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It is well known that radiation therapy causes lymphopenia in patients and that

this is correlatedwith a negative outcome. Themechanism is not well understood

because radiation can have both immunostimulatory and immunosuppressive

effects. How tumor dose conformation, dose fractionation, and selective lymph

node irradiation in radiation therapy does affect lymphopenia and immune

response is an active area of research. In addition, understanding the impact of

radiation on the immune system is important for the design and interpretation of

clinical trials combining radiation with immune checkpoint inhibitors, both in

terms of radiation dose and treatment schedules. Although only a few percent of

the total lymphocyte population are circulating, it has been speculated that their

increased radiosensitivity may contribute to, or even be the primary cause of,

lymphopenia. This review summarizes published data on lymphocyte

radiosensitivity based on human, small animal, and in vitro studies. The data

indicate differences in radiosensitivity among lymphocyte subpopulations that

affect their relative contribution and thus the dynamics of the immune response.

In general, B cells appear to be more radiosensitive than T cells and NK cells

appear to be the most resistant. However, the reported dose-response data

suggest that in the context of lymphopenia in patients, aspects other than cell

death must also be considered. Not only absolute lymphocyte counts, but also

lymphocyte diversity and activity are likely to be affected by radiation. Taken

together, the reviewed data suggest that it is unlikely that radiation-induced cell

death in lymphocytes is the sole factor in radiation-induced lymphopenia.
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1 Introduction

Radiation-induced lymphopenia (RIL) has long been observed in radiation therapy

patients (1–3) and develops in up to ~70% of patients undergoing external beam radiation

therapy (4–8). High-grade RIL has been shown to correlate with poor overall survival,

disease recurrence, and metastasis rates (9). A correlation between lymphopenia and dose
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to circulating lymphocytes has been demonstrated (e.g., (6, 8, 10–

13). Therefore, it has been speculated that lymphopenia is caused by

an increased radiosensitivity of circulating lymphocytes (7) and the

large volume of blood irradiated during radiotherapy.

Treatment delivery techniques differ in the distribution of the

low dose bath outside of the planned treatment volume and in the

duration of treatment in a fraction (10, 14, 15) resulting in different

dose distributions experienced by circulating lymphocytes (6, 16–

19). In a study of esophageal cancer, 35% of patients had grade 4

RIL when treated with concurrent chemotherapy and either

intensity-modulated photon (IMRT) or proton therapy, which

was correlated with overall survival (20). Due to the lower

integral dose, patients treated with protons had 70% less grade 4

RIL compared to IMRT. However, this was not confirmed in a study

of 150 oropharyngeal cancer patients (21) and in locally advanced

non-small cell lung cancer (NSCLC) treated with either IMRT or

proton therapy (15). Dose to lymphocytes is also influenced by

patient specific factors such as baseline levels of absolute counts and

lymphocyte subpopulations, which are known to differ between

patient groups (22), as well as fractionation and dose rate (18, 23–

27). Consequently, lymphocyte sparing radiation therapy has been

proposed (8, 28). Smaller target volumes and hypo-fractionated

regimens may be associated with higher post-treatment lymphocyte

counts. For example, during a 30-fraction treatment with 2 Gy/

fraction to a target volume of 8 cm in diameter, 95% of the

circulating blood receives doses greater than 0.5 Gy, with a mean

dose to the circulating blood greater than 2 Gy (8). Larger field sizes

increased chromosomal aberrations in circulating lymphocytes in a

prospective series of lung cancer patients treated with carbon-ion

therapy (29) and were associated with lower post-treatment

lymphocyte counts in lung cancer treated with protons (15).

There have been several other studies of field size effects on

lymphopenia in solid tumors (5, 30, 31).

Although the amount of circulating blood plays a role,

considering that only a few percent of the total lymphocyte

population is circulating, compared to those residing in organs or

lymph nodes, is not clear whether RIL is simply caused by

radiation-induced depletion of circulating lymphocytes. Radiation

has deleterious effects not only on circulating lymphocytes but also

on tumor-infiltrating lymphocytes and lymphocytes residing in

structures such as the bone marrow (32), spleen (33), and lymph

nodes (34). Lymphopenia has been shown to correlate strongly with

dose to the spleen (33, 35–37). The capillaries in the spleen are

permeable, resulting in high transit times for lymphocytes in the

spleen, which in turn results in significant dose to lymphocytes in

treatments involving the spleen. By assessing chromosome

aberrations in lymphocytes in breast cancer patients, it has been

shown that the number of lymph nodes in the field plays a

significant role (34). A correlation with bone marrow dose has

also been shown by several investigators (32, 38–41), but not by

Saito et al. (36). Lymphopenia has also been associated with lymph

node irradiation in prostate radiation therapy (42) and breast

radiation therapy (43). Consequently, dose constraints to

lymphoid organs have been proposed to mitigate lymphopenia

(44). Reduced total counts as well as counts in lymphocyte sub-
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populations were reported for colorectal cancer patients (45) and

liver SBRT patients (46).

The interaction of radiation with the immune system is complex

(47). Radiation therapy can have both immune-stimulatory (18, 48–

52) and immune-suppressive (5) effects. Radiation can promote the

release of damage-associated molecular patterns (DAMPs) and

tumor antigens via immunogenic cell death, activate the

production of type I interferon (IFN) and IFN-stimulated genes

via DNA damage that is sensed via the cGAS/STING pathway, and

activate antigen-presenting cells, including dendritic cells (DCs) and

macrophages (53). Antigen-presenting cells travel through

lymphatic vessels to the draining lymph nodes (for instance)

where they present antigens to naïve lymphocytes initiating their

differentiation into effector and memory cells. Activated

lymphocytes returnvia the blood to the tumor site where they

recognize tumor antigens and carry out various effector functions.

Radiation can also suppress the immune response via IFN-mediated

upregulation of immune checkpoint molecules (e.g., PD-L1) (54)

and by inducing immune-suppressive populations including

myeloid-derived suppressor cells. Additionally, radiation can

also directly kill immune cells and thereby modulate the

immune response.

While some patients respond favorably to immunotherapy, many

develop progressive disease (55). This has led to interest in combining

immunotherapy with radiation (56–62). Synergistic combinations of

radiation and immunotherapy have shown promise (62–66) as they

help to overcome the immunosuppressive tumor microenvironment

and thus enhance the therapeutic effect of radiation (67, 68). The

optimal sequencing of radiation with immunotherapy (18, 69–72) as

well as the best radiation modality for combination therapies (6, 16, 17,

73–76) are being studied extensively. It has even been suggested that low

dose whole-body irradiation may improve outcome after subsequent

treatment regimens due to radiation induced antigen release (52).

Furthermore, pre-clinical data suggest that nodal irradiation may

attenuate the combinatorial efficacy of immunotherapy-radiation

combination regimens (77). There are numerous clinical trials

combining radiation with immunotherapy (78).

While radiation-induced cell death is not the only key

parameter when optimizing radiation treatments in this context,

it certainly has a profound impact. Section 2 summarizes the

published methods for estimating the dose delivered to circulating

lymphocytes during radiation therapy. In section 3, studies

assessing the radiation sensitivity of lymphocytes are reviewed.
2 Estimating the dose to the blood
and to circulating lymphocytes in
radiation therapy

Under the assumption that the dose to circulating blood is a

surrogate for the dose to circulating lymphocytes, several efforts

have been made to estimate the blood dose from radiation exposure.

To estimate the cumulative blood dose from whole-body

irradiation, Molloy et al. developed a blood perfusion model in
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which the circulation was modeled in a sinusoidal motion between

the upper and lower body without regard to individual organs (79).

The blood volume was divided into discrete voxels and a statistical

dispersion was introduced to reflect the inhomogeneous blood flow

in the body. The treatment beam was simulated assuming a time-

dependent dose cloud depending on the field size and

machine motion.

Yovino et al. (7) calculated the dose to circulating blood for a

high-grade glioma patient as a function of dose rate and photon

treatment technique. The model uses the three-dimensional dose

distributions in the brain and calculates the dose to the blood

passing through the radiation field by assuming that 16% of the

cardiac output enters the brain with a total blood volume of 5 l and a

blood flow velocity of 10 mm/sec. The model includes several

simplifications, such as uniformly distributed blood flow without

whole-body blood flow dynamics. Another assumption is that blood

does not re-enter the treatment field during the duration of a single

beam and/or segment. Between beams and between treatment

fractions, the cumulative dose was calculated by convolution of

the blood dose histograms. The simulations predicted that a single

fraction of radiation would deliver 0.5 Gy to 5% of the circulating

cells. After 30 fractions, 99% of the circulating blood had received

≥0.5 Gy. Target volume and field size were the most important

parameters. This model was also used byWild et al. (8) who came to

similar conclusions.

Basler et al. (80) used dose-volume histograms for liver

treatments to estimate the dose to circulating lymphocytes in

VMAT. A mean hepatic blood flow velocity of 10 mm/s with a

total body blood volume of 5 l was considered. Cardiac output was

set at 5 l/min with a circulation time of 60 s for the total blood

volume. The model assumes that regional hepatic blood flow is

comparable in the different liver segments. Full blood mixing in

between fields or fractions was considered and the probability of re-

entering a specific liver segment and treatment field was calculated

based on the cardiac output and relative volumes of the liver

segments. The results show that the dose to the circulating

lymphocytes was mainly influenced by the beam-on time and the

target volume.

Jin et al. (81) used a similar approach as Yovino et al. to

calculate the dose to the blood using a blood flow network

consisting of the lungs, heart, large vessels, and body mass. The

blood dose and blood volume contributing to each of these

compartments during a single fraction were estimated and

converted to an equivalent uniform dose, with the total effective

blood dose being the sum of the contributions from all irradiated

organs. The model was applied to lung treatments, taking into

account mean lung dose, mean heart dose, and the integral dose.

Blood dose was correlated with radiation-induced lymphopenia.

This model was subsequently applied in other studies that

demonstrated a correlation between blood dose and lymphopenia

in non-small cell lung cancer (82), esophageal cancer (83, 84), and

breast cancer (11), especially when the blood dose was above 4

Gy (84).

The dose to the blood was also estimated to analyze the

transcriptional response of genes over time in blood samples after

irradiation in vivo (85, 86). Considering that most of the blood is
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irradiated during a 2-min treatment time, the authors determined

the mean blood dose as a function of the mean dose to the irradiated

volume, the irradiated blood volume, and the body blood volume.

Shin et al. developed a compartmental model that considers

blood flow throughout the human body based on compartments

defined by the ICRP (International Commission on Radiological

Protection) (23). The algorithm assumes a dynamic model

describing the spatio-temporal distribution of blood particles

(BPs) in organs throughout the body using a discrete-time

Markov process. Blood transit times were modeled using ICRP

reference mean transit time distributions assuming a Weibull

distribution. This was then convolved with the time-dependent

radiation field delivery. The simulations revealed different dose

levels to the circulating blood for brain irradiation compared to liver

irradiation even for similar field sizes due to the different blood flow

characteristics of the two organs. The authors also showed that the

blood dose-volume histogram is highly sensitive to changes in the

treatment time, indicating that dynamic modeling of blood flow and

radiation delivery is necessary to evaluate dose to the

circulating blood.

To add another level of complexity and accuracy, blood dose

algorithms have been developed that explicitly consider venous and

arterial vascular trees to account for inhomogeneous organ dose

distributions and blood flow dynamics. Hammi et al. (87) developed

an intracranial blood flow model based on the major cerebral

vasculature extracted from patient MRI data and extended with a

network of generic brain vessels. The brain model contains more

than 1000 vascular pathways. To determine the dose to the

circulating blood, Monte Carlo simulations track the propagation

of each individual blood particle through the brain and the time-

dependent radiation field delivery. The mean dose to the blood pool

was estimated after fractions of proton and photon therapy and

showed that the fraction of blood volume receiving any dose after

the first fraction was significantly lower for proton therapy. Higher

dose rates effectively reduced the fraction of blood irradiated to low

doses but increased the amount of blood receiving high doses. The

model was also applied by Qian et al. (13), who showed that the

treatment dose to the whole body, bone, and large blood vessels as

well as the modeled dose to circulating lymphocytes were correlated

with lymphopenia.

The internal vasculature of the adult liver, including hepatic

arterial, hepatic venous, and hepatic portal venous vessel trees, was

created within individual lobes of the ICRP adult female and male

livers by Correa-Alfonso et al. (88). For each iteration of the

algorithm, pressure, blood flow, and vessel radii within each tree

were updated as each new vessel was created and connected to a

viable bifurcation site. Liver models were created with virtual

vasculature of ~6000 non-intersecting straight cylinders

representing the circulations of the vascular tree. To combine the

vascular trees with a dynamic dose delivery model, the trees were

translated into centerlines that can be deformed to account for

patient specific organ contours and for BPs entering the liver. An

explicit simulation was implemented to track BPs along different

vascular pathways through the liver (24). The dosimetric impact of

treatment modality, delivery time, and fractionation on circulating

blood cells was quantified showing that doses are highly sensitive to
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the beam-on time and demonstrating the trade-off between low

dose to a large fraction of blood cells and high dose to a small

fraction of blood cells. It was concluded that proton treatments are

not necessarily advantageous in terms of dose to the blood even

though they are associated with a lower integral dose because of the

importance of the beam-on time. Similar vascular tree models have

been developed for the brain (89) and lung (90). Such organ-specific

vasculature models can be combined with a Markov chain approach

to link them to whole body blood flow based on reference values for

cardiac output and organ blood volumes (23, 24).

These blood dose models have been used to demonstrate how

the dose to the patient’s circulating blood depends not only on

hemodynamic data but also on treatment modality, beam delivery

parameters such as field size, treatment time, fractionation, and

dose. While they have been able to show trends in RIL, their main

weakness is that the results from blood dose simulations do not

necessarily translate directly to doses to circulating lymphocytes,

which may have different transition and flow parameters than the

blood. Unfortunately, these are more complex and not as well-

known (91, 92).

Jin et al. (93) developed a lymphocyte trafficking model that is

an extension of an algorithm discussed previously (21). The

framework considers 5 compartments of the immune system, i.e.

the circulating blood, the bone marrow, specific lymphatic organs

such as spleen, lymph nodes/vessels, and other lymphatic tissues in

non-lymphatic organs such as gut, lung, liver and skin. Circulating

and noncirculating lymphocytes are considered separately.

The model also incorporates lymphocyte radiosensitivity and

reproductivity. The authors assume that lymphocytes in the blood

circulate at a higher rate than the blood. Clinical beam delivery

times were not taken into account as the irradiation time was

assumed to be equal to the blood circulation time, and all organs

were treated as homogeneous.

To study the interaction between immunotherapy and

radiotherapy, Friedrich et al. introduced a biophysical model of

lymphocyte trafficking that takes into account primary and

distal tumor masses, immune cell kinetics targeting tumor cells,

and immune cell replenishment after radiation (94). Model

parameters were derived from mouse data. The model suggests

that the immune response is stronger when checkpoint inhibitors

are administered at the time of radiation or shortly thereafter. It

predicts that there is a window for radiotherapy that optimally

balances radiogenic immune response and depletion of the immune

cell pool.

In order to understand the impact of high-dose rate irradiation

on the dose to the circulating blood and lymphocytes an algorithmic

model was developed by Cucinotta and Smirnova (95). The model

also incorporates a one-target-one-hit model of radiation-induced

damage as a basis to consider the response of blood lymphocytes to

the radiation exposure. It considers time-dependent dose delivery,

radiosensitivity and concentration of lymphocytes, as well as blood

flow characteristics through the blood circulatory system including

the total blood volume and heart rate. The model confirms that the

level of surviving blood lymphocytes increases as the dose

rate increases.
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3 Radiosensitivity of lymphocytes

Monocytes and macrophages isolated from peripheral blood

cells are highly radioresistant (96, 97). Monocytes do not express

proteins required for non-homologous end-joining and are

impaired in base excision repair, which is likely to limit repair

especially at higher doses (98). When monocytes proliferate into

macrophages and dendritic cells, proteins are upregulated that

make these cells repair competent. Dendritic cells are thought to

be highly resistant to radiation-induced apoptosis (99). However,

the irradiation of dendritic cells may impair their ability to stimulate

T cells (100).

Peripheral blood lymphocytes are primed to undergo apoptosis

(101). While most mammalian cells are radioresistant at rest and

radiosensitive during proliferation, the opposite is true for

circulating lymphocytes. Even a small amount of DNA damage

appears to be sufficient to activate a DNA damage response and

apoptosis (102). Damage to peripheral lymphocytes (e.g.,

chromosome aberrations) has been used as bio-dosimeters to

predict late radiation toxicity in radiation therapy patients (103).

The literature discussed in the following sections is not always

consistent in terms of notation. Naïve T cells can be categorized into

helper Th cells (CD3+, CD4+) and cytotoxic Tcyt cells (CD3+, CD8+)

with regulatory Treg cells (CD4+ CD25+, Foxp3+) as a subset of Th

cells. Categorization can also be done into naïve, effector Teff (CD25+),

and memory T cells (effector memory TEM (CD45RO+, CD25-,

CCR7-) and central memory TCM (CD45RO+, CD25+, CCR7+)).

Naïve B cells (CD27-) and B cells (CD19+, CD20+) can also play an

immune-suppressive role, for example by blocking the Tcyt cell

response. Naïve NK cells (CD16-) can become effector, regulatory,

and memory NK cells (CD16+, CD56+, CD3-). NKT cells are a subset

of T cells that express both CD3+ and CD56+.
3.1 Lymphocyte radiosensitivity
studies in humans

The results of in vivo radiosensitivity studies in patients with

qualitative or quantitative information are summarized in

Tables 1A, B with the latter showing estimated alpha values

[Gy-1] for a linear dose-response curve (exp(-aD)). A rather

comprehensive study of lymphocyte radiosensitivity was

performed by Trowell et al. already in 1952 (110). After whole-

body irradiation, lymphocytes were counted in lymph nodes. In

addition, lymph nodes and blood samples were irradiated in vitro.

In 1975, Heier et al. (1) analyzed early and late T cell and B cell

counts in patients with seminoma testis. B cells seemed to be more

radiosensitive. They also concluded that B cells recovered more

rapidly than T cells after the irradiation of the iliac and paraaortic

lymph nodes and that irradiation of the thymus did not alter

lymphocyte recovery.

Lymphocyte radiosensitivity in vivo was evaluated by Clave

et al. (105) based on whole-body irradiation of patients prior to

bone marrow transplantation. Lymphocyte subpopulations were

counted after irradiation at 2 Gy/fraction. B cells were the most
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sensitive, followed by T cells (CD4+, CD8+) and NK cells. CD34+

progenitor cells appeared to be highly radioresistant. Note that

the easurements include circulating lymphocytes while also

irradiating lymphatic vessels. A similar study by Girinsky et al.

found no statistically significant difference in radiosensitivity

between T cells and B cells (111). Lymphocyte depletion and

recovery for different subpopulations has also been studied for

low dose whole body irradiation from the Chernobyl accident and

in atomic bomb survivors (112).

B cells were the most sensitive and NK cells the least sensitive

lymphocyte fraction in cancer patients receiving pelvic radiation

therapy (106). No significant differences between Th cells and Tcyt

cells were reported. The counts of the lymphocyte subpopulation as

a function of total body dose can be translated into alpha values in a

linear dose-response curve. Belka et al. (107) evaluated lymphocyte

subpopulations after radiation therapy and found that B cells and T

cells seemed to be most affected. Recovery of CD8+ cells was

significantly faster than that of CD4+ cells, and naïve cells were

generally more sensitive than memory cells. Lymphocytes were still

unable to respond adequately to antigen stimulation even after

recovery of the population.

A comprehensive assessment of circulating immune cell

populations in response to stereotactic body radiation therapy in

patients with liver cancer was performed by Gustafson et al. (46).

They found a severe decrease (~50%) in T cells in liver SBRT

patients, even in the absence of bone marrow or nodes in the field,

with CD4+ cells being most affected, while CD8+ cells showed no

significant differences compared to pre-treatment levels. More

specifically, within the CD4+ compartment, Treg cells were not

affected. SBRT did not appear to affect mature NK cells (CD16+)

but did affect pre-cursor cells (CD16-). McGee et al. analyzed the
Frontiers in Oncology 05
blood of 31 patients after stereotactic ablation radiation therapy

(113). They showed that the effect of radiation on T cells and NK

cells depends on the treatment site. Therapy of parenchymal sites

induced a systemic immune response (i.e., a decrease in NK cells

and an increase in memory CD4+ and CD8+ T cells). This was not

seen in non-parenchymal sites (bone and brain).

Zhao et al. (108) analyzed lymphocyte subpopulations after SBRT

of early-stage lung cancer. The number and relative percentage of

CD4+ T cells were significantly decreased, whereas the number of

CD8+ T cells was less affected as their relative percentage was almost

unchanged. This decreasing ratio of CD4+/CD8+ T cells was also

observed by Yang et al. (104) in head and neck cancer patients. The

change in the ratio could not be explained by the small difference in

radiosensitivities of CD4+ T cells and CD8+ T cells but was

presumably caused by radiation-induced priming and mobilization

of CD8+ T cells compensating for the loss of CD8+ T cells.

Lymphocyte subpopulations in patients after radiation therapy have

also been studied in other sites, such as in prostate cancer (42, 114–116)

and in breast cancer (117, 118), demonstrating radiosensitivity of B

cells in particular.

Heylmann et al. (97) analyzed T cells and monocytes after

treatment in leukemia patients receiving whole body irradiation (6

times 2 Gy). Monocytes showed high radioresistance, and the

difference in the lower response between T cells and NK cells was

not statistically significant. Three patients who received 12 Gy in 3

days (2 times 2 Gy per day) were analyzed. Analysis of gH2AX foci

indicated efficient elimination of damaged B cells during treatment.

In NK cells (CD56+), DNA damage accumulated in the surviving

NK after repeated irradiation. Whether these cells later undergo

apoptotic death or survive in the presence of DNA damage

was unclear.
TABLE 1A Ranking of lymphocyte radiosensitivity based on lymphocyte depletion in patients.

Radiosensitivity Ranking Dose Range Time Reference

B > T 40 Gy (20 fractions) 12 d – 10 y (1)

CD4+ > CD8+ Therapeutic (104)

B > T > NK, CD34+ 0-2 Gy 6 h (105)

B > Th; Tcyt > NK 50 Gy (25 fractions) 5 w (106)

B > T; Tnaive > Tmemory 26 Gy (13 fractions) 11 d – 4 m (107)

CD4+ > CD8+ > pre-curser NK > NK, Treg 50-60 Gy (3-5 fractions) (46)

CD4+ > CD8+ 50-60 Gy (5-10 fractions) (108)

B > T, NK 12 Gy (6 fractions) (97)

TABLE 1B Estimated alpha values (in Gy-1) for a linear dose-response curve exp(-aD) based on lymphocyte depletion in patients (fits performed using
LMfit in python).

Th Tcyt B NK Peripheral lymphocytes Reference

0.45 +/- 0.02 0.46 +/- 0.03 0.67 +/- 0.03 0.37 +/- 0.03 (106)

0.40 (0.08 – 2.0) (93)

0.58 (0.28 – 1.23) (118)
f
rontiersin.org

https://doi.org/10.3389/fonc.2023.1201500
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Paganetti 10.3389/fonc.2023.1201500
Assuming an exponential dose response relationship, the alpha

value of circulating lymphocytes has also been deduced indirectly in

patients. A lymphocyte trafficking model was fitted to 51 patients

with abdominal cancer treated with radiotherapy (93). The patient

specific a values had a median of 0.40 Gy-1 (range 0.08 – 2.0 Gy-1).

Similarly, for hepatocellular carcinoma the dose to circulating

lymphocytes was estimated using a dynamic blood circulation

model (23) and combined with the observed lymphocyte

depletion in patients, empirically accounting for both cell death

and lymphocyte replenishment. The in vivo derived patient-specific

a had a median value of 0.58 Gy-1 (range 0.28 - 1.23 Gy-1) (109).

Schaue et al. (119) isolated lymphocytes from colorectal and

prostate cancer patients before, during, and one week after

chemoradiation therapy. In most patients, they found an increase

of Treg cells as well as CD8+ cells after radiation which was more

pronounced in colorectal patients. A relative resistance of Treg could

have negative consequences in radiation therapy of their tumor

protective role as compared to the immune stimulatory role of more

radiosensitive Tcyt cells and Th cells. However, radiation can also

reduce protein expression and reduce functionality of Treg

cells (120).
3.2 Lymphocyte radiosensitivity
studies in mice

Results from preclinical studies of in vivo radiosensitivity with

qualitative or quantitative information are summarized in

Tables 2A, B and include fitting of exponential dose-response

curves where possible (Figure 1).

Anderson et al. (121) investigated the effect of radiation on

lymphocyte migration. Activated thoracic duct lymphocytes from

CBA inbred mice were used as a surrogate for T cells (80-85% T

cells, 15-20% B cells) and those from athymic (nude, nu/nu) mice

were used as a surrogate for B cells (97%). B cells were highly

radiosensitive compared to T cells and activated T cells were more

radioresistant than their resting counterparts. In another study, T

cells were shown to be more radioresistant than B cells in the spleen

of C3Hf mice (122). After whole-body irradiation, T and B cells

were analyzed after 3 days. At low doses (0.47 Gy), the number of T

and B cells in the spleen was significantly higher compared to

unirradiated control mice.

That B cells are more radiosensitive than T cells was also

observed after whole-body irradiation with doses of 0.5-15 Gy

(123). Mice were sacrificed and thymus, spleen, mesenteric lymph

nodes, femur, tibia and fibula were removed, and peripheral blood

was analyzed after 6 days. The authors also studied recovery of T

and B cell populations after 6 Gy and showed that cells in the

thymus and spleen recovered more rapidly than those in the lymph

nodes and in the bone marrow. Hochman et al. (140) reported the

relative resistance of NK cells in the spleen of (C57BL/6 x C3H/He)

F mice and the temporary cessation of progenitor activity. Sado

et al. (124) showed that cells from C3H mice were more

radioresistant compared to BALB/c, C57BL/6, and B10.BR mice.

After whole-body irradiation, T cells were analyzed in the spleen
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after 3 days. CD8+ T cells were slightly more radiosensitive than

CD4+ T cells.

Harrington et al. (125) irradiated C57Bl/6 mice with doses of 0-

7 Gy (whole-body) and analyzed splenic T cells (CD4+ and CD8+),

B cells, and NK cells after 1, 4, and 7 days after irradiation. They

observed a 7-fold enrichment of NK cells and a 3-fold enrichment

of T CD4+ cells, while the proportion of CD8+ cells was unchanged

and B cells decreased. While radiation may reduce the total number

of lymphocytes, the spleen may be enriched when comparing

subpopulations. B cells were most sensitive to radiation, followed

by CD8+, CD4+, and NK cells. In a study by Chambers et al. (126)

on lymphocyte subpopulations after whole-body irradiation of

mice, the total number of peripheral lymphocytes decreased as a

function of dose and the lymphocyte distribution changed. Relative

to the total number of lymphocytes, CD8+ increased slightly on day

1 and then decreased, while CD4+ increased 2-fold on day 4 after 7

Gy. The relative contribution of NK cells increased 9-fold at day 4 at

7 Gy, while the relative number of B cells decreased at all dose levels,

e.g., by half at 1 Gy. This indicated radioresistance of NK cells

relative to CD4+, CD8+, and B cells.

Mice were exposed to a whole-body dose of 3 Gy of protons and
60Co X-rays by Kajioka et al. (127) and acute effects on the immune

system were assessed. Overall, B cells were the most sensitive cell

population, while T cells were moderately sensitive and NK cells

were the most resistant cell population. Within the T cell

population, Th cells were more resistant than Tcyt cells. This was

also true for the splenic lymphocyte population. B cells had the most

rapid recovery and recovered completely in the spleen but not in

circulating lymphocytes. Grayson et al. (128) found that naive T

cells were more sensitive than their memory counterparts (CD8+)

after whole body irradiation of mice at 2-6 Gy. Lymphocytes were

isolated from the spleen, lymph nodes, bone marrow, and

peripheral blood. In a dose-dependent manner, memory CD8+ T

cells were enriched in the spleen, increasing from 20% of the total

CD8+ population in untreated mice to 76% after 6 Gy. Garg et al.

(129) analyzed immune cell populations in the intestinal mucosa

after whole body irradiation of mice and found that B cells were

more sensitive compared to T cells.

In another study of apoptosis in mouse spleen cells, animals

were sacrificed 4 h, 1, 3 or 7 days after irradiation (130). The authors

analyzed Th, Tcyt, Treg, NK, B, and CD8+CD44+ memory T cells.

Low dose radiation decreased apoptosis compared to the control. In

terms of apoptosis at 4h, CD8+ and B cells were more resistant to

low doses but were very sensitive to 2 Gy, while NK cells and Treg

were much more resistant to higher doses. B cells were the most

sensitive, followed by Tcyt, Th, Treg, and NK cells. Analysis of

subpopulations after 7 days showed that Tcyt cells started to

regenerate earlier than Th cells.

In a series of investigations, Qu et al. compared the

radiosensitivity of CD4+CD25high Foxp3+ Treg cells and

CD4+CD25- T cells in mice after 2 Gy (131) and 5 Gy (132)

whole-body irradiation. In vivo depletion showed an increased

sensitivity of CD8+ compared to CD4+, while the level of

CD4+CD25high Treg increased. For both spleen and lymph nodes,

the radiosensitivity of CD8+ was higher than CD4+, followed by
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Treg cells. In the thymus, the levels of CD4+CD8+ decreased.

However, the newly developed Treg cells in the thymus were less

sensitive to radiation than other thymocytes. The function of Treg

cells was impaired after 5 Gy radiation but not after 2 Gy, suggesting

a threshold effect.

Assessing lymphocyte populations after low-dose total body

irradiation in mice, Liu et al. found significant decrease in the Treg
cell population (52), but an increase in memory T cells (CD4+/CD8+).

Despite increased radiosensitivity, Tcyt cells were activated in mice after

fractionated low-dose exposure (0.2 Gy), which was not previously
Frontiers in Oncology 07
observed for Th cells (141). Spleen cells were analyzed after whole body

irradiation of mice with 10 Gy in another report (133). Analysis was

performed at 24, 48, 72, and 120 h. CD4+ T cells were significantly

more resistant than CD8+ T cells, and CD44high T cells, including NKT

cells and memory T cells, were significantly more resistant than

CD44low (naive) T cells. Furthermore, the effect of radiation on

naturally occurring Treg cells was investigated in a mouse model

(134). The number of Treg cells increased after irradiation as they

appeared to be more radioresistant compared to other lymphocytes.

Their functional integrity was also unaffected. However, this
TABLE 2A Ranking of lymphocyte radiosensitivity based on lymphocyte depletion in mice.

Radiosensitivity Ranking Dose Range Time Reference

B > T; resting T > activated T 0 - 10 Gy 4 d (121)

B > T 0 - 100 Gy 3 d (122)

B > T 0.5 - 15 Gy 6 d (123)

CD8+ > CD4+ 0 - 10 Gy 3 d (124)

B > CD8+ > CD4+ > NK 0 - 7 Gy 1, 4, 7 d (125)

B > CD8+ > CD4+ > NK 1 - 7 Gy 1, 4, 7 d (126)

B > T > NK; CD4+ > CD8+ 3 Gy (127)

Tnaive > Tmemory (CD8+) 2 - 6 Gy 4 - 60 d (128)

B > T (CD4+) 8 Gy 4 h - 12 d (129)

Spleen; B > CD8+ > CD4+ > Treg > NK 0.01 - 2 Gy 4 h - 7 d (130)

Total, spleen, lymph nodes: CD8+ > CD4+ > Treg 2, 5 Gy 0.5, 5, 15 d (131, 132)

Treg > Tmem 1.25 Gy (52)

CD8+ T; CD44lo Tnaive > CD44hi T (NKT and Tmem) 10 Gy 24, 48, 72, 120 h (133)

Treg radioresistant 0 - 20 Gy (134)

Spleen; CD4+ > Treg 2 Gy 4 h – 11 d (135)

Tnaive > CD8 TEM > CD8 Tcm 0 - 4 Gy 72 h (136)

Cardiac: B > CD8+ > CD4+; Spleen: B > CD8+ = CD4+ 2 Gy/day (137)

CD8+ circulating > CD8+ infiltrating
CD8+ nodes, spleen > CD8+ gut

0 - 20 Gy 24 h (138)

Circulating > Splenic 6, 12 Gy 1, 4, 7 d (139)

TABLE 2B Estimated alpha values (in Gy-1) for a linear dose-response curve exp(-aD) based on lymphocyte depletion in mice (fits were performed
using LMfit in python and include only data points ≤ 3 Gy).

Th Tcyt T Treg B NK Spleen T Ref.

0.65+/-0.01 1.31+/-0.07 4 d (121)

0.17+/-0.03 0.54+/-0.02 3 d (122)

0.43+/-0.01 0.53+/-0.01 3 d (124)

0.32+/-0.01 0.44+/-0.01 0.68+/-0.02 0.18+/-0.04 4 d (125)

0.82+/-0.06 0.97+/-0.03 0.74+/-0.10 0.42+/-0.22 0.32+/-0.25 1.00+/-0.15 4 h (130)

0.51+/-0.04 0.69+/-0.02 0.34+/-0.05 0.83+/-0.01 0.55+/-0.04 0.69+/-0.01 1 d (130)

0.66+/-0.09 0.73+/-0.05 0.35+/-0.11 0.75+/-0.01 0.44+/-0.09 0.72+/-0.06 3 d (130)
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observation could also be caused by radiation-induced Treg

cell activation.

Balogh et al. (135) irradiated C57Bl/6 mice with 2 Gy (whole body)

and analyzed changes in lymphocyte fractions isolated from the spleen.

Treg cells were less prone to apoptosis than other lymphocytes after in

vivo irradiation. The results showed a greater decrease in CD4+

numbers compared to Treg cells that were not only less susceptible to

radiation-induced apoptosis but also recovered faster than CD4

+Foxp3- cells. However, irradiated Treg cells were functionally

compromised with a reduced suppressive capacity (~2.5 fold). In

addition, radiation increased the proliferation rate of surviving CD4+

cells. In a study by Pugh et al. (136), mice were irradiated in vivo at

doses up to 4 Gy and splenocytes as well as peripheral lymphocytes

were analyzed at 3, 12, 17, and 24 h. CD8 TEM cells were more resistant

and naive T cells more sensitive. CD8 TCM cells were significantly more

resistant in vivo than in vitro. The authors hypothesize that this may be

due to the genome-wide chromatin structure that governs early DSB

binding and survival. Chromatin remodeling occurs during the

differentiation of naive T cells to memory T cells.

In T cell recovery after low-dose whole body irradiation of

female C57BL/6 mice, CD4+ T cell reconstitution was delayed more

than that of CD8+ T cells (142). Venkatesulu et al. showed

lymphopenia after heart (2 Gy per day for 5 days) and spleen (1

Gy per day for 5 days) irradiation of female BALB/c mice in vivo

(137). B cells were most sensitive in both cohorts. For cardiac

irradiation this was followed by CD8+, while CD4+ depletion was

moderate in comparison. For splenic irradiation there was no

significant difference between CD8+ and CD4+. Radio-resistance
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of splenic lymphocytes compared to circulating lymphocytes has

also been shown in a C57BL/6J mouse model after studying partial

body irradiation with and without lymph node involvement (139).

The authors also investigated the effect of different field sizes using a

small animal image-guided irradiation device.

A study by Arina et al. (138) in which mice were irradiated with

a whole-body dose of 8 Gy showed a dose-dependent loss of

circulating CD8+ T lymphocytes, but not of tumor-infiltrating

CD8+ T cells after 24 h. The authors also quantified the

sensitivity of parenchymal CD8+ in various organs. Within

certain solid organs there was a higher radio-resistance compared

to T cells in circulation and in lymphoid organs. Lymph nodes and

spleen had the most radiosensitive CD8+ T cells, while CD8+ T cells

in the intestine were the most radioresistant. They hypothesized

that the higher radioresistance of parenchymal CD8+ T cells from

non-lymphoid compared to lymphoid solid organs is due to the

presence of tissue resident memory cells. In tissues harboring the

most radioresistant CD8+ T cells (intraepithelial and tumor), not

only cells with the standard memory T cells but all CD8+ T cells

were similarly radioresistant. In contrast, memory T cells in the

liver were more radiosensitive than other T cells.
3.3 In vitro lymphocyte
radiosensitivity studies

Results from in vitro radiosensitivity studies with qualitative or

quantitative information are summarized in Tables 3A, B
FIGURE 1

Radiosensitivity of lymphocyte sub-populations in mice for studies shown in Table 2B. First row: Splenocytes, B cells, and NK cells. Second row:
Combined T cells and Tcyt cells. Third row: Th cells and Treg cells. Data points are shown up to 5 Gy but alpha value fits were only done for data
points ≤3 Gy because lymphocytes will not receive more than the prescription dose in a single fraction in radiation therapy, and because the
majority of the dose-response data show a more shallow slope and a saturation at higher doses. The data points were extracted from the published
figures (using plotdigitizer (plotdigitizer.com)). Experimental error bars are not shown but are included in the fits (performed using LMfit in python).
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TABLE 3A Ranking of lymphocyte radiosensitivity based on in vitro studies.

Radiosensitivity Ranking Dose Range Time Reference

B > T 0 - 10 Gy 24, 48, 72, 96 h (143)

B > T 0 - 4 Gy 96 h (144)

NK = T 0 - 30 Gy 4 h (145)

NK (CD56+, CD16+) > NK (CD56+) 0 - 30 Gy 3, 48 h (146)

CD4+ = CD8+ 0 - 5 Gy (147)

T; patient variation (148)

NK > CD8+, B > CD4+ 15 Gy 48 h (149)

B > CD4+ > CD8+ > NK 2 Gy 24 h (150)

CD8+ > CD4+ 2, 9 Gy 48 h (151)

CD8+ > CD4+ 0 - 2 Gy 48 h (152)

NK > CD8+ > B > CD4+ 0 - 1.5 Gy 44 h, 68 h (153)

B > CD8+ > CD4+; Th (male) > Th (female) 0 - 2 Gy 18 h (154)

CD34+CD38- stem > CD34+CD38+ differentiated 5 Gy 4 h, 16 h (155)

Peripheral lymphocytes 0 – 15 Gy 4, 24, 48, 72 h (156)

Peripheral lymphocytes 0 - 8 Gy 24, 48, 72 h (157)

CD34+CD38- stem > CD34+CD38+ progenitors 3 Gy 0.5 – 6h (158)

Treg (CD4+CD25+) > T (CD4+CD25-) 0 - 2 Gy (159)

B > CD8+ > CD4+ 0 - 8 Gy 24, 48, 72 h (160)

NK (CD56+, CD16+) = NK (CD56+) 0 - 80 Gy 2 – 72 h (161)

T(non-prof) > T(prof); CD34+(non-prof) = CD34+(prof);
Th > Tcyt > CD34

0 – 2 Gy 6 – 48 h (96)

NK > B > T 0 – 60 Gy 24, 48, 72 h (162)

protons vs. photons 0 - 4 Gy 1 h, 4 h (75)

CD4+ > Treg 0, 10 Gy 48 h (120)

T(non-prof) > B > T > NK > CD34; Th > Treg > Tcyt 0 – 8 Gy 1 – 24 h (97)

CD4+CD25- T > CD4+CD25high Foxp3+ Treg 5 Gy 12 h (131, 132)

CD8+ > CD4+; TCM, Tnaive > TEM 1 - 10 Gy 3 - 24 h (136)

TABLE 3B Estimated alpha values (in Gy-1) for a linear dose-response curve exp(-aD) based on in vitro measurements (fits were performed using LMfit
in python and include only data points ≤ 3 Gy).

Tp T Tcyt Th Treg Time Reference

0.00 +/- 0.02 24 h (143)

0.11 +/- 0.02 48 h (143)

0.26 +/- 0.05 72 h (143)

0.45 +/- 0.03 96 h (143)

0.77 (163)

0.65 (163)

0.05 +/- 0.01 24 h (162)

0.34 +/- 0.03 72 h (162)

(Continued)
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TABLE 3B Continued

Tp T Tcyt Th Treg Time Reference

0.61 +/- 0.05 0.68 +/- 0.02 (147)

0.21 +/- 0.01 0.15 +/- 0.02 48 h (152)

0.56 +/- 0.04 0.17 +/- 0.01 44 h (153)

0.08 +/- 0.01 0.04 +/- 0.01 18 h (154)

0.22 +/- 0.05 0.43 +/- 0.08 0.30 +/- 0.04 24 h (97)

0.18 +/- 0.03 0.36 +/- 0.03 0.44 +/- 0.06 24 h (96) unstim

0.25 +/- 0.02 0.10 +/- 0.01 0.13 +/- 0.01 24 h (96) stim.

TCM CD4+ TEM CD4+ Tnaive CD4+ TCM CD8+ TEM CD8+ Tnaive CD8+ Time Reference

0.69 +/- 0.17 0.76 +/- 0.14 2.14 +/- 0.07 0.85 +/- 0.03 0.32 +/- 0.01 1.84 +/- 0.07 72 h (136)

B NK General Peripheral Lymphocytes Time Reference

0.26 +/- 0.06 24 h (143)

0.53 +/- 0.10 48 h (143)

0.66 +/- 0.10 72 h (143)

1.15 +/- 0.13 96 h (143)

0.17 +/- 0.01 18 h (154)

0.34 +/- 0.07 0.31 +/- 0.04 24 h (97)

0.12 +/- 0.01 0.17 +/- 0.01 0.14 +/- 0.01 24 h (162)

0.31 +/- 0.05 0.65 +/- 0.07 0.49 +/- 0.02 72 h (162)

0.08 +/- 0.01 18 h (161)

0.72 +/- 0.04 (147)

0.18 +/- 0.01 48 h (152)

0.01 +/- 0.01 4 h (156)

0.18 +/- 0.01 24 h (156)

0.30 +/- 0.02 48 h (156)

0.50 +/- 0.04 72 h (156)

0.06 +/- 0.01 24 h (157)

0.11 +/- 0.01 48 h (157)

0.15 +/- 0.01 72 h (157)

0.05 +/- 0.01 24 h (160)

0.15 +/- 0.02 48 h (160)

0.26 +/- 0.04 72 h (160)

0.37 +/- 0.04 24 h (96) unstim

0.12 +/- 0.01 24 h (96) stim.

0.08 +/- 0.02 4 h (75) X-rays

0.32 +/- 0.04 4 h (75) protons

0.45 [0.05-1.2] (148)
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andinclude fitting exponential dose response curves where

possible (Figure 2).

The survival of unstimulated T and B cells from a healthy

donor was evaluated in 1-day intervals up to 4 days after

irradiation with doses up to 10 Gy by Prosser et al. (143). They

observed a higher radiosensitivity of B cells compared to T cells.

Cole et al. measured T cell survival in blood from 9 donors and T

cell lines (163). The in vitro survival of human peripheral blood

lymphocytes and thymocytes (T cell progenitors) was also

measured after 4 days in a study by Kwan and Norman in

healthy volunteers (144). B cells appeared to be slightly more

radiosensitive than T cells. The authors concluded that there are
Frontiers in Oncology 11
subpopulations of T and B cells with different radiosensitivities,

resulting in a biphasic survival curve for T cells. Brovall et al.

(164) studied NK cell activity in the peripheral blood of healthy

adults. While activity was lost at 30 Gy, it was enhanced at lower

doses (5 to 20 Gy, depending on the donor). This suggests that

radiation affects the cytotoxic function of NK cells before death

or apoptosis is observed. Zarcone et al. (145) investigated the

effect of radiation on different NK cell activities. The cytotoxic

functions of NK and T cells showed identical sensitivity to

radiation. Similarly, Rana et al. (146) investigated cytotoxic

activities of NK cells as a function of dose up to 30 Gy and

showed that CD16+ were the most radiosensitive.
FIGURE 2

Radiosensitivity of peripheral lymphocytes, NK cells, T cells, and B cells. Data are grouped to illustrate both, differences between experiments as well
as differences between subpopulations. Data points are shown up to 5 Gy but alpha values fits include only data points ≤ 3 Gy because lymphocytes
will not receive more than the prescription dose in a single fraction in radiation therapy, and because the majority of the dose-response data show a
more shallow slope and a saturation at higher doses. The data points were extracted from the published figures (using plotdigitizer (plotdigitizer.
com)). Experimental error bars are not shown but are included in the fits (performed using LMfit in python).
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Nakamura et al. (147) investigated the radiosensitivity of

proliferating Th and Tcyt lymphocytes in vitro using a colony

formation assay. This particular study is often cited when

discussing lymphopenia and its relationship to lymphocyte

radiosensitivity. Strikingly, the measured cell survival curves

follow a linear-quadratic dose-response fitted by the linear

quadratic model (PBL: a=0.29+/-0.01; b=0.14+/-0.01; CD4+

a=0.32+/-0.01; b=0.13+/-0.01; CD8+ a=0.19+/-0.03; b=0.14
+/-0.01), whereas in the majority of in vitro studies reviewed, the

response curves show either an exponential or upward-sloping

curve and a decrease in response (saturation) at higher doses.

Using blood from cancer patients and healthy individuals, Geara

et al. analyzed the radiosensitivity of peripheral T lymphocytes in

vitro and demonstrated a significant variation among individuals

(148). Patient-specific a values were fitted with a median of 0.45 Gy-1

(range 0.05 - 1.20 Gy-1). Seki et al. (149) showed that CD8+ T cells

were more susceptible to interphase death than CD4+ T cells and NK

cells were the most radiosensitive. Philippe et al. (150) assessed

apoptosis after 24 h in vitro. B cells showed more apoptotic cells

than T cells. Among T cells, Th cells were the most sensitive, followed

by Tcyt cells. NK cells were the most resistant. Spontaneous apoptosis

in immune subsets of in vitro cultured cells correlated with differences

in radiation induced apoptosis. Radojcic and Crompton used

peripheral lymphocytes from three donors to assess the age

dependence of CD4+ and CD8+ cell apoptosis at 2 and 9 Gy and

suggested that radiosensitivity may be higher in younger individuals

(151). CD8+ were more sensitive than CD4+.

Wilkins et al. studied the apoptotic response in lymphocytes using

blood from healthy volunteers. One study focused only on CD8+ and

CD4+ cells (152). CD8+ T cells were more sensitive to radiation-

induced apoptosis than CD4+ at doses up to 2 Gy at 48 h. The authors

state that the relative amounts of CD4+ and CD8+ in the combined

culture likely influenced the observed apoptosis due to changes in the

production of specific cytokines in the cell culture. A second study

examined B cells, NK cells, and CD4+ and CD8+ T-cells at 44 h and

68 h after exposure to up to 1.5 Gy (153). Although B cells showed the

highest radiation-induced apoptotic response at 1 Gy, CD8+ T-cells

appeared to be the most sensitive based on their low spontaneous

apoptotic fraction. At 48 h, the radiation-induced apoptosis of the cell

subpopulations decreased in the order of NK cells, CD8+ T cells, B cells

and CD4+ T cells, although the differences were not significant. Again,

lymphocytes in isolation appeared to be more responsive to radiation

than those cultured in the presence of other lymphocytes.

In a study of spontaneous and radiation-induced apoptosis of

human lymphocytes in vitro, lymphocytes from females were less

radiosensitive compared to those from males and radiosensitivity

seemed to increase with age (154). Tcyt cells were more sensitive than

Th cells. Hayashi et al. (155) investigated radiation-induced apoptosis of

stem/progenitor cells in human umbilical cord blood. The CD34

+/CD38− stem cell population was more sensitive to radiation-

induced apoptosis, compared to more differentiated CD34+/CD38+

and CD34−/CD38+ cells. Human lymphocytes were irradiated in vitro

with doses up to 15 Gy by Torudd et al. (156). Apoptosis was assessed

at 4, 24, 48, and 72 hours. There was very little effect at the early time

point at 4 hours. In the context of establishing a predictor of patient’s

response based on individual lymphocyte radiosensitivity, Bordon et al.
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(157) evaluated how radiation induced apoptosis correlates with late

toxicity and patient’s radiosensitivity in cervical cancer. Radiation-

induced apoptosis was analyzed at 24, 48, and 72 hours.

Milyavsky et al. (158) reported that human hematopoietic stem

cells (CD34+) exhibited delayed DNA double-strand break rejoining,

persistent gH2AX foci, and increased apoptosis after irradiation

compared to progenitor cells. Cao et al. (159) compared the

radiosensitivity of Treg cells (CD4+CD25+) and effector T cells (CD4

+CD25-) in vitro using lymphocytes from healthy individuals and

hepatocellular carcinoma patients. In the range of 0-2 Gy, Treg cells

were more radiosensitive than effector T cells, the opposite trend

compared to a previous in vivo study (135). Treg cell functionality

was moderately affected in Cao et al. (165) using in vitro cultured and

in vitro irradiated Treg cells, showing a dose-dependent reduction in

Treg cell proliferation as well as an alteration in phenotype.

In another study of peripheral lymphocytes from healthy

donors, radiation-induced apoptosis in vitro was not apparent

until 24 h after exposure when data were analyzed at 24, 48, and

72 h (160). Radiosensitivity was highest for B cells, followed by Tcyt

cells, and Th cells, but the trend was reversed for B cells and Tcyt

cells after 48h and 4 Gy. Hietanen et al. (161) applied single and

fractionated doses to enriched NK cell populations. Cell survival

was reported from 2 to 72 h and for doses up to 80 Gy. The response

based on the reported a values was very similar for CD16+ and

general CD56+ cells at 18 h at doses up to 40 Gy.

A review of the radiosensitivity of human and murine peripheral

blood lymphocytes concluded that stem cells, Th cells, Tcyt cells,

monocytes, neutrophils and, to a high degree, B cells exhibit a

radiosensitive phenotype, whereas Treg cells, macrophages, dendritic

cells and NK cells appear to be more radioresistant (166). The same

authors studied stimulated (proliferating) and unstimulated (non-

proliferating) peripheral lymphocytes in the blood from healthy

volunteers (96). Unstimulated peripheral lymphocytes contained

mainly T cells arrested in G0/G1. Upon stimulation of the CD3 T-

cell receptor and the CD28 co-receptor with anti-CD3 and anti-CD28,

respectively, the cells begin to proliferate. Lymphocytes were shown to

be highly radiosensitive but stimulation induced radioresistance in

several T cell subsets, with the exception of CD34+ cells which did not

become radioresistant when stimulated to proliferate. There was no

difference in repair between stimulated and unstimulated cells, i.e., the

difference in radiosensitivity was likely caused by the induced DNA

damage. The investigators found that most of the cells underwent

apoptosis with only a small fraction of necrosis, with data collected

between 6 and 48 hours after irradiation. It was concluded that T cells

and B cells are highly sensitive and undergo apoptosis at doses as low as

0.125 Gy with no apparent threshold and a saturation of ~50% at about

1-2 Gy. Sensitivity was highest for non-proliferating T cells followed by

B cells, and NK cells. However, while non-proliferating T and B cells

were sensitive, they had a high repair capacity, which was also the case

for CD34+. There was no significant difference in radiosensitivity

between the non-proliferating T cell subcategories. The same authors

then measured the in vitro dose response of blood cells from healthy

volunteers (97). The analysis included unstimulated T cells (Treg, Th,

Tcyt) purified with magnetic beads as well as unstimulated B cells, and

NK cells obtained from peripheral blood. Doses ranging from 0.5 to 8

Gy were administered. Th cells were the most sensitive (30% apoptosis
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level at 0.5 Gy, while Treg, NK and B cells showed values around 20–

25%). The authors point out that absolute numbers may be associated

with uncertainties because there may be early apoptotic events that

have been fragmented, or late apoptotic events that have not yet

materialized at the time of the assay.

Apoptotic cells may lose membrane integrity and become

secondary necrotic cells that retain immune activation properties.

Falcke et al. (162) studied lymphocyte cell death by apoptosis,

primary necrosis, and secondary necrosis (late apoptotic). They

found that B cells and NK cells died mainly by apoptosis (secondary

necrosis), whereas T cells showed significant primary and secondary

necrotic cells. NK cells were the most sensitive to radiation, followed by

B cells and T cells. The researchers also analyzed cell viability. In an in

vitro study of human peripheral lymphocytes, necrosis was more

frequent than apoptosis, especially with proton irradiation (75). This

may indicate a mechanistic difference in lymphocyte damage when

comparing photon and proton radiation (75, 167). The accumulation

of radiation-induced repair protein foci differed after proton versus X-

ray irradiation (168). Annexin V labeling was performed 1 h and 4 h

after irradiation with doses of 0-4 Gy (75). Alpha values for peripheral

lymphocytes differed between X-rays and protons as well as between

apoptosis and necrosis (apoptosis X-rays: a=0.02+/-0.01 Gy-1;

apoptosis protons: a=0.03+/-0.01 Gy-1; necrosis X-rays: a=0.04
+/-0.01 Gy-1; necrosis protons: a=0.15+/-0.03 Gy-1).

Using blood from healthy volunteers Beauford et al. (120) found that

Th cells were more radiosensitive than Treg cells. Although Treg cells

appeared to be more resistant, radiation caused a decreased Foxp3

expression as well as decreased expression of CD25 and CTLA-4,

resulting in a reduced ability to suppress CD8+ T cell proliferation.

Vandevoorde et al. (169) compared the dose response of CD34+ cells and

umbilical cord T cells from newborns and adults. Naïve and memory T

cells were analyzed in vitro 0.5 h after irradiation with low doses (100-200

mGy). Newborn peripheral T lymphocytes were significantly more

radiosensitive than adult peripheral T lymphocytes. This may be due

to immunophenotypic changes of T lymphocytes with age.

De Kruyff et al. (170) analyzed the functional behavior of lymph

node T cells inmouse cell cultures as a function of dose. Specifically, the

authors evaluated the helper activity of CD4+ T cells in terms of their

ability to induce immunoglobin synthesis (IgG, IgM, and IgE synthesis)

in B cells. The capacity for IgG synthesis was not affected, while that for

IgE (which depends on IL-4 and IL-5) was significantly reduced. Thus,

IL-4 in Th cells appears to be sensitive to radiation, causing T cell

functions to show large variations in radiosensitivity. Pugh et al. (136)

measured the radiosensitivity of naïve lymphocytes, effective memory

cells (CD8, TEM), and central memory cells (TCM) from mice in vitro.

There was no significant difference in radiosensitivity between T cell

subsets. However, CD8 TEM cells were more radioresistant and showed

less interphase death than TCM cells or naïve T cells. CD4 T cells were

more radioresistant than CD8 T cells. This pattern was extended to

both CD4 naïve T cells and TCM cell subsets. It was unclear whether the

enhanced radioresistance of Treg cells could fully account for the

enhanced radioresistance of any specific CD4 subset.

Qu et al. compared the radiosensitivity of CD4+CD25high Foxp3+

Treg cells and CD4+CD25- T cells in vitro showing higher sensitivity for

CD4+CD25- T cells than for CD4+CD25high Treg cells at 2 Gy (131)

and 5 Gy (132), respectively. They reported that more dead cells were
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observed in the Teff cell population than in the Treg cell pool, which

correlated with a higher levels of anti-apoptotic protein expression in

Treg cells. They also found that the Teff cell suppressive capacity of the in

vitro irradiated Treg cells was only moderately affected by radiation. The

evaluation was performed 2 weeks after irradiation.
4 Summary and discussion

The radiosensitivity of lymphocytes has been evaluated in a variety

of ways, including studies in humans, pre-clinical studies, and in vitro

clonogenic cell survival assays. The available data published in the open

literature have been reviewed in this work. Interpretation of

experimental data is often difficult. For example, in vitro

measurements must be corrected for spontaneous apoptosis, which is

particularly relevant for B cells. In addition, data from in vivo studies

have to take into account that a part of the lympho-hematopoietic

system has been irradiated, allowing for lymphocyte redistribution

from non-irradiated areas. Expression changes may also occur.

Studies based on lymphocyte depletion in patients consistently

suggest that B cells are the most radiosensitive, followed by T cells and

NK cells, with helper T cells (CD4+) being more radiosensitive than

cytotoxic T cells (CD8+). The preclinical studies support this difference

between B and T cells. Preclinical studies also suggest that circulating

lymphocytes appear to be more radiosensitive than non-circulating

lymphocytes and tumor infiltrating T lymphocytes. In addition,

parenchymal T cells from non-lymphoid solid organs appear to be

more radioresistant than those from lymphoid solid organs. The

obtained average dose-response alpha values derived from

lymphocyte depletion in mice are ~0.8 Gy-1, ~0.6 Gy-1, and ~0.4 Gy-

1, for B cells, T cells, and NK cells, respectively (for doses up to 3 Gy,

after 4 hours to 4 days). For splenocytes, an average value of ~0.8 Gy-1

was extracted. There is some indication that naïve lymphocytes, which

make up more than 50% of the lymphocyte population (depending on

age, health status, and other factors) are more radiosensitive.

The reported in vitro data are less consistent than the in vivo

results, but generally show the same ranking of radiosensitivity (B > T

(CD8+) > T(CD4+) > NK) with response differences that are smaller

than in vivo, i.e., average alpha values of ~0.4 Gy-1, ~0.3 Gy-1, and ~0.3

Gy-1 for B cells, T cells, and NK cells, respectively (for doses up to 3 Gy,

after 4 hours to 4 days). One report shows significantly higher

radiosensitivity for memory T cells. The fitted alpha values depend

on the chosen dose range as most measured cell survival curves show a

decreasing slope with increasing dose, i.e., a saturation typically starting

already between 0.5 and 2 Gy. There is also a strong time dependence.

Although radiation-induced apoptosis is measurable early after

exposure, it continues to increase up to and beyond 48 hours,

resulting in steeper dose-response curves. Many clinical studies on

radiation-induced lymphopenia point out the importance of the dose

to the circulating lymphocytes and refer to the high radiosensitivity of

lymphocytes, often citing a single study (147). This widely cited study

reports higher radiosensitivity than other studies and appears to be the

only one showing a linear-quadratic dose response curve.

To assess the dose-response of lymphocytes in vivo for lymphopenia

studies in patients, it is necessary to estimate the dose to lymphocytes.

This work also reviews methods to estimate dose to the blood. While
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various models have been proposed to estimate the dose to the blood

(based on reasonably well-known organ transit times of the blood), the

dose to circulating lymphocytes is related but not identical to the blood

dose. In addition to the recirculation of lymphocytes between blood and

secondary lymphoid tissues, several factors cause lymphocyte transit

times to be, on average, to be much longer than blood transit times.

Lymphocytes often attach and detach from endothelial cells and

radiation may cause upregulation of adhesion molecules that alter

leucocyte adhesion to endothelial cells (171), which may increase

mean transit times and thus dose to lymphocytes. In addition, they

may have to deform to squeeze through capillaries because their size is

much larger (~6mm) than, for example, platelets (172, 173). In particular,

pulmonary capillaries are thought to be slightly smaller than the diameter

of lymphocytes (173). In the liver, a relatively low average velocity of T

cells has been reported because theymight be crawling on the endothelial

wall of the sinusoids instead of flowing with the blood. This could reduce

the average velocity to ~6-7 mm/min. Thus, CD8 T cells can super-diffuse

in the liver for almost 20minutes (172). It is therefore likely that the dose

to the blood, while a potential surrogate for the dose to lymphocytes, does

not accurately predict the correct dose experienced by circulating

lymphocytes. Research efforts are underway to explicitly model

lymphocyte trafficking rather than relying on the use of blood dose as

a surrogate for dose to circulating lymphocytes (91, 92, 174).

While lymphocyte radiosensitivity is likely to play an important role in

lymphopenia, radiation-induced effects such as cell survival or cell motility

on lymphocytes are not necessarily robust predictors of immune

suppression. Radiation also affects lymphocyte infiltration into tumors

and tumor sensitization, increases antigen release, and other mechanisms

(175). Zhao et al. (176) investigated lymphopenia in SBRT for early-stage

lung cancer patients and concluded that lymphocyte radiosensitivity alone

cannot explain lymphopenia without considering lymphocyte recovery

times. The number of circulating lymphocytes might also decrease due to

inflammation caused by low-dose baths in secondary irradiated organs

during radiation therapy. In contrast to naïve adaptive lymphocytes which

frequently migrate between secondary lymphoid organs, tissue-resident

lymphocytes generally do not recirculate through the blood (177), but are

also irradiated. The circulatory behavior of lymphocytes and their lymph

node transit times also differs among lymphocytes subpopulations (178,

179), e.g., CD4+ seem to recirculate more rapidly compared to CD8+. In

addition, radiation likely affects lymphocytemigration, for instance, through

radiation-induced changes in sphingosine-1-phosphate (180). Lymphocyte

depletion is also likely related to indirect mechanisms, such as radiation-

induced expression of TNF-a which has a cytotoxic effect on lymphocytes

(107, 181, 182). In addition, lymphocyte function appears to be affected at

lower doses than cell survival in both in vitro and clinical studies (183–185).
5 Conclusions

The reported data suggest differences in radiation sensitivity

among lymphocytes subpopulations, which may affect their relative

contribution and thus the dynamics of the immune response. The data

reviewed here show low dose (< 3Gy) radiosensitivity of lymphocytes

in the same order of magnitude as normal fibroblasts (186). In general,

B cells appear to be more radiosensitive than T cells, and NK cells

appear to be the most resistant. Patient variability is likely to be of the
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same order of magnitude as the differences between subpopulations.

Because tumor-infiltrating lymphocytes appear to be quite

radioresistant, differences in radiosensitivity between circulating

lymphocytes and lymphocytes in lymphoid organs may have

implications for lymphopenia and thus for considerations of dose

prescription and dose scheduling in radiation therapy as well as for

fractionation and scheduling of therapies involving both radiation and

immune checkpoint inhibitors. An important aspect is also the

influence of radiation dose distribution, delivery time and beam

arrangement, which has been discussed in the context of highly

conformal radiotherapy and its positive effect on lymphopenia

(114, 187).

It remains an open question whether the observed effects of radiation

on lymphocyte counts in patients are indeed mainly due to the radiation

sensitivity of circulating lymphocytes. To answer this question, it is

necessary to consider not only the dose to different lymphocyte

compartments in the field (e.g., the lymphatic system), but also

radiation effects on lymphocyte trafficking and residence times (91, 92).

Certainly, data on cell death don’t fully capture radiation-induced effects

on lymphocyte functionality (135). This review outlines areas where

additional research is needed tomechanistically explain radiation induced

lymphopenia in patients and its correlation with treatment outcome.
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