trametinib
overcomes osimertinib resistance
Manidipine Calcium channel blockers were found to target the OCSC function by decreasing steroid Experimental  (300)
Lacipidine formation, proliferation, and induction of apoptosis. Use of these drugs downregulated
% Benidipine expression of stemness markers OCT4, NANOG, SOX2, ALDHI, and CD133.
ﬁ;‘::s Lomerizine
Manidipine + Combination of calcium channel blocker with pan-HER inhibitor paziotinib showed synergism Experimental (301)
paziotinib in reduction of OCSC spheroid formation, expression of stemness markers, and enhancement of
apoptosis
MSH-1/ siRNA Dual knockdown of MSH-1 and MSH-2 downregulated OCSC ALDH4A1 and Myc and Experimental (302)
MSH-2 improved chemosensitivity
LY5000307 Selective agonist of estrogen receptor ERP. Treatment with the agonist reduced the viability, Experimental (303)
ERP receptor | (Erteberel) sphere formation capacity, self-renewal, and invasion of OCSCs while augmenting their
monotherapy apoptosis
FK866 + NAMPT is an enzyme for the NAD+ biosynthetic salvage pathway and is overexpressed in Experimental  (304)
NAMPT cisplatin cancers. Combination of NAMPT inhibitor and cisplatin inhibited expression of ALDH1 and
CD133 OCSCs and improved survival in the mouse model
AS602801 Inhibitor of ¢c-Jun N-terminal kinase downregulates survivin. Chemo-sensitization of OCSCs to Experimental (305)
Survivin carboplatin and paclitaxel
CEP-1347 A small-molecule kinase inhibitor downregulates survivin and sensitizes OCSCs to standard Experimental (306)
chemotherapy
Ipafricept Inhibitor of Fc-Frizzled-8 receptor antagonizing Wnt signaling. Sequential combined treatment NCT02050178  (307)
(OMP54F28) + is well-tolerated but has limited efficacy. The ORR was 76%. Median PFS was 10.3 months and Phase I
carboplatin + OS was 33 months
Wnat docetaxel
signaling WNT974 + Inhibitor of PORCN that lowers secretion and binding of Wnt to its receptor. Combined Experimental (308)
pathway carboplatin therapy caused cell cycle arrest and cytotoxicity of cells isolated from ascites of patients with
Vantictumab HGSOC Experimental (309)
(OMP-18R5) moAB that inhibits Wnt pathway by targeting the Frizzled receptors on cancer cells. Treatment
with vantictumab before paclitaxel therapy sensitizes cancer cells to death
Cyclopamine Steroidal alkaloid isolated from poisonous plant Veratrum californicum that inhibits Hedgehog Experimental (69)
signaling. Inhibition of spheroid-forming cells in the cell culture was observed upon treatment
with cyclopamine
Hedgehog Vismodegib The SMO receptor antagonist. Therapy was well-tolerated; however, the anticipated increase in | NCT00739661  (310)
signaling (GDC-0449) PFS was not achieved. Median PFS was 7.5 months the in treated group and 5.8 months in the phase 1T
pathway monotherapy placebo group. Hedgehog expression was detected only in 13.5% of tissues
Sonidegib The SMO receptor antagonist. Combination of drugs was well-tolerated and showed partial Phase I (311)
(LDE225) + responses or stabilization of the disease in ovarian cancer
paclitaxel
LY900009 Inhibitor of y-secretase protein. Therapy was well-tolerated, and five patients with solid tumors Phase I (312)
monotherapy including ovarian cancer had stabilization of the disease
MK-0752 + Inhibitor of y-secretase protein. Combination effectively stimulated cancer cells apoptosis and Experimental (313)
cisplatin reduced growth of ovarian cancer xenografts in mice
RO4929097 Inhibitor of y-secretase protein. Monotherapy in recurrent ovarian cancer was well-tolerated but Princess (314)
monotherapy had insufficient activity. Fifteen of the 40 patients had stabilization of the disease lasting with Margaret,
median of 3 months. The results were better in HGSOC with high expression of intracellular Chicago and
NOTCH protein California
consortium
Phase 1T
NOTCH Enoticumab moAb against DLL4-NOTCH ligand involved in angiogenesis. Therapy had acceptable toxicity. | Phase I (315)
signaling (REGN421) In the group of patients with solid tumors including ovarian cancer, two partial responses and
pithivay monotherapy 15 stabilizations of the disease were observed
Enoticumab + Combination of anti-DLL4 and anti-VEGF therapy showed greater anti-tumor effects compared Experimental (316)
aflibercept to either monotherapy in murine model of ovarian cancer
Demcizumab moAb against DLL4. Combination showed ORR of 21% with manageable toxicity in the group SIERRA Phase = (317)
(OMP-21M18) of patients with highly pre-treated HGSOC with platinum-resistant tumors Ib
+ paclitaxel
Navicixizumab Combined dual moAb anti-DLL4/anti-VEGF. Showed acceptable toxicity profile and reduced the = Phase Ia (318)
(OMP-305B83) tumors in seven of the 11 of patients with pre-treated ovarian cancer
monotherapy
Navicixizumab ~ Combination demonstrated manageable toxicity and ORR of 33% in bevacizumab pre-treated Phase Ib (319)
(OMP-305B83) patients, 64% in bevacizumab naive patients, and 62% in the biomarker (high angiogenesis and
+ paclitaxel suppressed immune response)-positive group
Metformin Activation of AMPK followed by inhibition of signaling and reduction of energy consumption Experimental (320)
monotherapy by OCSCs. Metformin inhibited cell viability, invasion, and autophagy while promoting
apoptosis in paclitaxel-resistant ovarian cancer cell lines via downregulation of IncRNA SNHG—
a regulator of PI3K/AKT/mTOR pathway
PISK/AKT/ Metformin + Combination of Metformin with chemotherapy significantly reduced cell proliferation and Experimental (321)
cisplatin/ migration and increased chemosensitivity by reducing the OCSCs in treated cell lines
",'TOI} paclitaxel Addition of metformin to standard adjuvant or neo-adjuvant chemotherapy reduced two-fold NCT01579812 (285)
signaling concentration of ALDH+CD133+ OCSCs and increased cisplatin sensitivity of tumors, resulting | Phase II
pathway in median OS of 58%
LY294002 + PI3K antagonist combined with carboplatin enhances its anti-cancer effect in mouse xenograft Experimental (322)
carboplatin model
Atorvastatin Statin that, through inhibition of AKT/mTOR pathway, stimulates apoptosis of ovarian cancer Experimental  (323)
cells and inhibits cell invasion
Metformin + Metformin through inhibition of NF-KB signaling pathway enhanced sensitivity to standard Experimental  (324)
NE-xB cisplatin/ chemotherapeutics in both sensitive and resistant cell lines
signaling paclitaxel
pathway MK-5108 Aurora-A kinase inhibitor. Its use in ovarian cancer cell lines caused cell cycle arrest, inhibition Experimental (325)
monotherapy of NF-kB signaling, and cytokine secretion
Verteporfin Photosensitizer releases a singlet oxygen and ROS toxic to cancer cells upon exposure to light of | Experimental (326)
Hippo/YAP particular w‘avelcngth. Verteporfin-loaded lipid nanoparticles inhibited tumor xenografts in mice
signaling upon l'aser‘ light exposlt\re ) ) o ) ) ) )
Verteporfin + Combination was efficient in reducing proliferation, invasion, and clonogenic capacity of ovarian | Experimental (327)
carboplatin/taxol | cancer cell lines
Ruxolitinib + Inhibitor of JAK, thus inhibiting the JAK/STAT pathway. Synergic effects of combined therapy Experimental (328)
paclitaxel on tumor growth in mouse model of advanced/ascites+ ovarian cancer
TG101209 JAK2 inhibitor that induced cytotoxicity in spire-forming CD24+ cells, thus inhibiting migration | Experimental ~ (329)
JAK/STAT and metastasis of ovarian cancer in murine model
signaling CYT387 + Combination of JAK2 inhibitor with chemotherapy inhibited paclitaxel-mediated OCSC Experimental | (38)
paclitaxel enrichment and reduced tumor burden in mouse xenografts
JQ1 Selective small-molecule bromodomain inhibitor that inhibits JAK/STAT pathway. JQ1 Experimental (330)
resensitized ovarian cancer cells to platinum
TGF-B SB525334 TGF-B1 receptor inhibitor blocked ALDH1+ OCSCs self-renewal, invasion, and spheroid Experimental (331)
signaling formation
Src and Selumetinib + MAPK and Src inhibitors showed synergistic induction of apoptosis and tumor inhibition in Experimental (281)
MAPK Saracatinib ovarian cancer mouse model. Treatment decreased spheroid formation and ALDH1 expression
signaling
kinases
DNA Decitabine + Decitabine is a DNMT1 inhibitor, a hypomethylating agent. In the group of pre-treated patients NCT01799083 (332)
. carboplatin with solid tumors, containing two ovarian HGSOC tumors, a partial response to combined Phase II
methylation
therapy was observed
Decitabine + The population of patients with chemoresistant recurrent ovarian cancer treated with combined | Phase II (333)
carboplatin/ regimen showed ORR of 87.5% and prolongation of PFS to 8 months and OS to 19 months
paclitaxel +
cytokine-
induced killer
cells (CIK)
Guadecitabine +  This regimen combining DNMT1 inhibitor with chemotherapy, compared to second-line Phase I (334)
carboplatin chemotherapy alone, resulted in increased rate of patients having 6-months PFS (37% vs. 11%)
Guadecitabine + PNA3 is HOTAIR inhibitor. Combined with DNMT1 inhibitor showed reduction of spheroids Experimental (282)
PNA3 and ALDH1+ OCSCs
Azacitidine + Combination of DNMT1 inhibitor with carboplatin caused stabilization of the disease > 4 Phase 1T (335)
carboplatin months in three patients with refractory or resistant ovarian cancer
Sequential combined treatment significantly slowed platinum-resistant HGSOC growth and Experimental (336)
activated immune-related pathways priming tumor for checkpoint inhibitor immunotherapy
Vorinostat HDAC inhibitor that induces accumulation of acetylated histones and transcription factors that Gynecologic (337)
monotherapy arrest cell cycle. Monotherapy of platinum-resistant progressive HGSOC was well-tolerated; Oncology (338)
however, clinical efficacy was minimal (two women had PFS over 6 months, with one having a Group Phase
partial response) 11
Vorinostat + Combination was effective (partial response in six of the 15 patients) in recurrent platinum- Phase 1
carboplatin + sensitive ovarian cancer but was accompanied with hematological toxicity
gemcytabine
Belinostat HDAC inhibitor that induces apoptosis and sensitizes tumor for chemotherapy. Combination Phase 11 (339)
(PXD-101) + had acceptable toxicity; in three of the 35 patients, complete response was obtained, and, in 12
Histone carboplatin + of the 35 patients, partial response was obtained. ORR was 44% in platinum-resistant and 63%
deacetylation paclitaxel in platinum-sensitive patients.
Belinostat Combination was effective in 14 of the 27 patients with platinum-resistant ovarian cancer (one Gynecologic (340)
(PXD-101) + complete and one partial response; 12 patients had disease stabilization) Oncology
carboplatin Group Phase
s
Entinostat (MS- Benzamide derivative of HDAC that inhibits selectively class I and IV HDAC. Entinostat was Experimental (341)
275) effective in therapy of intraperitoneal tumors in mouse model; however, its activity depended on
monotherapy immunocompetence represented by upregulation of MHCII and infiltration of T CD8+ cytotoxic
cells in the tumors
Entinostat (MS- Combination potentiates the effect of olaparib in HR-proficient ovarian cancer and enhances Experimental (342)
275) + olaparib olaparib-induced DNA damage
2-deoxy-D- Glycolysis inhibitor. In HGSOC tumors with reduced beta-F1-ATPase/oxidative Experimental | (343)
glucose (2DG) phosphorylation, it sensitized cancer cells for platinum
Devimistat Mitochondrial metabolism inhibitor. Preferentially targets OCSCs and prevents acquired Experimental  (344)
(CPL-613) chemoresistance into olaparib or carboplatin/paclitaxel therapy
TVB-3166 Fatty acid synthase (FASN) inhibitor. Induced apoptosis in HGSOC model Experimental (345)
USP13 Inhibits ATP citrate synthase (ACLY) followed by inhibition of ovarian HGSOC tumors in the Experimental (346)
Metabolism knockdown mouse xenograft model
Etomoxir An irreversible inhibitor of carnitine palmitoyltransferase-1 (CPT-1) in mitochondria. Targets Experimental (347)
OCSCs and induces their apoptosis, and inhibits growth of tumor xenografts
Perhexiline Inhibitor of carnitine palmitoyltransferase-1 (CPT-1) in mitochondria. Sensitized NKX2-8- Experimental (348)
deleted HGSOC lines to cisplatin
CAY-10566 Selective inhibitor of stearoyl-CoA-desaturase-1 (SCD1). Induced apoptosis and ferroptosis in Experimental (162, 349)

HGSOC lines and eliminated OCSCs and spheroid formation

FKBPL, FK506-binding protein-like; PDGF, platelet-derived growth factor; PDGER, platelet-derived growth factor receptor; ALDH, aldehyde dehydrogenase; ATRA, all-trans retinoid acid;
COX, cyclooxygenase; 5-LOX, Arachidonate 5-lipooxygenase; NK, natural killer cells; CAR, chimeric antigen receptor; ECAM, epithelial cell adhesion molecule; ATR, ataxia telangiectasia and
Rad3-related protein; OCT4, Octamer-binding transcription factor 4; SOX2, sex determining region Y-box 2; NANOG, homeobox protein NANOG; FAK, focal adhesion kinase; CCNEL, cyclin
E1; MSH, Musashi protein; siRNA, small interfering RNA; NAMPT, nicotinamide phosphoribosyltransferase; PORCN, porcupine acetyltransferase; SMO, smoothened receptor; moAb,
monoclonal antibody; DLL4, delta-like ligand-4; VEGE, vascular endothelial growth factor; ORR, overall response rate; AMPK, AMP-activated protein kinase; IncRNA, long non-coding RNA;
SNHG, small nucleolar RNA host gene 1; OS, overall survival; Src, Src non-receptor tyrosine kinase; MAPK, mitogen-activated protein kinase; JAK, Janus kinase; STAT, signal transducer and
activator of transcription protein; DNMT1, DNA-(cytosine-5)-methyltransferase-1; ORR, overall response rate; PNA, peptide nucleic acid; HOTAIR, lac RNA HOX antisense intergenic RNA;
PES, progression-free survival; HDAC, histone deacetylase; MHC, major histocompatibility complex; HR, homologous recombination; USP13, ubiquitin specific peptidase 13; NKX2-8, NK2
Homeobox 8 protein.
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TME component  Function Clinical significance REEEE
CAFs CAFs originate from peritoneal fibroblasts or MSCs Four genes—AXL, GPR176, ITGBLI, and TIMP3—identified as (91, 110,

activated by inflammatory signals, hypoxia, and exosomes ovarian cancer CAF-specific genes allow to construct the 146-157)

produced by cancer cells prognostic CAF signature. High CAF signature correlates to

Activated CAFs secrete TGF- that stimulates EMT and chemoresistance and activation of signaling pathways

metastases regulating tumor progression

Increased expression of DKK3 protein enhances Hippo/ Molecular CAF signature characterized by the expression of six

YAP and Wnt/B-catenin signaling in CAFs thus supporting =~ CAF-related genes (COLI6A1, COL5A2, GREM1, LUM, SRPX,

0CSCs and TIMP3) show that high-risk patients have worse prognosis,

CAFs enhance chemoresistance by activation of HGFR/ ineffective immune response, and low tumor mutational

PI3K/AKT pathway burden

FGF secreted by CAFs stimulates VEGF secretion and CAF-score based on molecular characteristics of CAF-related

OCSC stemness genes and signaling pathways allows classifying patients with

TME remodeling by secretion of ECM components and ovarian cancer to high- or low-risk population. Higher CAF

MMPs score is observed in advanced tumors and in patients with

Suppression of cytotoxic TILs and enhancement of pro- worse OS. Patients with low CAF score have better efficacy of

inflammatory signals immunotherapy

The existence of the functional loop between CAFs and CAFs mediate chemoresistance of ovarian cancer to anti-

ovarian cancer cells is reported, in which CAFs induce angiogenic therapy

angiogenesis by secretion of IL-6, COX-2, and CXCLI,
whereas cancer cells induce CAFs to secrete CXCL12, IL-6,
and VEGF-A to further enhance angiogenesis

CAAs Adipocytes are a source of lipids but also secrete High levels of fatty acids desaturation and oxidation in FABP4-  (158-164)
adipokines, growth factors, immune mediators, and positive tumors correlate with poor prognosis
metabolic agents FASN expression correlates with stage and grade of ovarian
Omental implants are an example of OCSC niche cancer, and patients showing high FASN expression have worse
supporting energetically and proliferatively stem cells prognosis and chemoresistant tumors

Recruitment of OCSCs into the adipose tissue depends on
IL-6, IL-8, MCP-1, and TIMP1

Interaction between IL-8 secreted by CAAs and CXCRI on
cancer cells activates metastases through p38MAPK/STAT3
pathway

Lipid transfer from CAAs to cancer cells depends on
FABP4, which is upregulated especially in metastatic
tumors

ALDH+CD133+ OCSCs show high levels of desaturation of
lipids

Survival of OCSCs in adipose tissue TME depends on the
function of SCD1, and elimination of SCD1 is synonymous
with OCSC depletion

Fatty acids supply energy for EMT

ADSCs ADSCs promote generation of OCSCs with use of (165-167)
Hedgehog/BMP4 signaling. Through secretion of IL-6, IL-8,
VEGF, and TNF-0, ADSCs enhance chemoresistance. They
are capable to differentiate into CAFs and CAAs

MSCs MSCs are recruited from bone marrow, adipose tissue, and Interactions with MSCs activate PI3K/AKT pathway and MDR (94, 106,
endometrium and are able to differentiate into CAFs. in OCSCs followed by paclitaxel and platinum resistance 111, 147,
MSCs stimulate proliferation, stemness, angiogenesis, and 166, 168-
platinum resistance 171)

IL-6 and LIF secreted by MSCs enhance OCSC function in
the STAT-dependent way

MSC-derived TGF-B and VEGF/HIF-1a signals contribute
to OCSC support and angiogenesis

Bone marrow MSCs enhance chemoresistance of ovarian
cancer by releasing miR-1180 that activates Wnt/B-catenin

signaling

TAMs Conversion of monocytes into TAMs is triggered by LIF Patients with higher M1/M2 TAMs ratio have better OS and (32, 172-
and IL-6 present in ascites PFS 182)
TAMs residing inside “metastatic niche” show M2 TAM infiltration is correlated to worse OS

immunosuppressive M2 phenotype and take part in
immune escape of the tumor, regulation of angiogenesis,
invasion, and stemness

Hypoxia in ovarian cancer TME shifts polarization of
TAMs into M2 phenotype through miR-222-3p and miR-
940 released from cancer cells and activation of STAT

pathway

Another signal for M2 differentiation of TAMs are
cytokines IL-4, IL-10, and IL-13 secreted from both cancer
and MSC cells

By secretion of pro-inflammatory IL-17, TAMs stimulate
P38MAPK and NF-xB pathways that induce self-renewal of
CD133+ OCSCs

TAMs secrete VEGF and EGF that induce spheroid
formation and peritoneal spread of cancer implants
M2-type TAMs create and support tumor tolerance by
inhibition of NK and cytotoxic T-cell activity and by
stimulation of Tregs

UBRS5-mediated immunosuppressive TAM infiltration
augments tumor growth and metastases and, through
activation of p53/B-catenin/CCL2 pathway, stimulates
spheroid formation

CAPG gene expression is correlated with infiltration of
tumors by Tregs, M2 TAMs, and exhausted T cells
contributing to immunosuppression in HGSOC

TAMs exert pro-tumor and immunosuppressive effects
through secretion of IL10,TGFB, VEGF, and expression of
PD-1 and consumption of arginine to inhibit T-cell efficacy

CD4+CD25+FoxP3+ | Expression of suppressive molecule IDO by cancer and High numbers of Tregs in tumor immune infiltrates are (183-190)
Tregs dendritic cells contributes to recruitment of Tregs into the  considered a sign of poor prognosis

tumors T CD8+/Tregs and CD4+/Tregs ratio are a good predictors of

Tregs from ovarian tumors show upregulation of TGF-B patient survival

that inhibits secretion of IL-2, IFN-y and TNF-c followed Abundance of Tregs and increased VEGF in ascites are

by impairment of T CD4+ and T CD8+ effector cells observed in patients with poor prognosis

Ovarian OCSCs through CCL5-CCRS interaction recruit However, the prognostic value of Tregs depends on the tumor

Tregs, which, upon culture with CD133+ OCSCs, secrete type and stage, and, in HGSOC tumors, lower Th17/Tregs ratio

high levels of IL-10 showing inhibitory immune function was correlated with better survival

and MMP-9 that enables invasion of cancer cells
Tregs infiltrating ovarian tumors show highly activated
phenotype (PD-1, 4-1BB, and ICOS) responsible for

immunosuppression
mDCs and pDCs Tumor and ascites DCs originate from peripheral blood The correlation between higher concentration of tumor- (191-193)
mDCs express IDO and PD-1 and are associated with associated pDCs and shorter PFS was found
mmunosuppression of anti-cancer T CD4+ helper and T The presence of mature DCs correlates with improved
CD8+ cytotoxic effectors prognosis in HGSOC

Tumor growth is accompanied by increasing numbers of
mDCs, and tumor-derived PGE2 and TGF- further
promote the function of mDCs

Immature mDCs are capable to regulate angiogenesis in the (187, 194-
tumor 197)
pDCs accumulate preferentially in ascites and their

chemoattraction depends on expression of CXCL12

pDCs stimulate the generation of IL-10+ T CD8+

suppressor cells and promote angiogenesis through the

secretion of IL-8 and TNF-ot

The population of tumor-associated pDCs differs

functionally from ascitic pDCs and secretes lower levels of

pro-inflammatory cytokines

MDSCs MDSC cells possessing CD11b+/Gr-1+ phenotype are a cell  Blockade of a key cytokine for MDSCs function, IL10, restores (198-205)
population regulating both chronic inflammation and immunosurveillance and improves survival
tumor progression Peripheral blood ARG/IDO/IL10+ MDSCs are especially
MDSCs are able to suppress maturation of DCs and abundant in patients with advanced ovarian cancer and their
cytotoxic reactions against tumor mediated by T CD8+, depletion is a good prognostic factor
NK, and NKT cells BRCA-mutated patients have less MDSCs and more T CD*+
Recruitment and functional maturity of MDSCs in the effectors than patients with wild BRCA copy in early stage
ascites depend on CXCL12/CXCR4 interactions and PGE2  HGSOC, what could explain partly the survival benefit in this
secretion group of patients

IL-6 and IL10 in ascites increase the number of MDSCs
and, through upregulation of STAT3 signaling, promote
their suppressive activity by expression of ARG and iNOS

Inhibition of mTOR activity decreases MDSC infiltration of
ovarian tumors and slows progression

PGE2 produced by MDSCs enhances expression of PD-L1
through mTOR pathway. PD-L1 expression is particularly
high in OCSCs having ALDH1+ phenotype

ECM Mechanosensory signals produced by ascites and tumor Chondroitin sulfate is upregulated in the ECM of more than (55, 130,
expansion regulate EMT and interaction with EMC, as well 90% of HGSOC and linked to poor prognosis 206-212)
as enhance angiogenesis, stemness, and chemoresistance Acquisition of mesothelial-mesenchymal phenotype by cancer
Shear stress stimulates stemness by increase of CD44, cells, characterized by expression of CALB2 and PDPN,

CD117, and OCT4 activity regulates adhesion to ECM and tumor progression and is
ECM stiffness upregulates expression of stemness CD133 correlated to poor outcome
marker

Compression changes activity of the Wnt/B-catenin
pathway and regulates EMT

Expression of PAX8 links migratory and adhesive
properties of Fallopian tube epithelium, STIC, and HGSOC
cells. Inhibition of PAX8 reduces ability of cancer cells to
migrate and adhere to fibronectin and collagen

Exosomes Exosomes loaded with miRNAs miR-409-3p and miR-339- Exosomal miR-146a secreted from MSCs reduces cancer (43,172,
5p are involved in Wnt/B-catenin signaling pathway and growth and chemoresistance to taxanes 173, 213-
stimulation of metastases in HGSOC Abundance of CD117-containing small extracellular vesicles in 226)
Ascites contain exosomes transferring cytokines, growth ascites correlates with tumor grade, chemoresistance, and
factors, miRNAs, lipids, and OCSC markers CD44 and recurrence
EpCAM between tumor environment and OCSCs Higher concentration of exosomes containing miR-21, miR-

Exosomes from cancer cells transfer CD44 into mesothelial 141, miR-200a, miR-200b, miR-200c, miR-203, miR-205, and
cells stimulating MMP-9, which supports adhesion and miR-214 is found in serum of patients with ovarian cancer
invasion of spheroid cells to the peritoneal surface compared to patients with benign ovarian tumors

Tumor cells stimulate conversion of omental fibroblasts Expression of LBP, FGG, FGA, and GSN genes in exosomes
into CAFs by production of exosomes containing isolated from plasma is involved in coagulation and apoptosis
deregulated miRNAs miR-31, miR-214, and miR-155 related pathways and can be a potential diagnostic and
Hypoxic environment reprograms TAMs into M2 prognostic biomarker for OS and PFS

polarization through exosomes containing miR-222-3p and CAV1 gene, which is the direct target of miR-1246, is involved
miR-940 in the process of exosomal transfer. Patients with high miR-
Omental CAFs and CAAs upregulate cancer cells’ 1246 and low Cavl expression have a significantly worse
chemoresistance and activate anti-apoptotic pathways prognosis

through miR-21-containing exosomes Serum exosomal level of IncRNA MALAT1 predicts advanced
MSCs enhance tumor growth producing exosomes loaded and metastatic ovarian cancer phenotype and correlates to OS

with miR-21, miR-221, and miR-92a

Exosomes containing miR-146b-5p produced by TAMs Plasma exosomal miR-1260a, miR-7977, and miR-192-5p are (227-234)
activate TRAF6/NF-kB/MMP2 pathway that deregulates significantly decreased in ovarian cancer compared with

endothelial cell migration inside tumor healthy controls

Adipose tissue MSC-derived exosomes secreted into ascites Expression level of miR-205 in plasma exosomes of the ovarian

promote tumor growth and peritoneal implants by cancer group is significantly higher compared to the benign

activation of FOXMI signaling and control groups and correlates with clinical stage and lymph

Small extracellular vesicles released from ascites OCSCs node metastases

upon cisplatin treatment are capable to activate the pro-
tumorigenic phenotype in MSCs

Exosomes secreted by expanded tumor-derived NK cells
containing cisplatin can reverse chemoresistance of cancer
cells and augment NK cytotoxic activity

CD163+ TAMs secrete exosomes containing miR-221-3p
that downregulates ADAMTS6 and activate EMT, thus
triggering the OCSC phenotype and chemoresistance

FasL and TRAIL are components in exosomes secreted by
cancer cells, responsible for apoptosis of immune cells of
cancer infiltrate

Ascite-derived exosomes transfer miR-6780b-5p to cancer
cells promoting EMT and metastasizing

CDA47 is overexpressed in tumors and tumor-derived
exosomes and facilitates tumor immune evasion. Inhibition
of exosomal CD47 improves anti-cancer macrophage
activity and suppresses peritoneal dissemination

EXOSC4 is involved in RNA degradation. Knockdown of
EXOSCA4 inhibits the proliferation, migration, and invasion

ability of ovarian cancer cells by suppressing the Wnt/f-
catenin pathway

Hypoxia and acidosis  Hypoxia and HIF-10; activation are capable of sustaining The signature of genes associated with regulation of hypoxia (96, 235-
the CD117 expression through Wnt/B-catenin signaling and immune response allow to divide patients with ovarian 247)
Hypoxia and HIF-1o. enhance stemness and EMT via cancer into high- or low-risk groups
activation of Wnt/-catenin, Hedgehog, and NOTCH Higher ALOX5AP, ANXAI, PLK3, and SREBFI mRNA levels
pathways, as well as CD133, SOX2, and NANOG markers ~ are significantly associated with shorter OS, whereas LAG3 and
Hypoxia/NOTCH/SOX2 signaling is important for IGFBP2 lower mRNA levels with better prognosis, respectively
‘maintaining OCSCs, as it enhances spheroid formation, Expression of seven hypoxia-related genes—UQCRFSI, KRAS,
upregulation of ALDH and ABC proteins, and KLF4, HOXA5, GMPR, ISG20, and SNRPD1—divides ovarian
chemoresistance cancer into two populations with different prognosis
Hypoxia and HIF-1o. promote MDSCs to secrete TGF-B, Hypoxia-related miR-23a-3p is overexpressed in HGSOC

IL-6, and IL-8 that enhance immunosuppressive conditions  showing chemoresistance and shorter PES
Hypoxia activates MAPK pathway to induce autophagy in
OCSC cells

Hypoxia attracts TAMs that support immune tolerance
against tumor cells and predisposes mature DC cells to
apoptosis

Acidosis increases the expression of stemness markers
OCT4 and NANOG and secretion of VEGF and IL-8 in
OCSC niche

Increased aerobic glycolysis in cancer cells is a source of
lactate that strongly inhibits T and NK effectors, shifts
TAMs into M2 phenotype, and recruits Tregs

‘TME, tumor microenvironment; CAFs, cancer-associated fibroblasts; MSCs, mesenchymal stem cells; DKK3, dickopf-related protein-3; YAP, yes-associated protein; PI3K, phosphatidylinositol-
3-kinase; AKT, protein kinase B; HGFR, hepatocyte growth factor receptor; FGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; ECM, extracellular matrix; MMPs,
metalloproteinases; TILs, tumor-infiltrating lymphocytes; AXL, tyrosine-protein kinase receptor UFO coding gene; GPR176, G protein-coupled receptor 176 coding gene; ITGBLI, integrin
subunit beta-like 1 coding gene; TIMP3, TIMP metallopeptidase inhibitor-3 coding gene; COL16A1, alpha 1 chain type XVI collagen coding gene; COL5A2, alpha 2 chain type V collagen coding
gene; GREMI, Gremlin-1 protein coding gene; LUM, lumina protein coding gene; SRPX, sushi repeat containing protein X-linked coding gene; OS, overall survival; IL-6, interleukin-6; COX-2,
cyclooxygenase-2; CXCLI, C-X-C motif chemokine ligand 1; CXCL12, stromal cell-derived factor 1; CAAs, cancer-associated adipocytes; MCP-1, monocyte chemoattractant protein-1; TIMP1,
tissue inhibitor of metalloproteinase-1; CXCR1, C-X-C chemokine receptor type-1; FABP4, fatty acid binding protein-4; SCD1, stearoyl-CoA desaturase-1; FASN, fatty acid synthase; ADSCs,
adipose-derived stem cells; BMP4, bone morphogenetic protein-4; MSCs, mesenchymal stem cells; MDR, multi-drug resistance; LIF, leukemia inhibitory factor; HIF-10,, hypoxia-induced factor-
105 TAMs, tumor-associated macrophages; p38/MAPK, p38 mitogen-activated protein kinase; EGF, epithelial growth factor; NK, natural killer; Tregs, T regulatory lymphocytes; OS, overall
survival; PES, progression-free survival; UBRS5, ubiquitin protein ligase E3 component n-recognin-5; CCL2, chemokine ligand-2; CAPG, capping actin protein gelsolin-like gene; PD-1,
programmed death-1; IDO, indoleamine 2,3-dioxygenase; TGE-B, transforming growth factor-B; PGE2, prostaglandin E2; CCLS, C-C motif chemokine ligand-5; CCRS, CCLS5 receptor; MMP-9,
metalloproteinase-9; 4-1BB, CD137 or TNF factor receptor superfamily T-cell costimulatory receptor; ICOS, CD278 or inducible T-cell costimulator; mDCs, myeloid dendritic cells; pDCs,
plasmacytoid dendritic cells; MDSCs, myeloid-derived suppressor cells; NKT, natural killer T cells; ARG, arginine; iNOS, inducible nitric oxide synthase; PAX8, paired box gene 8 protein; CALB,
calretinin; PDPN, podoplanin; TRAF6, TNF receptor-associated factor protein-6; FOXM1, Forkhead box protein M1; ADAMTS6, ADAM metallopeptidase With thrombospondin type 1 motif
6 FasL, Fas ligand; TRAIL, TNF-related apoptosis-inducing ligand; LBP, lipopolysaccharide binding protein; FGG, fibrinogen gamma chain; FGA, fibrinogen alpha chain; GSN, gelsolin; CAF1,
caveolin-1; IncRNA, long non-coding RNA; MALAT1, metastasis—associated lung adenocarcinoma transcript 1; EXOSC4, exosome component 4; ALOX5AP, arachidonate 5-lipoxygenase-
activating protein; ANXA1, annexin-Al; PLK3, Polo-like kinase-3; SREBF1, sterol regulatory element-binding transcription factor 1; LAG3, lymphocyte activation gene-3; IGFBP2, insulin-like
growth factor binding protein 2 UQCRESI, ubiquinol-cytochrome C reductase, Rieske iron-sulfur polypeptide 1; KRAS, Kirsten rat sarcoma virus; KLF4, Kruppel-like factor 4; HOXAS,
homeobox protein Hox-A5; GMPR, guanosine 5'-monophosphate oxidoreductase; 13G20, interferon-stimulated gene 20-kDa protein; SNRPD1, small nuclear ribonucleoprotein D1 polypeptide.
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In patients withoptimaly rescted dvaneed ovarian cance,combination of drugs reslid
i more than thre times onger PES compared to chemotherapy alone

Bispciic anti-MUCIGICDS mob nhibited the growth of mrine peritoncal tumors
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CD24 s "o ot st me” signl for macrophages. Disruping the sigsl etween CD2 on
cancercell and SIGLEC-10 on TAMs enhanced phagocyosis of cancer cells and could be
a novel tagetfor herapy

moAb bocking phagocytsis medisted by CDA7.
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%
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Combination shovied ORR of 25% in advanced recurent ovarisn cancer

Patcnts withgermline BRCAL2 mutations nd pltinum e iervalof 612 moths had
surival benct from this ttanct

Combination with PD-1/PD-LI inbibitor rcstedin tumor shrinkage and 6 month PFS in
43% ofpatients with advancod ovarian cancer

Combination showed bencf; 75% o pticnis had PFS of 6 months

(CSFIR inhibito nhibits CSFI/CSFIR pathway esponsibe for TAMs suvival. Reduction
ofscite n the mouse model of ovarian cancer

Combination with PD-1/PD-LI inhibitr, One pticn it ovaran cancr had patial
response

Partial restortion ofseniivity to nt-VEGF theapy in mouse senograft model
Rescrsing TAM phenotype into Mi. Reducestumor gronth in movse model of oarian

Inbibits dipocyte- medistod cance el prolieration, migaton, and bi-encegetic changes

(CAF-desved TGF-f prometes tumor supporting envionmen. nhibito of TGF-
ignsing pathvay docrcased peritoncal metastases nd improved survial i mause model
of varian cancer
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Function

Clinical significance

Reference

CD44 Cell-surface glycoprotein, receptor for the hyaluronic acid receptor High number of CD44+ cells in early stage (16-24)
CD44 spliced Activates EGFR/Ras/ERK and NANOG-dependent signaling pathways HGSOC correlated with shorter PFS
variant 6 Resulting NANOG/STAT3 interaction upregulates multi-drug resistance Expression correlated with advanced HGSOC, p53
(CD44v6) CD44+ cells possess self-renewal, tumor-initiating and sphere-forming positivity, tumor grade, and chemoresistance
capability CD44+ cells are overrepresented in recurrent
compared to primary HGSOC
Increased CD44v6+ cell numbers in primary
ovarian tumors correlated with shorter OS
CD44v6+ cells are overrepresented in metastases
Distant metastases-free survival is better in
patients with CD44v6-low tumors
Population of CD44+CD166+ cells is abundant in
platinum-resistant ovarian cancer
CD117 Receptor tyrosine kinase coded by c-kit proto-oncogene CD117+ cells correlate with chemoresistance (25-30)
Regulates cell proliferation, differentiation, apoptosis, and adhesion shorter OS, and shorter DFI
Binding CD117 to SCF is followed by activation of several pathways, including CD117+ expression present in HGSOC and
Ras/ERK, PI3K/AKT, and Src/JAK/STAT correlated with chemoresistance
SCF produced by TAMs and CAFs is highly expressed in ascites of patients CD44+/CD117+ cells are abundant in
with HGSOC chemoresistant HGSOC and cell lines resistant to
CD117+ cells are abundant in a sphere-forming non-adherent OCSCs and the | paclitaxel-induced apoptosis
“side population” OCSCs with increased capacity of self-renewal,
tumorigenicity, and chemoresistance, as well as selective expression of ABC
transporters
CD133 Prominin-1 is a transmembrane glycoprotein CD133+ cells are more abundant in recurrent (31-37)
Activates PI3K/AKT pathway chemoresistant tumors
Is responsible for tumorigenicity, vascularization and chemoresistance Expression of CD133+ correlated with the HGSOC
Cooperation between CD133 and ETRA augments sphere-forming capacity type, stage, ascites, and chemoresistance
and homing to peritoneal surface CD133+ cells correlated with shorter PFS and OS
NF-B and p38/MAPK-dependent pathways enhance self-renewal of CD133+ CD133+/CXCR4+ cells are more platinum-
cells resistant compared to CD133 negative cells
CD24 Heat-stable antigen CD24, a transmembrane adhesion molecule CD24+ cells are abundant in peritoneal implants (29, 38-43)
Activates JAK/STAT3 signaling pathways and NANOG and OCT4 expression | compared to primary tumor
Through stimulation of PI3K/AKT/MAPK pathway is able to stimulate EMT Inhibition of JAK/STAT3 pathway reduces OCSC
Stimulates stemness, tumor growth, and chemoresistance stemness and improves patient’s survival
CD24+ cells form spheroid structures CD24+ expression is a predictor of poor outcome
Exosomes present in ascites contain CD24 and EpCAM, which regulate signals  in patients with ovarian cancer
between OCSCs and TME Expression of CD24+ correlates with cancer stage
and presence of peritoneal implants and
metastases
EpCAM Epithelial cell adhesion molecule is a type I transmembrane glycoprotein EpCAM expression is increased in chemoresistant | (20, 44, 45)
regulating intercellular adhesion tumors and correlated with poor outcome
EpCAM+ cells show greater tumor-initiating potential EpCAM+ cells are a source of relapse after the
EpCAM/Bcl-2 pathway prevents platinum-dependent apoptosis of cancer cells chemotherapy
EpCAM+CD45+ cells constitute the chemoresistant phenotype in the ascitic
fluid of patients with ovarian cancer. These cells overexpress SIRTI, ABCAI,
and BCL2 genes. EpCAM+CD45+ population is highly invasive with signature
mesenchymal gene expression and also consists of CD133+ and CD117+CD44
+0CSCs
MyD88 Myeloid differentiation primary response gene 88 is an adaptor protein for Expression of MyD88 is an unfavorable prognostic | (28, 46)
signals generated from TLR-4 receptor factor in ovarian cancer
TLR-4/MyD88 pathway is responsible for chemoresistance and activates CD44+/MyD88+ cells show increased
inflammatory pathways in carcinogenesis tumorigenicity, sphere formation, and
chemoresistance
LGR5 and Leucine-rich repeat containing G protein-coupled receptor-5 and receptor-6 LGRS expression is correlated to ovarian tumor (47, 48)
LGR6 are biomarkers of adult stem cells stage and histologic grade
Expression of LGRS promotes proliferation and metastasis, and EMT in LGRG6 expression and activation of Wnt/B-catenin
ovarian cancer pathway are observed in tubal fimbria of patients
LGRS- and LGR6-mediated signaling is responsible for activation of Wnt/- with HGSOC
catenin pathway in OCSCs
ALDH Aldehyde dehydrogenases are aldehyde-converting enzymes Ovarian cancer cells pre-treated with growing (49-52)
ALDH1 subgroup of enzymes is engaged in protection of cancer cells against doses of platinum show increased number of
chemotherapy and radiation ALDHI+ cells
ALDHIA1 and ALDH1A?2 are the most popular phenotypes found in OCSCs HGSOC cells showing ALDH1+/EGFR+
ALDHI activates the Wnt/B-catenin pathway and transmembrane transporters  phenotype are correlated with the worse prognosis
High expression of ALDH1+ cells correlates with
chemoresistance
CD44+/CD133+/ALDHI1A1+ cells are increased in
recurrent tumors
Expression of CD133+/ALDHI1+ correlates with
shorter PFS and OS in HGSOC
NANOG Homeobox protein NANOG transcription factor Expression of NANOG+ cells correlates with (17)
Regulates self-renewal and pluripotency of embryonic and CSCs cells, and clinical stage, histologic grade, and
EMT chemoresistance
Through STATS3 signaling pathway upregulates chemoresistance
SOx2 Sex determining region Y-box 2 transcription factor Highly SOX2+ cells are present in epithelium of (53, 54) ‘
Regulates self-renewal and pluripotency of embryonic and CSCs cells tubal fimbriae in HGSOC and BRCA1/2+ patients
Overexpression of SOX2 enhances stemness by inhibition of PI3K/AKT
signaling pathway
OCT4 Octamer-binding transcription factor-4 is engaged in self-renewal of Upregulation of OCT4 in ovarian cancer is (40, 55-57)
undifferentiated embryonic stem cells correlated to chemoresistance
Stabilizes structure of chromatin in the NANOG locus Increased expression of OCT4 is observed in
Cytoplasmic expression of OCT4 regulates EMT CD24+ OCSC cells
Mechanosensory signals in the peritoneum stimulate EMT; enhance stemness
by upregulation of OCT4, CD44, and CD117; and increase chemoresistance
FOXM1 Forkhead box protein M1 is a member of the FOX family of transcription Overexpression of FOXMI is observed in OCSCs | (58-60)
factors exposed to LPA present in ascites
Regulates cell cycle and controls genomic stability FOXMI deactivation results in restoration of
Upregulation of FOXML is followed by activation of Wnt/B-catenin signaling chemosensitivity and loss of ability to spheroid
pathway and enhances chemoresistance creation in peritoneum
MSH-1/MSH-2 | MSH proteins regulate stemness of OCSCs and are aberrantly expressed in High expression of MSH proteins is correlated to (61-64)

tumors. MSH proteins activate the NOTCH signaling

shorter OS and enhances paclitaxel
chemoresistance

CD, cluster of differentiation; EGFR, epidermal growth factor receptor; Ras, Ras small GTPase protein; ERK, extracellular signal-regulated kinase; NANOG, homeobox protein NANOG
transcription factor; STAT3, signal transducer and activator of transcription 3; PES, progression-free survival; O, overall survival; SCE, stem cell factor; PI3K, phosphoinositide-3-kinase; AKT,
protein kinase B; Src, non-receptor tyrosine kinase Src; JAK, Janus kinase; TME, tumor microenvironment; TAMs, tumor-associated macrophages; CAFs, cancer-associated fibroblasts; ABC
transporters, ATP-binding cassette drug membrane transporters; DEL, disease-free interval; ETRA, endothelia receptor A; NF-kB, nuclear factor-K-light chain enhancer of activated B cells; p38/
MAPK, p38 mitogen-activated protein kinase; CXCR4, C-X-C chemokine receptor type-4; OCT4, octamer-binding transcription factor-4; EMT, epithelial-mesenchymal transition; Bcl-2, B-cell
lymphoma-2 molecule; TLR-4, Toll-like receptor type-4; LGRS, leucine-rich repeat containing G protein-coupled receptor-5; ALDH, aldehyde dehydrogenase; Wnt, wingless and Int-1; SOX2,
sex determining region Y-box 2; FOXMI, forkhead box protein M1; LPA, lysophosphatidic acid; SIRT1, sirtuin-1; BCL2, B-cell lymphoma-2; MSH, Musashi protein; NOTCH, neurogenic locus

notch homolog.





