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Epstein-Barr virus (EBV), one of the most common human viruses, has been

associated with both lymphoid and epithelial cancers. Undifferentiated

nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and

lymphoepithelioma-like carcinoma (LELC) are amongst the few common

epithelial cancers that EBV has been associated with. The pathogenesis of

EBV-associated NPC has been well described, however, the same cannot be

said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In

this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs

and their recent advances. By drawing on similarities between NPC and PPLELC,

we then also postulated the pathogenesis of PPLELC. A deeper understanding

about the pathogenesis of EBV enables us to postulate the pathogenesis of other

EBV associated cancers such as PPLELC.

KEYWORDS

Epstein-Barr virus, nasopharyngeal cancer, lymphoepithelioma-like carcinoma, primary
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1 Introduction

Epstein-Barr Virus (EBV) is a ubiquitous oncovirus that affects more than 90% of

adults worldwide, but is especially endemic in East Asia, South East Asia, North Africa and

Polynesia (1). The oncogenic potential of EBV is well established and yet evolving still, and

its role has been demonstrated in the pathogenesis of epithelial malignancies such as

Epstein-Barr virus- associated gastric cancers (EBVaGCs), nasopharyngeal carcinoma

(NPC), lymphoepithelial like carcinoma (LELC), as well as in hematological

malignancies such as Burkitt’s lymphoma, Diffuse Large B Cell Lymphoma (DLBCL),

Hodgkin’s disease, and natural killer T-cell lymphomas (2).

While EBV-associated epithelial cancers vary in presentation and cell origin, these

malignancies have in common a viral-mediated immune-suppressed tumor immune

microenvironment, mutational signatures and epigenetic hallmarks (3). Among these

epithelial cancers, the pathogenesis of NPC has been the most well described, in particular
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the role of EBV in transforming nasopharyngeal epithelium in a

possible multi-step process from dysplasia to carcinoma (4).

However, this process has not been described for other epithelial

cancers, especially in lymphoepithelial like carcinoma (LELC).

We aim to discuss the pathogenesis of NPC and EBVaGC, and

hypothesize the pathogenesis of LELC based on their common

epigenetic, genomic and somatic mutational signatures. In

particular, we examine primary pulmonary LELC (PPLELC) and

consider the hypothesis of the EBV transformation of dysplastic

epithelial cells in the lungs.
1.1 NPC

NPC is a head and neck cancer that is found commonly in

Guangdong Province, Hong Kong, Southeast Asia, East Asia, and

the Mediterranean area (5); however it is relatively uncommon in

Western countries (6). A study in Singapore found that NPC has a

higher incidence amongst Cantonese compared to the Teochew- or

the Hokkien-dialect group (7). Similar findings were also observed

in China, where the Cantonese ‘boat people’ in Southern China and

provinces near Guangdong have a relatively higher incidence of

NPC (8). This geographical clustering of NPC suggests that both

genetic and environmental factors contribute to its development.

Genetic factors, including HLA-A*0207 or B*4601 and disease-

associated SNPs such as TLRs (which will be discussed in section 5)

may increase an individual’s susceptibility to NPC. Furthermore,

evidence of genetic susceptibility is also shown by the increased

NPC risks in those with first-degree family members with NPC (9).

Environmental factors, such as the consumption of volatile

nitrosamine containing preserved foods and salted fish, are also

strongly linked to NPC and are commonly found in the Cantonese

diet (10).

According to epidemiological studies, NPC occurs two to three

times more frequently in males than females (11). It has a bimodal

distribution in low-risk populations, reaching a modest peak from

ages 15 to 24 years old, and reaching a higher peak from ages 65 to

79 years old (11). In high-risk populations, NPC incidence peaks at

50 to 59 years old, and subsequently decreases (12).

The World Health Organisation (WHO) classifies NPC into

three major groups, namely, the keratinizing squamous subtype

(Type I), nonkeratinizing squamous subtypes (Type II), and

undifferentiated or poorly differentiated (Type III). EBV and its

association with the non-keratinising forms of NPC has been well-

established (6). This is evidenced by the presence of EBV in

dysplastic nasopharyngeal epithelium, as well as its clones in NPC

biopsies in a few studies (13). Anti-EBV immunoglobulin A (IgA)

has also shown utility as a screening marker for NPC, especially in

patients with a strong family history (14). In addition, serum EBV

capsid antigen (VCA) IgA or EBV DNA titers were also found to be

associated with risk of NPC, with higher levels correlating with

advanced disease (9, 15).

NPC is usually found in the lateral wall of the nasopharynx, in

particular, the fossa of Rosenmuller. As the disease progresses, it can

either remain confined within the nasopharynx, or extend into the

contralateral lateral wall, skull base, palate, nasal cavity or
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oropharynx (16). While NPC most commonly presents with

cervical lymphadenopathy (16), it can also present as cranial

nerve palsies, blood in mucus or saliva, hearing loss, serous otitis

media, tinnitus, diplopia, dysphagia and dysphonia, and

occasionally pain (17). In the recently published 8th edition of

the TNM staging for NPC by the American Joint Committee on

Cancer (AJCC) (18), NPC is classified into 5 stages with stage 0

suggesting preinvasive lesion, I to II indicating early disease, and

stages III and IV broadly indicating more extensive lymph node

involvement, with IVB indicating metastatic disease.
1.2 Epstein-Barr virus-associated
gastric cancer

EBVaGC constitutes 10% of gastric cancer (19) and is one of the

most common EBV-associated malignancies by overall incidence. It

is defined by the monoclonal proliferation of latent EBV-infected

carcinogenic cells (20). Like NPC, EBVaGC is more commonly

found in males, younger individuals (21). However, unlike NPC and

PPLELC, the incidence of EBVaGC is higher in Western countries

such as Germany and the United States as compared to Asian

countries (22). EBVaGC is predominantly located in the proximal

stomach and remnant stomach post partial gastrectomy for gastric

ulcers or cancer (20). Clinically, EBVaGC presents with loss of

weight, epigastric pain, early satiety, gastrointestinal bleed, iron

deficiency anemia, and nausea (3).

Similar to NPC, consumption of salty food and exposure to

wood dusts increase risk of EBVaGC (23–25). H. pylori infection, a

significant risk factor for non-EBV gastric cancer, was not found to

be associated with EBVaGC.
1.3 LELC and primary pulmonary LELC

LELC is a poorly differentiated carcinoma characterized by

dense lymphocytic infiltration in the stroma, histologically similar

to undifferentiated NPC. It is a rare but distinct cancer that may

arise from multiple organs, including the lungs, stomach, parotids,

salivary gland, thymus, biliary tract, breast, prostate, and metastatic

NPC has to first be excluded (26, 27).

The first recognition of the possible association of LELC of the

lungs with EBV was by Begin et al (28), and since then, the presence

of EBV has also been detected in LELCs of the salivary gland (29),

gastric (30, 31), thymus (32), colon (33), lung (34) and the

intrahepatic biliary tract (35). The identification of EBV in LELC

has led to an increasing amount of research exploring the role of the

oncovirus in the pathogenesis of LELC (36).

PPLELC, or LELC of the lungs, is classified as a subtype of non-

small cell lung cancer (NSCLC) and is the most common type of

LELC. Similar to NPC, it is found more commonly in Asians, in

particular the Southern Chinese (36–38), and when found in

westerners, it is typically EBV negative (39–41). It presents at a

lower mean age of 51-55 years old and has a better prognosis than

non-LELC lung cancers (42), with a higher incidence in non-

smokers and Asian females (43). Since its first documentation
frontiersin.org
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(28), current understanding of the histological resemblance,

geographical clustering and molecular similarities (36) between

NPC and PPLELC have prompted increasing interest in the role

of EBV in PPLELC (34, 44, 45). Currently, PPLELC is the most well

studied LELC subtype and will be the primary focus when

discussing LELCs.
2 Pathogenesis of NPC

EBV is known to be one of the etiological agents of NPC

pathogenesis (46). While lytic replication typically predominates

during the acute phase of EBV infection and early dysplasia,

persistent latent EBV infection, clonal expansion of infected epithelial

and lymphoid cells are thought to be drivers of NPC (47), and the lytic-

latent switch is an important step in malignant transformation.

EBV is potentially acquired in early childhood when the immune

system is not fully developed and evolved (48). On the contrary, if

acquired during teenage years, EBV potentially presents as infectious

mononucleosis (49, 50). One hypothesis proposes that in early life,

persistent EBV infection arises from inadequate immune clearance

due to the developing immune system resulting in an infection that is

likely to persist for the remainder of the carrier’s lifespan. Because of

this, early infection is more likely to result in latency, which when

exposed to genetic and environmental factors, is particularly

susceptible to malignant transformation (51). In the case of NPC,

EBV expresses a type II latency program expressing specific gene

products that enhances its ability to survive and spread. This will be

further elaborated in the later sections.
3 Pathogenesis of EBVaGC

One hypothesis of EBV pathogenesis in EBVaGC suggests that

direct ingestion of the EBV virus could result in the infection of

gastric epithelial cells (52, 53). It has also been postulated that

during the reactivation of the lytic phase, resident B lymphocytes

present in gastric mucosa release EBV, which subsequently infects

more epithelial cells, a process thought to be aided by ephrin

receptor A, integrins, and non-muscle myosin heavy chain IIA

(NMHCIIA) (54). This process is further facilitated by upregulation

of adhesion molecule-1 through integrin b1/b2 mediated contact

between B lymphocytes and gastric epithelial cells and clathrin-

mediated endocytosis (3). Congruent with this hypothesis, EBV

infection is found in a small number of non-neoplastic gastric

mucosa, suggesting that EBV infection precedes the monoclonal

expansion of EBV-infected cells in tumorigenesis (55, 56). EBV

anti-VCA and anti-EBNA antibody titres are also elevated in

patients with gastric dysplasia on biopsy, indicating that EBV

reactivation may be related to early tumorigenesis of EBVaGC.

After establishing infection in epithelial cells or B lymphocytes,

EBV maintains a type I or II latency programme. This includes the

expression of latent genes like EBERs, EBNA-1, Bam-HI A

rightward transcripts (BARTs), miR-BARTs, and latent

membrane protein 2A (LMP2A) (57, 58). EBER1 upregulates

insulin growth factor 1, promoting the growth of EBVaGC (59).
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It also triggers chemoresistance and cell migration through the IL-

6-STAT3 pathway (60), and facilitates tumorigenesis by blunting

cellular responses to DNA damage through disruption of

promyelocytic leukemia nuclear bodies (61). Furthermore,

EBNA1 sequesters reactive oxygen species via miR-34a and

NOX2, increasing cell viability (62). LMP2A was found to

activate the nuclear factor kappa-light-chain-enhancer of B cells

(NF-kb) pathway to upregulate miR-155-5p, resulting in the

inhibition of p-Smad2 and Smad 2, inducing epigenetic

alterations in the host genome (63).
4 Proposed pathogenesis of EBV
in PPLELC

PPLELC is a poorly differentiated carcinoma with a rich

lymphoid infiltration in its stroma, which is histologically

indistinguishable from metastatic NPC. This raises the possibility of

a “converging” role of EBV transformation in these epithelial cells,

leading to a poorly differentiated subtype. Whilst the majority of

LELC existing in case series are of PPLELC, gastric LELC (64),

intrahepatic cholangiocarcinoma (ICC)-LELC (65) and parotid LELC

(29), which suggest an aerodigestive epithelial nidus of pathogenesis,

not all LELCs described originate from epithelial cells directly in

contact with environmental carcinogens or EBV infection.

At present, our understanding of how EBV contributes to

PPLELC pathogenesis is limited, primarily relying on inferences

drawn from our knowledge of EBV in the context of NPC, and

similarities in the gene signatures and EBV latency in PPLELC. We

propose that PPLELC adopts a similar model whereby a type II

latency program in dysplastic tissue, accompanied by other

predisposing factors, leads to the development of cancer (Figure 1).

Current literature has also established the presence of EBV viral

load in PPLELC and its correlation to treatment response and

prognostication (66–68). Here, we also posit the idea that early

childhood latent infection of EBV in patients who develop PPLELC

in later years possess underlying genetic predispositions such as

variations in HLA-haplotypes and TLR subtypes, similar to the

existing multistep model proposed in NPC (4). Subsequently, EBV

oncoproteins and its downstream signaling pathways drive airway

epithelium into malignant epithelial cancers (Figure 1). However,

due to the rarity of this disease and its sparse literature, the genetic

and environmental predispositions remain to be proven by

genome-wide association studies and epidemiology studies.
5 Environmental carcinogens and
genetic susceptibility of NPC, PPLELC,
and EBVaGC

With the nasopharynx being located in the upper airway, and

the lungs in the lower airway, both are exposed to similar viral

infections and carcinogens; similarly, the nasopharynx and the

upper digestive tract also share other carcinogens through

inhalation and ingestion.
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Several environmental risk factors have been found to increase

NPC and EBVaGC risks. Dietary consumption of salt-preserved fish

and preserved foods such as eggs, meat, and vegetables (12, 17, 69, 70)

are highly associated with NPC. Exposure to wood dust (71–75),

formaldehyde and solvents such as phenoxy acid and chlorophenol

(76, 77) have also been linked to NPC and EBVaGC (23–25).

Additionally, steam, flammable products, cotton dust, and smoking

also increased NPC and EBVaGC risks (22, 78). A case-control study

conducted among male patients in the Guangdong province

demonstrated that a smoking pack-year of 40 or more predisposed

an individual to a significant odds ratio of 1.76 to contract NPC.

Similarly, 20-40 smoking pack-years was associated with a

significantly increased risk of NPC, with an odds ratio of 1.52.

Histological and geographical similarities between NPC and

PPLELC have prompted increasing comparisons between the two.

Even though epidemiological studies on PPLELC are sparse, a

recent study in Singapore revealed racial similarities, in which the

Chinese race is more frequently affected (79). While still

unexplored, a Chinese predominance may suggest that risk

factors common in the traditional diet or environment of

endemic regions could also be associated with PPLELC. While

race is a similarity between PPLELC and NPC, there are some

differences. For example, PPLELC tends to occur in non-smokers

(43) and females (79). More studies are warranted to better describe

the environmental risk factors associated with PPLELC.

Apart from environmental and epidemiological risk factors,

certain genomic variants increase susceptibility to NPC. Several

HLA alleles have been associated with increased risks of NPC, such

as HLA-A1, HLA-A2, HLA-A*0207, HLA-A*33:03, HLA-B14, HLA-
Frontiers in Oncology 04
B*38:02, and HLA-B46 (80, 81). On the other hand, HLA-A11, HLA-

A*11:01, HLA-A23, HLA-A*31:01, HLA-B*13:01, HLA-B14, HLA-

B22, HLA-B27, HLA-B55, HLA-B*55:02, and HLA-DR4 were found

to be protective factors against NPC carcinogenesis (80, 81). Variants

in expressions and polymorphisms in toll-like receptors (TLR), a

mediator of the immune system, were also found to increase the risk

of NPC. Sequence variants in TLR10 and a functional variant in the

3’UTR of TLR4 were associated with increased NPC risk (82, 83).

Genetic polymorphisms of TLR3 (84), TLR9 (85), and TLR4 (86, 87)

were also linked to increased risks of NPC.

Compared to NPC, little is known about HLA and TLR variants

in EBVaGC and PPLELC. While one study with 52 EBVaGC

patients found no interactions between EBV and TLR

polymorphisms (88), other recent studies have shown a reduced

level of TLR9 in EBVaGC, suggesting its potential involvement in

EBV reactivation (89). In PPLELC, TLR variants and HLA

haplotypes conferring increased susceptibility have yet to be

investigated, and is an avenue for future research.

6 Genetic and epigenetic
characteristics in NPC, PPLELC,
and EBVaGC

In NPC, early events such as genetic susceptibility, environmental

carcinogens and epigenetic alterations drive normal epithelium to

dysplasia through chromosomal loss and EBV-related malignant

transformation (4). Subsequently, further somatic mutations and/or

epigenetic inactivation events (cell cycle checkpoint, TP53 and other

TSG inactivation) lead to tumor progression (Figure 2). This process is
FIGURE 1

Figure 1 describes the proposed multistep pathogenesis of PPLELC. We propose that PPLELC follows a multistep pathogenesis process similar to
that in NPC.
Early events
Like NPC, distinct genetic profiles (unidentified HLA haplotype, and TLR subtypes variations) and early EBV infection may result in susceptibility to
EBV infection. Early infection results in a type II latency program, suggested by a molecular profile that is highly resembling that of NPC. Additional
risk factors such as being of a Chinese race, female, and nonsmokers are also associated with increased incidences of PPLELC. However, our
knowledge of the role of epigenetic and environmental risk factors in PPLELC is still in its infancy.
Type II latency program
In these non-malignant respiratory ciliated columnar cells, EBV can establish latency and subsequently express latent EBV oncoproteins (LMP1,
LMP2A, BART miRBA). Mutations in TP53, JAK/STAT, and cell cycle genes such as CDKN2A and CCND1 further drive non-malignant respiratory
epithelium to PPLELC. The molecular and mutational landscape in PPLELC bears a striking resemblance to the molecular profile of NPC, suggesting
that EBV enters a type II latency program in PPLELC. While it is unclear how these type II latency oncoproteins confer oncogenic traits in PPLELC,
extrapolations can be drawn from our understanding of their established roles in NPC pathogenesis. It is likely that these oncoproteins and their
downstream signaling pathways help enhance cell survival and facilitate tumorigenesis, resulting in the transformation from non-malignant
respiratory epithelium to PPLELC.
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FIGURE 2

Figure 2 illustrates the multistep model of the pathogenesis of EBV positive NPC. A complex interplay of known genetic variations with
environmental risk factors increases susceptibility to NPC. Subsequent chromosomal loss (3p, 9p, 11a), loss of function mutations (CDKN2A, cCDN1,
RASSF1A, PTEN), and widespread hypermethylation lead to high-grade preinvasive lesions. Mutations in the NF-kB, MAPK/PI3K/STAT and TP53
pathways further drive tumorigenesis. Concurrently, EBV oncogenes upregulate the expression of various genes, perpetuating tumorigenesis.
Early events in NPC pathogenesis and epigenetic changes
Numerous environmental factors have stood out in its relation to NPC. Dietary habits, such as preserved fish and foods, as well as occupational
exposures to wood dust, formaldehyde and cigarette smoke emerged as significant contributors which heightened risk of NPC. In early stages of
NPC, in addition to various TLR and HLA polymorphisms, epigenetic alterations such as CpG Island hypermethylation, and chromosomal loss (3p,
9p21) play a pivotal role in silencing tumor suppressor genes, contributing to disease initiation and progression.
Abnormalities in signaling pathways
Dysregulation of the NF-KB, MAPK PI3K and STAT pathways are well known in NPC. LMP1 activates NF-KB by engaging both the canonical and non-
canonical pathway, facilitating apoptotic evasion and immune escape. The MAPK, PI3K and STAT pathways are also activated via the TNF receptor,
upregulating anti-apoptotic genes and pro-survival signals.
LMP1 and tumorigenic properties
LMP1 is one of the key players of tumor progression, orchestrating various mechanisms that drive malignancy. Through activation of the FGFR1,
mTOR and, the NF-KB pathway, upregulation of MMP, fibronectin and integrin-a5, and enhanced VEGF expression, LMP1 stimulates new vessel
formation, a critical factor facilitating tumor proliferation and metastasis. Simultaneously, LMP1 disrupts immune surveillance by hampering antigen
presentation and amplifying anti-apoptotic signals, allowing it to evade immune detection and circumvent cell cycle checkpoints. EBV fosters a
tumor suppressive microenvironment and this is enabled by LMP1 upregulation of IL-10 and upregulation of T helper cells. Uncontrolled cell
proliferation is attained through LMP1 hyperphosphorylation of DK2 and Rb thus promoting G1/S progression, and LMP1 regulation of telomerases
resulting in cell immortality. Other prominent EBV products include LMP2 and EBNA1, which are further detailed under Figure 3.
An overview of the development of NPC
In summary, Figure 2 provides a brief overview of the multi step model of NPC pathogenesis. This model posits that the development of NPC is a
highly complex, multistage process of cumulative environmental exposures and genetic changes, spanning from initial infection and environmental
encounters leading to epithelial dysplasia, and subsequent genetic and epigenetic alterations over time activating oncogenesis. Products of type II
latency program then confer tumorigenic properties to NPC cells, enabling growth and aggressive invasion.
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accompanied by angiogenesis, metabolic dysregulation and increased

invasiveness, resulting in metastasis and immune evasion.

Early studies suggest chromosomal aberrations that are detected

in the dysplastic nasopharynx, including the loss of chromosomes 3p,

9p, 11q, and 14q (90–93), with the most widely known being 3p

(95%) and 9p21 (85%) (4). Interestingly, these genetic deletions

occurred even in the epithelium of people with no NPC in

endemic regions, suggesting that these epigenetic changes occur

early in disease, and may predispose individuals to EBV infection

(91, 93, 94). Significant hypermethylation at chromosome 6p21.3

were found in both NPC and EBVaGC (95). This region contains

numerous genes encoding for tumor suppressors and HLA genes that

are known to be important risk factors in NPC (95, 96). Apart from

the epigenetic alterations in tumor suppressor genes (TSGs),

amplification of several oncogenes were also found in 8-20% of

NPC. These include phosphatidylinositol-4,5-bisphosphonate 3-

kinase catalytic subunit a (PIK3CA) and CCND1 on 3q26.3 and

11q13, respectively. The lymphotoxin-b receptor, a NF-kB signaller

found on 12p13, was also amplified. Augmentations in PI3K-Akt and

NF-kB signaling contribute to the tumorigenesis of NPC (97–99).

Similar to NPC, mutations in PIK3CA are widely seen in EBVaGCs.

Genome sequencing and array-based methylomes have revealed

a viral-mediated CpG Island hypermethylation Phenotype (CIMP)

in NPC (95, 100, 101). EBV is known to induce a distinctive

hypermethylated epigenotype in EBVaGC, NPC and LELC (63,

102–106), where important TSGs are inactivated by extensive

methylation at the promoter region (107), in line with oncogenic

behavior. Hypermethylation alters the balance between DNA

methyltransferases and demethylases, maintaining type II latency.

LMP1 and LMP2 are key players in promoting CIMP

hypermethylation, which subsequently downregulates several

TSGs such as Ras association domain-containing protein 2

(RASSF2A) (108), follistatin-like 1 (109), cyclin-dependent kinase

inhibitor 2A (CDKN2A) (110), p16 (111), phosphatase and tensin

homolog (PTEN) (112) and cadherin-1 (CDH1) (113), facilitating

tumorigenesis and subsequent metastasis (94, 114). Although the

pathogenesis of EBVaGC is not yet well defined, some have

suggested that when EBV enters and establishes latency in the

gastric epithelium, it undergoes genome wide methylation, a

process similar to that in NPC (22, 115). The methylation of TSG

(APC, PTEN and RASSF1A), cell adhesion molecules (THBS1 and

E-cadherin), and CDKN2A are also widely found in EBVaGC (20,

116–119). Other methylated genes include MLH1, CXXC4, TIMP2

and PLXND1 (20).

Several molecular commonalities underlie PPLELC and NPC.

Molecular profiling revealed similar LMP1 (120) and BART

miRNA profiles between EBV positive PPLELC and NPC (121).

Due to the expression of similar latent genes, it has been postulated

that PPLELC and NPC share a similar pathogenesis involving a type

II or III EBV latency programme, activating similar downstream

pathways (122). Whole exome sequencing data from 30 patients

with PPLELC showed that the mutational landscape of PPLELC

closely resembled NPC, instead of other lung cancers or NKT cell

lymphoma (123). NF-kB pathway genes, such as silencing

mutations of negative regulators of NF-kB including TRAF3,

were found in PPLELC, suggesting a similar oncogenesis pathway
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to NPC (122, 123). Likewise, mutations in TP53, JAK/STAT, and

cell cycle genes such as CDKN2A and CCND1 were found in both

NPC and PPLELC (116, 123, 124). High activation of AID/

APOBEC genes (type 2 mutation signature), indicating a

secondary immune response to EBV, is associated with the

carcinogenesis of PPLELC (123), again pointing to the

importance of EBV in shaping the somatic mutational landscape.

While the tumor mutation load of PPLELC is low, large amounts of

gene copy number changes, such as 11q13.3 amplification and

9p21.3 deletion were found, similar to the copy number variation in

NPC (123).

EBV positive NPC has several unique traits which are distinct

from other cancers, and these characteristics are reflected in

PPLELC. Although a loss of function mutation of TSG p53 is

present in many cancers, EBV associated NPC is known to lack this

aberrance and usually have a normal profile of p53. Similarly, p53

levels were also found to be normal in EBV positive PPLELC tissues

and with low levels of mutated p53 in PPLELC (122), suggesting a

similar mechanism could be driving both NPC and PPLELC. This is

similar to EBVaGC, where p53 mutations are rarely seen (125,

126).. EGFR activating mutations, ALK gene arrangement and

ROS1 gene arrangement were also rarely found in PPLELC (127).

Microsatellite instability is exceedingly rare in NPC (128), and this

has been reflected in PPLELC (129). Also, the loss of heterozygosity

at D5S346 (5q23) is common, suggesting that the pathogenesis of

PPLELC is associated with a TSG in that region (129).

Existing models in NPC postulate a multistep pathogenesis

process where early environmental exposures as well as distinct

genetic profiles predispose an individual to EBV, and acquired

epigenetic changes may result in susceptibility to EBV infection

(Figure 2). Upon infection by EBV, latent genes expressed

upregulate certain gene products which facilitate cell survival and

malignant transformation, resulting in the further development of

NPC (91). In view of its similarities to NPC as well as a similar

model described for EBV related lung cancers (130), we suggest that

PPLELC may adopt a similar multistep pathogenesis pathway

(Figure 1). We hypothesize that EBV infection is an early

transforming event, and that along with predisposing

environmental risk factors, normal airway epithelial cells are

transformed into poorly differentiated carcinoma.
7 EBV Latent Infection in NPC,
PPLELC, and EBVaGC

EBV (human herpes virus type 4) is a double-stranded DNA

(dsDNA) of approximately 170 KB. EBV is usually transmitted

through the saliva (131) and infects both lymphoid and epithelial

cells. Primary infection of EBV occurs as the virus enters the

mucosal epithelium from the oropharynx and spreads to

lymphoid tissues where it gains entry into the nasopharyngeal

epithelial cells, facilitated by Ephrin A2 receptor and the

vitronectin receptors avb5, avb6 and avb8 (132–134). Unlike in

the latent phase where the EBV genome is only replicated once

throughout the cycle, in the lytic phase, the EBV genome can

undergo large numbers of amplification to generate numerous viral
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genomes which can infect other cells (81). While recent studies of

the lytic phase and its involvement in tumorigenesis (135, 136)

suggest that both phases might be involved in oncogenesis, the role

of the latent phase in driving both lymphoid and epithelial tumors

has been well established (91).

EBV enters a latent phase where the virus remains dormant in

the nucleus and the carrier remains asymptomatic. EBV establishes

latency, ranging from type I to III. In type I latency, latent genes

such as EBNA1, EBER, and BART RNAs are expressed (137). In

type III latency, nine proteins, namely (EBNA)-1, -2, -3a, -3b, -3c,

and -LP, and (LMP)-1, -2a, and -2b are expressed. Of note, latency

II gene expression is known to play a primary role in the

pathogenesis of NPC (138), resulting in the expression of latent

genes such as EBV nuclear antigen 1 (EBNA1), LMP1, LMP2, EBV-

encoded small RNAs (EBER), Bam-HI A right frame (BARF)

proteins, BARTs, and BART microRNAs (miR-BARTs). EBV

effectively transforms and immortalizes B cells through various

latent gene expressions such as LMP1, LMP2A (139) EBNA, BART

and mir-BARTs (140), and a similar type II latency programme is

suggested to exist in PPLELC (122). LMP1, LMP2a, and the NF-kB
pathways were found to be involved in the carcinogenesis of

PPLELC (122), suggesting that the pathway of tumorigenesis is

likely to be highly similar (Figure 1).
7.1 Mechanisms of latent gene products in
type II latency programme

The involvement of latent gene products in NPC pathogenesis

has been extensively documented and understanding its oncogenic

properties and pathways in NPC allow us to hypothesize the

pathogenesis and characteristics of other EBV positive tumors

with a similar molecular profile, such as LELC. Figure 3

summarizes the EBV gene products and molecular pathways

described below which are known to be involved in NPC.

Unlike EBVaGC where mutations in the NF-kB pathway are

uncommon (3), NF-kB pathway dysregulation is known to occur in

EBV positive NPC (141). LMP1 is a key oncoprotein in NPC

tumorigenesis and is known to establish multiple oncogenic

hal lmarks in the dysplasia-carcinoma model . I t i s a

transmembrane protein that activates NF-kB through its C-

terminal activation regions (CTAR1 and CTAR2) via the

canonical and non-canonical pathways. These signaling domains

mimic CD40, constitutively activating NF-kB. NF-kB transcription

is upregulated through the canonical and non-canonical pathway.

In the canonical pathway, CTAR2 recruits TRAF6/Transforming

growth factor-b-activated kinase 1 (TAK1)/inhibitor of nuclear

factor kappa-B kinase subunit b (IKK-b), and CTAR1 activates

NF-kB through the non-canonical pathway, by recruiting TRAF1,

2, 3, 5, NF-kB-inducing kinase (NIK), and IKK-a (3, 142–146).

CTAR1 also independently activates the canonical pathway of NF-

kB (147). The LMP1 mediated canonical and non-canonical

mediation of NF-kB pathways confer a survival advantage to

tumor cells by enabling apoptosis evasion, B-cell activation, and

survival (142), and is important for tumorigenesis via many

pathways. Recent studies have also elucidated a role of NF-kB in
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regulating viral gene transcription of BART miRNAs and long

noncoding RNAs, modulating the shift between latent and lytic

states (124, 148), as well as promoting somatostatin receptor 2

(SSTR2) induction (149).

Apart from modulating the NF-kB pathway, LMP1 also

functions as a constitutively active tumor necrosis factor (TNF)

receptor, activating several other signaling pathways, including

mitogen-activated protein kinase (MAPK), PI3K, and signal

transducer and activator of transcription (STAT), resulting in the

upregulation of anti-apoptotic genes (150). LMP1 also promotes

stem-cell like properties, which are further maintained by the

upregulation of oncogenes and anti-apoptotic genes like BCL2

and LEF1 (141).

LMP2A is a viral-encoded mimic of the B-cell receptor (BCR),

and constitutively activates BCR-like signaling through recruitment

of the Lyn and Syk kinases (151). It also provides a counteractive

effect by depriving the BCR-signaling complex of its components.

These two counterbalancing activities help EBV stay latent in B

cells, evading detection by the immune system (152).

EBNA1 helps maintain the presence of the EBV genome in NPC

as circular DNA episomes by binding to viral DNA. EBNA1 was

found to be critical for the immortalization of B cells (153, 154).

Survivin, an inhibitor of apoptosis, was also found to be activated in

B lymphocytes by EBNA1 (155). In a recent study, it was

demonstrated that EBNA1 results in a dose-dependent breakage

at chromosome 11q23 (156). This is consistent with the fact that

latent EBV reactivation has been associated with tumorigenesis,

especially NPC (157). Similar to NPC, EBNA1 is also consistently

expressed in EBVaGC (158) where it induces the loss of

promyelocytic leukemia (PML) nuclear bodies (NBs) (61). This

decreases p53 activation and apoptosis in response to DNA damage,

allowing for EBVaGC carcinogenesis.

BART transcripts are abundant in NPC cells (121, 159), and are

subsequently processed to miR-BARTs. miR-BARTS stabilize latent

infection, suppress lytic replication by targeting BZLF1 and BRLF1

(159), downregulate apoptosis (160), and activate pathways

promoting tumorigenesis (161).

While non-exhaustive, EBV latent gene products also trigger

downstream pathways known to be involved in malignant

transformation. For instance, aberrance in Wnt signaling

regulation in NPC has been demonstrated by gene expression

profiling studies (162). While studies have found that LMP1 does

not play a critical role in direct activation of the WNT pathway

(163), other latent gene products such as LMP2A activates PI3K/

AKt to inhibit the downstream GSK-3b of Wnt, sequestering b-

catenin in the nucleus and inducing EMT (164). Both LMP1 and

LMP2A were also found to induce stem cell-like properties in NPC

cells through Hedgehog signaling (165, 166). TGF-B1, a growth

suppressor, is also inhibited by LMP1 (167). LMP1 also induces the

expression of IL-10 and vIL-10, an immunosuppressive cytokine

whose levels are raised in many cancers (168). Not only do the EBV

latent gene products independently activate several downstream

pathways beneficial for tumorigenesis, they also positively regulate

one another leading to further upregulation (169, 170).

Interestingly, NPC and PPLELC have highly similar molecular

landscapes. Like NPC, PPLELC also expresses high levels of LMP1,
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LMP2a, and NF-kB (122), with LMP1 detected in 42% of PPLELC

(122). While little is currently known about how these gene

products promote oncogenesis in PPLELC, these pathways have

been well documented in NPC. Understanding how these common
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pathways foster angiogenesis and metastasis, cell cycle survival, and

immune evasion in NPC, and also in other epithelial cancers such as

EBVaGC, may guide our understanding in how these gene products

establish tumor hallmarks in PPLELC.
FIGURE 3

Figure 3 presents a comprehensive and intricate depiction of the pivotal roles played by type II latency Epstein-Barr virus (EBV) oncoproteins,
specifically Latent Membrane Proteins 1 and 2A (LMP1 and LMP2A), in conjunction with the crucial gene product EBNA1. It sheds light on how their
orchestrated actions contribute to the initiation and progression of tumorigenesis by silencing of key tumor suppressor genes and driving cell
proliferation and survival.
LMP1 and LMP2A: masters of oncogenic signaling
At the forefront of this dynamic interplay are the oncoproteins LMP1 and LMP2A. LMP1 is a multifunctional transmembrane protein. By emulating the
constitutive activation of CD40, a pivotal B-cell receptor, LMP1 engages the TNF receptor-associated factors (TRAFs) and orchestrates the activation
of the canonical NF-kB pathway. This activation culminates in the creation of a proinflammatory milieu that is conducive to cell survival and
unbridled proliferation. Furthermore, LMP1’s capacity to activate the non-canonical NF-kB pathway further amplifies these signals, resulting in a
sustained NF-kB activity that effectively shields cells from apoptotic cues. LMP1’s influence isn’t confined to NF-kB signaling alone. It interfaces with
a multitude of molecules, including Janus kinases (JAKs), STATs, and PI3K, thereby activating pathways that foster cell growth and survival. Moreover,
LMP1’s impact on various microRNAs and transcription factors significantly influences gene expression and cellular behavior. Beyond direct
oncogenic signaling, LMP1 also modulates the tumor microenvironment, augment cellular invasiveness, and promotes angiogenesis. These help
create a supportive niche for tumor progression and metastasis. Complementing LMP1, LMP2A emerges as a critical player in EBV-associated
oncogenesis. This transmembrane protein mimics the B-cell receptor (BCR), a critical component in B-cell signaling. By recruiting protein tyrosine
kinases, including Lyn and Syk, LMP2A effectively dampens BCR signaling. Activation of the PI3-kinase/Akt axis stimulates GSK3 which culminates in
the accumulation of betacatenin, thereby promoting WNT signaling. This strategic inhibition aids in evading the regulatory mechanisms that would
otherwise prompt apoptosis of autoreactive B cells. This evasion, in turn, promotes the survival of EBV-infected cells, and similar to LMP1, fosters a
cellular milieu that supports enhanced proliferation and survival.
EBNA1: guardian of viral persistence and cellular transformation
Central to this network of interactions is the gene product EBNA1. This multifaceted protein stands as a linchpin in ensuring the persistence of EBV
within the host cell. In addition to its role in maintaining viral genome replication, EBNA1 actively engages cellular machinery to promote cell
proliferation and survival. Importantly, EBNA1 orchestrates the silencing of key tumor suppressor genes, notably CDKN2A and TP53. This results in an
imbalance that shifts the cellular equilibrium toward unchecked cell growth and survival, fueling the malignant transformation of host cells.
A holistic view of tumorigenesis
Collectively, Figure 3 encapsulates the multifaceted orchestration of type II latency EBV oncoproteins, LMP1, LMP2A, and EBNA1, in driving the
molecular intricacies of tumorigenesis. Their intricate molecular interplay, ranging from direct oncogenic signaling to the modulation of the tumor
microenvironment, lays the foundation for cell transformation and the subsequent development of EBV-associated malignancies.
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7.2 Angiogenesis and Metastasis in NPC
and EBVaGC

Angiogenesis is a major contributor to oncogenesis and

metastasis as new blood vessel formation enhances nutrient and

oxygen delivery to rapidly proliferating cells. In NPC, EBV latent

proteins (EBNA1 and LMP1) promote angiogenesis through

upregulation of angiogenic cytokines IL-8, hypoxia inducible

factor-1 (HIF-1), and VEGF (171–173). LMP1 activation of NF-

kB leads to the activation of the STAT pathway via increased levels

of IL-6, and IL-8, promoting cell proliferation (174, 175), and

angiogenesis (176) respectively. The role of EBNA1 in B cell

transformation was also demonstrated in mice models where

EBNA1 expression was associated with increased primary tumor

formation and metastasis (177). The enhanced angiogenic ability

can also be induced in neighboring endothelial cells promoting

angiogenesis by the transferring of EBV encoded small RNAs and

subsequent induction of vascular cell adhesion molecule 1 (VCAM-

1) expression in endothelial cells (178). In EBVaGC, hypoxia-

induced ebv-cir LMP2A promotes angiogenesis through the

KHSRP/VHL/HIFa/VEGFA pathway (179). EBVaGC also

upregulates IHH, a gene which increases metastatic potential

through angiogenesis, Snail protein expression, and decreases e-

cadherin and tight junctions (115). A loss of PTEN in EBVaGC

activates PI3K/Akt pathway, resulting in increased angiogenesis,

migration and loss of cell cycle adhesion (180). Downregulation of

e-cadherin through ARID1A loss also leads to enhanced tumor

migration and lymphovascular invasion (180). TheWnT pathway is

also downregulated by LMP2A in EBVaGC, enhancing cell

migration and invasion (181). In both EBVaGC and NPC, EBV

was found to promote vasculogenic mimicry formation through the

PI3K/AKT/mTOR/HIF-1a pathway (182).

Matrix metalloproteinases (MMPs), key proteins responsible

for the degradation of collagen IV, enabling basement membrane

invasion, are also increased in EBV positive NPC and EBVaGC

(183–186). LMP1 modifies its extracellular vesicles by increasing

gene expression of MMP9 and MMP2 (187), and enhances cell

attachment through the upregulation of integrin-a5 and fibronectin
(187). Apart from directly modulating MMP expression, LMP1 also

mediates other pathways such as cell division cycle 42 (CDC42), a

protein known to regulate invadopodia formation (188, 189), actin

cytoskeleton reorganization, and increase motility (190). Crucial

cell adhesion molecules such as E-cadherin were also found to be

downregulated by miR-200, miR-BART9 and LMP2A, BARF0,

EBER and EBNA1 (191–193). The converse was found to be true,

whereby a deletion in miR-BART9 results in elevated levels of E-

cadherin expression, and a reduction in the proliferative and

invasive potential of EBVaGCs (194).

A switch from oxidative phosphorylation to aerobic glycolysis is

also beneficial for cell proliferation and invasion by providing

intermediary metabolites (195). LMP1 activates glycolysis through

the fibroblast growth factor receptor 1 (FGFR1) signaling pathway

(196) and the mTOR pathway through auto-secretion of insulin-

like growth factor 1 (IGF-1) (197). The predilection for aerobic

glycolysis was evidenced by increased lactate levels, extracellular

acidification ratio and oxygen consumption ratio suggestive of
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enhanced glycolysis, as well as reduced oxidative phosphorylation

enzymes (197, 198). Glycolysis has also been linked with higher

invasiveness as glycolytic enzyme expression was increased in cells

with higher invasive properties than those without (197).

Furthermore, the acidic tumor microenvironment due to lactate

production also favors an environment for tumor cell migration

(196, 199).
7.3 Cell cycle survival in NPC and EBVaGC

Tumour cells gain proliferative advantage by expressing

aberrant genes which hijack regulation checkpoints, enabling

hyperproliferation and apoptotic escape. In EBV-associated NPC,

the CTAR1 domain of LMP1 hyperphosphorylates CDK2 and Rb,

promoting G1/S cell cycle progression and protecting the cell from

apoptosis (200, 201). Furthermore, LMP1 also regulates telomerase

activity through the p16INK4a/Rb/E2F1, PI3K-AKT and c-Jun N-

terminal kinase (JNK), promoting immortalisation (202). In

fibroblasts, LMP1 suppresses p16INK4a and p21WAF1 by H-

ras61L, suppressing cell senescence (203). In EBVaGC, there is an

upregulation of Bcl-2 and CyclinD1, allowing apoptotic evasion and

progression of cell cycle through the G1 phase respectively (204).

LMP2A plays a regulatory role in modulating the expression of

cyclin E and the ratio of cells in the S phase (205) and inhibits TGF-

b1 induced apoptosis (206, 207) miR-BART9, 11, 12 also reduced

Bim expression, a pro-apoptotic protein (208).

Similar to other cancers, multiple cell cycle checkpoints (e.g.

p16 and p21) are compromised by EBV. p16 is a TSG (CDKN2A)

which inhibits cyclin D1/CDK4, and is commonly hypermethylated

and silenced in NPC and EBVaGC (111, 114). Knocking out p16

expression, or over expression of its negatively regulated target

cyclin D1/CDK4, promoted expansion of EBV infected cells (209).

LMP1 also inactivates p16 by inducing sequestration of E2F4/5 and

ETS-2 in the cytoplasm, rendering p16 dysfunctional in these cells

(210). p21, another cell cycle inhibitor, was also downregulated in

NPC cell lines by the binding of miR-17-5p to its 3’ untranslated

(3’UTR) region (211). EBV positive NPC tumors are also more

resistant to ferroptosis through EBNA1 upregulation of glutathione

peroxidase 4 (GPX4) (212), and LMP1 inhibited necroptosis

through RIP3 hypermethylation (213).

Interestingly, while p53 mutations, like other TSGs, are

classically present in most other cancers, NPC has a unique

profile of p53. Unlike other cancers which usually have mutations

or loss of p53, there is little association between p53 mutations with

NPC, and normal or elevated levels of p53 are often present (214–

217). LMP1 levels positively correlate with p53 levels, and can

induce p53 expression via the H19/miR-675-5p axis (218). Despite

normal or elevated levels of p53, rapid proliferation suggests that

EBV encoded products suppress the function of p53 instead (219).

For instance, p53 expression can be inhibited by EBV encoded miR-

BART5-3p, a loss of p14, as well as excess p63 (219–221). A similar

pattern is also seen in EBVaGC where p53 mutations are rare (125,

126, 222), again suggesting that EBV encoded products suppress

p53 function instead. For instance, BART3-3p and BART 5-3p bind

TP53 to reduce senescence of EBVaGC, accelerate cell cycle
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progress, and prevent apoptosis (219, 223). It has also been

suggested that normal or high p53 levels may confer a survival

benefit as these cells will not be susceptible to JNK and Rapamycin-

induced apoptosis (224, 225). Taken together, these suggest that p53

mutation does not have a major role in early pathogenesis (226),

and subsequent p53 loss may occur as an independent event.
7.4 Immune modulation and evasion in
NPC and EBVaGC

EBV is known to persist and escape immune clearance, and its

presence induces an immunosuppressed tumor microenvironment

(TME). Even though inflammation occurs in NPC (227), much of

the TME remains immunosuppressed. While the latent phase was

thought to be responsible for NPC pathogenesis, recent studies have

also elucidated a role of the lytic phase in pathogenesis (135, 136).

In LMP1 positive NPC cells, IL-10, an immunosuppressive

cytokine which reduces antigen presenting cells and T helper cell

activity, was also found to be fourfold higher (228). LMP1 also plays

an important role in creating an immune-suppressed TME by

inducing interleukin-10 (IL-10) secretion in regulatory T cells.

EBNA1 stimulated regulatory T cell (Treg) chemotaxis towards

the NPC TME, through the upregulation of the transforming

growth factor-b1 (TGF-b1)-SMAD3-PI3K-AKT-c-JUN-CXCL12-

CXCR4 axis and downregulation of miR-200a (229). EBNA1 also

upregulated TGF-B1 and CCL20 which converted naive T cells into

Treg cells and increased Treg cells migration, respectively (230).

Additionally, EBNA1 also activates M2 macrophages which

encourages conversion of naive T cells into Treg cells (230).

These are congruent with the presence of elevated levels of Treg

cells found in the TME of NPCs (231) as well as its positive

correlation to plasma EBV levels of NPC patients (230).

In EBVaGC, increased levels of Tregs, IL-1B, and IL-10 in

EBVaGCs suggest an immunosuppressive environment (232, 233).

This is evidenced by the impaired function of cytotoxic T

lymphocytes (CTLs) and natural killer cells in EBVaGC. Elevated

levels of IFN-g depletes tryptophan and suppresses tryptophan

sensitive cytotoxic T lymphocytes (CTLs) and natural killer cells

(234). Additionally, LMP2A mutations on exons 1-8 (30) and PD-

L1 upregulation in both EBVaGC and NPC (235–237) limit CTL

detection and promote differentiation of CD4+ cells into Treg cells

(238). Other molecules contributing to immunosuppression include

CCL22 which increases Treg recruitment, and indoleamine 2,3-

dioxygenase (IDO1) (234, 239, 240). Antigen processing in

EBVaGC is also inhibited by EBNA1 repeats and early lytic gene

BNLF1a (234, 241), perpetuating immune evasion.
8 Treatment options for NPC, PPLELC,
and EBVaGC

Stage 0 and I NPC are usually treated with radiotherapy to the

site of disease, with prophylactic radiation to cervical lymph nodes

(242). Patients with stage II, III, and IV NPC are treated with

concurrent chemoradiation (chemoRT), with stage III and IV NPC
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requiring either induction or adjuvant chemotherapy on top of

chemoRT, usually cisplatin or cisplatin with fluorouracil (5-FU) or

adjuvant oral capecitabine (243). Recurrent or metastatic NPC can

be treated with palliative radiotherapy, chemotherapy, targeted

therapy and/or immunotherapy. On the other hand, no clear

treatment guidelines for PPLELC have been outlined at present

(34). In general, surgical treatment is the mainstay of treatment for

early PPLELC, and treatment options like chemotherapy,

radiotherapy are usually reserved for more advanced stages of

PPLELC (45). Because PPLELC is uncommon, the adoption of

standardized treatments has been challenging. Existing treatment

regimes are adapted from those used for stage IV NPC, which

involves gemcitabine-based chemotherapy (45), taxanes (244), anti-

angiogenic therapy (245), and anti-PD1/PD-L1 therapy (246). The

favorable response of PPLELC to NPC treatments is evident of the

therapeutic implications of molecular similarities between the two

cancer types, and the substantial overlap in their molecular

characteristics provides an explanation for the effective response

of PPLELC to chemotherapies typically used in NPC. For

EBVaGCs, early stage cancers are treated surgically via

endoscopic mucosal resection or gastrectomy. The treatment

options for locally advanced EBVaGC is similar to that of other

gastric cancers. This includes perioperative chemotherapy with

primary resection. Advanced EBVaGCs are treated with palliative

chemotherapy ( taxanes , i r ino tecan , p la t inums , and

fluoropyrimidines) and VEGF-R antagonist ramucirumab (247).

The role of immunotherapy in the treatment of NPC has been

increasingly explored and this is especially so because the tumor

microenvironment of EBV-driven NPC creates conditions

favorable for immunotherapy. Much attention has been placed on

immune-checkpoint inhibitors (248). In 44 patients with recurrent

or pretreated metastatic NPC, patients receiving nivolumab

achieved a 1-year overall survival rate of 95% and 1-year-

progression free survival of 19.3% (249). In the KEYNOTE-028

study (250), 27 patients with PD-L1 positive unresectable or

metastatic NPC achieved a 25.9% objective response rate of

partial response and stable disease. The more recent JUPITER-02

study demonstrated that the addition of toripalimib to the standard

first line chemotherapy treatment of gemcitabine and cisplatin

yielded a significant increase in progression-free survival (HR =

0.52, 11.7 v.s 8.0 months) and overall response rate (77.4 v.s 66.4%)

(251). The addition of camrelizumab to the standard gemcitabine

and cisplatin chemotherapeutic agents in the CAPTAIN-1st trial

also demonstrated a significantly increased progression-free

survival (HR = 0.54, 9.7 v.s 6.9 months) (252). In RATIONALE-

309, the addition of tislelizumab to standard chemotherapy resulted

in a significantly improved progression-free survival (HR = 0.50, 9.6

v.s 7.4 months) (253). However, the efficacy of immunotherapy

does not extend when it is used alone as KEYNOTE-122 showed no

improvement in overall survival when pembrolizumab was used as

a monotherapy as compared to the standard chemotherapy agents

used for recurrent or metastatic NPC (254).

Similar to NPC, PD-1/PD-L1 inhibitors are potential

therapeutic options in PPLELC (255).. A recent study

demonstrated that the use of sintilimab, pembrolizumab, and

nivolumab in patients with advanced PPLELC helped achieve
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stable disease in 60% of the patients (255). The use of nivolumab

resulted in partial remission in 36.4% of the patients, and stable

disease in 54.5% of the patients. While the predictive value of PD-L1

as a biomarker of immune checkpoint inhibitor remains debatable

(256, 257), a recent study by Zhong et al. demonstrated that higher

PD-1/PD-L1 and LAG3 levels were indicative of a significantly

better progression-free survival in a retrospective study (19 months

v.s 3.9 months) (257).

Immunotherapy such as pembrolizumab have also

demonstrated efficacy in EBVaGC as one study demonstrated a

100% (6/6) response to pembrolizumab in patients with EBVaGC

(258). However, given the small sample size of that study, it is

necessary to validate this finding with larger studies. The positive

response of immunotherapy could suggest a potentially synergistic

effect when administered alongside chemotherapy in EBVaGC.

Though not shown yet, this is currently seen in advanced gastric

cancer patients where the combination of chemotherapy and

immunotherapy such as pembrolizumab and nivolumab was

superior to using chemotherapy as a single agent (259), as well as

in NPC as seen in the JUPITER-02 study.

Apart from immunotherapy, another treatment option is to

employ cytotoxic T lymphocytes (CTLs). EBV-CTL is an

autologous T-cell therapy generated through irradiated EBV-

transformed lymphoblastoid cell lines (LCL). It was found that

infusion of autologous EBV-CTL post lymphodepletion had efficacy

as an anti-tumor agent for patients with locoregional NPC. In a

recent phase III trial (VANCE trial, ESMO 2022 Oral presentation)

in patients with recurrent or metastatic NPC, EBV-CTL

administration following gemcitabine and carboplatin (GC)

treatment also did not reveal superior efficacy over first line

standard of care GC. Still, in the VANCE trial, improved survival

trends were seen in a subset country specific analysis of overall

survival and progression free survival for Taiwan, United States,

and Singapore (unpublished). EBV-CTL may still be a viable

treatment option as CTLs specific for LMP2 were shown to be

associated with a significantly higher overall survival in a phase II

study (260). EBV-CTL also demonstrated a very favorable safety

profile (261). Like NPC, EBV-CTL also displayed efficacy in the

treatment of PPLELC. In an unpublished study, our group was able

to demonstrate complete response to EBV-CTL in a patient with

heavily pre-treated advanced PPLELC in combination with an

immune checkpoint inhibitor after previous progression on

immune checkpoint inhibitor after just a few months.

A phase II trial in patients with locally recurrent NPC found

that patients with Endostatin, an inhibitor of angiogenesis,

administered in addition to cisplatin and paclitaxel had longer

progression free survival with increased disease control rates (262).

It was also found that anti-angiogenic therapy on top of

radiotherapy improved clinical outcomes (263). Similarly,

angiogenesis inhibition was also efficacious in PPLELC. In one

study, small molecule multi-targeted TKI, inhibiting VEGFR,

platelet derived growth factor (PDGFR), FGFR, and c-KIT was

used to treat a patient with FGFR3-TACC3 fusion, and response

was favorable. While studies are limited, this suggests that anti-

angiogenic therapy can potentially be employed in the treatment of

PPLELC (245).
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Targeting EBV latent proteins has also shown potential as a

viable therapeutic option. Not only is EBNA1 the only viral protein

expressed in all EBV infected cells regardless of latency type, its vital

role in maintaining EBV episomal genome and its consistent

expression of EBNA1 in all tumor cells makes it a promising

therapeutic target (47). Administration of conditionally

replicating adenovirus expressed in an EBNA-1-dependent

manner (adv.oriP.E1A) in EBV-positive NPC cells demonstrated

cytotoxic effects and tumor regression in xenografts models, albeit

limited clinical potential due to liver sequestration (264, 265).

Preventing DNA binding of EBNA1 has also been an area of

study. In a high-throughput virtual screen, several small molecule

inhibitors, such as LB2, LB3, LB7 and LC7, SC7, SC11, SC19, SC27)

(266) have been identified to selectively inhibit EBNA1 DNA

binding (267). Others have also developed molecules that could

inhibit EBNA1 DNA binding in xenografts, such as 2,3-

disubstituted benzoic acid (268), of which one of its inhibitors is

in a Phase/I/IIa clinical trial (269) (NCT03682055) in EBV positive

NPC (47). Apart from targeting EBNA1, inhibition of LMP1

targeting DNAzyme found lower short-term tumor regression

rate in a clinical trial of 40 patients with NPC (270).

Lytic inducers have the benefit of sensitizing tumor cells to anti-

virals via the expression of viral kinases (271) during EBV

reactivation. During reactivation, highly immunogenic viral

replication proteins and virions are expressed which results in a

strong immune response against EBV reactivated tumor cells (272).

Because of this, oncogenesis is largely dependent on latency, and

therapeutic strategies have been devised to inhibit latent genes or

activate lytic genes with the aim of inducing oncolysis. For instance,

it was found that transfection of EBNA-driven CMV BZLF1

plasmid induced BZLF1 reactivating EBV, resulting in cell death

(273). Other compounds, such as histone deacetylase inhibitors

(HDACis) or protein kinase C (PKC) activators have also been used

to activate EBV lytic genes, albeit with varying effectiveness (274–

277). This variability is likely attributed to the highly cell-dependent

sensitivity towards lytic inducers, which also explains the diverse

responses observed in oncolysis following the administration of

gemcitabine and valproic acid in Phase I/II trials (278). Somatic

mutations in TP53 and TGFBR2 were also found to maintain EBV

latency in NPC (122, 279, 280), and may affect a patient’s response

to lytic-inducer treatment.

The goal of understanding the intricacies of cancer pathogenesis

is to intervene as upstream as possible, thereby thwarting the

progression into dysplastic changes. Mitigating dysplasia and

minimizing exposure to risk factors play pivotal roles in

substantially lowering cancer risk. Consequently, there has been

increasing focus on advancing vaccine development, implementing

nuanced screening methodologies, and cancer biomarker

development as part of a comprehensive preventative approach.

Patients with NPC were found to have persistently elevated plasma

EBV DNA (281) and plasma EBV is increasingly used as a screening

tool for NPC (9) and a surveillance biomarker for patients in

remission (282). Posttreatment plasma EBV DNA is the strongest

independent predictor for cancer recurrence and long term survival,

with high EBV DNA levels strongly correlating with disease

progression, and low plasma EBV DNA posttreatment correlating
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with high progression-free survival rate at 2 years (283). Because

EBV insidiously results in disease, therapeutic EBV vaccines can be

highly efficacious and cost effective in lowering disease recurrence

(284). The majority of current vaccines currently target EBV latent

proteins such as EBNA1, LMP1, LMP2 (284). Several trials have

also explored the potential of chimeric antigen receptor T cell

(CAR-T) and T cell receptor-engineered T cell therapy (TCR-T)

immunotherapy, with the latter more effective for solid

tumors (284).

With EBV being a commonality behind the pathogenesis of

EBV related epithelial cancers, we speculate the possibility of a

universal off-the-shelf cell therapies targeting EBV-driven cancers

and diseases, and this is an avenue for future research. This is

especially relevant since recent studies noted clinical improvement

in EBV-CTL treated EBV-driven MS, in which B-cells are proposed

to be involved (285). With PPLELC and NPC sharing similar

biological and molecular characteristics, it is unsurprising that

treatments involving the same therapeutic targets have

shown efficacy.
9 Discussion

Of the epithelial cancers associated with EBV, NPC and

PPLELC have a predominant distribution in South China and

Southeast Asia compared to the western population. On the other

hand, EBVaGC is more prevalent in the western countries such as

Germany and the United States (15-18%) (22). The oncogenic

properties of EBV in NPC are well documented, and its latent

genes LMP1, LMP2A, EBNA1, and BART transcripts, as well as its

lytic genes, such as BZLF1, are known to participate in multiple

pathways promoting tumor growth and metastasis, as well as

imparting immuno-evasive characteristics. An overview of the

characteristics of NPC, EBVaGC and PPLELC is shown in
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Table 1. While the connection between EBV and NPC has been

well documented, its precise mechanisms remain elusive.

EBV infection is the common oncogenic pathogen underlying

several seemingly anatomically unrelated cancers, in particular,

NPC, EBVaGC and PPLELC. Even though EBV is spread through

droplets, it is often absent in nasopharyngeal epithelium even

though EBV titres are high (48). This led to hypotheses that EBV

could remain latent in other anatomical sites (48). This postulation

is bolstered by the suggestion that one of the variants of NPC

originates from the basal cells of the respiratory epithelium despite

NPC’s squamous origin (286).

Although EBV is involved in NPC, EBVaGC and PPLELC, it

enters different latency programs as evidenced by their distinct

molecular profiles. EBVaGCs express LMP2A, BARTs, miR-

BARTs, EBNA1, and EBER (57, 58), however, they express

significantly lower levels of EBNA2 and LMP1 compared to NPC.

This suggests that EBVaGC exhibits a type I latency program (287),

and is more similar to burkitt’s lymphoma and distinct from NPC

(30, 287, 288). On the other hand, EBV latent genes expressed in

NPC include EBNA1, LMP1, LMP2, EBER, BARF, BARTS and

miR-BARTs, characteristic of a type II latency program. While the

type of EBV latency exhibited in LELC still remains to be

uncovered, expressions of LMP1 and LMP2 strongly suggest a

Type II or III EBV latency program, akin to that of NPC (122).

Understanding the pathogenesis of NPC may guide current

understanding of PPLELC pathogenesis.

Due to the rarity of PPLELC, there is a paucity of studies

examining the role of EBV in PPLELC and our understanding is still

in its infancy. Histological similarities between NPC and PPLELC

suggest a closely related pathogenesis, and current perspectives of

the role of EBV in NPC pathogenesis can potentially guide our

future understanding of EBV in PPLELC and. Despite different cell

lines of origin in NPC and PPLELC, the mutational landscape in

PPLELC implies similar driver mutations in NF-kB, CDKN2A,
TABLE 1 Overview of the key similarities and differences between NPC, PPLELC, and EBVaGC.

NPC PPLELC EBVaGC

Etiology EBV infection Postulated to be associated with
EBV infection

EBV infection

Epidemiology Rare in Western Countries, and more commonly found in
Guangdong province of China, Hongkong, Southeast Asia, East
Asia, and the Mediterranean area
Males > Females

Rare in Western countries,
commonly found in Asian
countries like South China
Females > Males

More common in Western countries like
Germany and the United States
Males > Females

Risk Factors Smoking and preserved food containing volatile nitrosamine and
salted fish

Smoking is not a risk factor Smoking, salty food, exposure to wood dust
and iron filings.

EBV Latency Type II latency Postulated to be type II latency Type I latency

Key Molecular
and Immune
Characteristics

NF-кB pathway activation, mutations in CDKN2A, CCND1,
TP53, JAK/STAT, PI3K-Akt pathway, and Chromosomal
instability phenotype EBV-CIMP (CpG island methylator
phenotype). Upregulation of SSTR2.

NF-кB pathway activation,
mutations in CDKN2A,
CCND1, TP53, JAK/STAT.
Upregulation of SSTR2.

Mutations in PIK3CA and mutations in
CDKN2A. EBV-CIMP

Somatic
Mutations

Loss of chromosomes in 3p, 9p (9p21), 11q (11q13), and 14q
Hypermethylation at 6p21.3

9p21.3 deletion and 11q13.3
amplification

Hypermethylation at 6p21.3
Methylation of TSG (APC, PTEN and
RASSF1A), cell adhesion molecules (THBS1
and E-cadherin), CDKN2A, MLH1, CXXC4,
TIMP2 and PLXND1.
Mutations in ARID1A and BCOR
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JAK/STAT pathway. They also have similar p53 and PD-L1

regulatory patterns. Its expression of latent phase gene products

such as LMP1 and LMP2 also suggests that it has a type II latency

program similar to NPC. The parallels in genomic and molecular

profiles of EBV positive NPC and PPLELC raise the possibility for

common therapeutic strategies for advanced NPC and PPLELC.

With its distribution mainly in Asia as well as its good prognosis,

future studies investigating the mechanisms driving the PPLELC

can potent ia l ly guide therapeut ic targets . Given the

histopathological and molecular similarities between NPC and

PPLELC, it is unsurprising that therapeutics proven effective for

NPC have demonstrated efficacy in treating PPLELC as well. This

convergence in treatment strategies particularly between NPC and

PPLELC could potentially extend to other EBV-related epithelial

cancers in future. The development of a universal EBV-directed

therapeutic approach in future holds promise to effectively treat a

wide range of EBV-positive epithelial cancers, including but not

limited to NPC and PPLELC. However, because of the limited

studies in PPLELC, studies on EBV CTL or other novel EBV related

therapies on PPLELC can help guide our understanding in this area.

The complex interplay between genetic mutations with local

inflammation of the nasopharyngeal epithelium is thought to

establish latent EBV infection, which is the primary driver of

NPC pathogenesis (289). Despite the molecular similarities

between NPC and PPLELC, more studies are required to better

understand the distinct in vivo microenvironments of their

respective host stromal components. The role of the in vivo

microenvironment in pathogenesis is reinforced by the challenges

in replicating the microenvironment in vitro when creating NPC

cell lines, as well as the continuous loss of EBV episomes in NPC

cells in vitro (289). Our group is currently investigating the spatial

transcriptomic differences between NPC and PPLELC. A clearer

understanding of the evolutionary advantages occurring in vivo in

both NPC and PPLELC pathogenesis can elucidate fresh avenues

for therapeutic intervention.
10 Conclusion

Though the role of EBV in the pathogenesis of NPC is well-

described in existing literature, there is still much to be understood

about the role of EBV in the pathogenesis of LELC. In this review,
Frontiers in Oncology 13
we summarized the genetic and environmental factors that

influence susceptibility to NPC, and the role of EBV in the

stepwise pathogenesis of NPC. We also summarized the

differences and similarities of the roles of EBV in both NPC,

EBVaGC, and postulated its role in LELC pathogenesis. With

increasing understanding of the role of EBV in LELC

pathogenesis, better therapeutics can be developed, and novel

more specific drug targets can be elucidated to improve the

treatment options of EBV driven cancers.
Author contributions

YL and CL contributed equally to manuscript writing and share

first authorship. AC contributed to manuscript writing. DP

contributed to the illustration of the manuscript. SH and HT

both contributed to conception, guidance, and manuscript

writing. All authors contributed to the article and approved the

submitted version.
Funding

The authors declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Lieberman PM. Virology. Epstein-Barr virus turns 50. Science (2014) 343:1323–5.
doi: 10.1126/science.1252786

2. Ning S. Innate immune modulation in EBV infection. Herpesviridae (2011) 2:1.
doi: 10.1186/2042-4280-2-1

3. Han S, Tay JK, Loh CJL, Chu AJM, Yeong JPS, Lim CM, et al. Epstein–Barr virus
epithelial cancers—A comprehensive understanding to drive novel therapies. Front
Immunol (2021) 12:734293. doi: 10.3389/fimmu.2021.734293

4. Chan ATC, Teo PML, Huang DP. Pathogenesis and treatment of nasopharyngeal
carcinoma. Semin Oncol (2004) 31:794–801. doi: 10.1053/j.seminoncol.2004.09.008

5. Boussen H, Ghorbal L, Naouel L, Bouaouina N, Gritli S, Benna F, et al.
Nasopharyngeal cancer (NPC) around the Mediterranean area: standard of care. Crit
Rev Oncol Hematol (2012) 84(Suppl 1):e106–9. doi: 10.1016/j.critrevonc.2010.09.005

6. Niedobitek G. Epstein-Barr virus infection in the pathogenesis of nasopharyngeal
carcinoma. Mol Pathol (2000) 53:248–54. doi: 10.1136/mp.53.5.248
7. Eales L-J. Epstein-Barr virus and human disease. (Springer) Vaccine (1990) 8
(1):95. doi:10.1016/0264-410x(90)90202-w

8. Yu MC, Yuan J-M. Epidemiology of nasopharyngeal carcinoma. Semin Cancer
Biol (2002) 12:421–9. doi: 10.1016/S1044579X02000858

9. Tay JK, Siow CH, Goh HL, Lim CM, Hsu PP, Chan SH, et al. A comparison of
EBV serology and serum cell-free DNA as screening tools for nasopharyngeal cancer:
Results of the Singapore NPC screening cohort. Int J Cancer (2020) 146:2923–31. doi:
10.1002/ijc.32774

10. Tao Q, Chan ATC. Nasopharyngeal carcinoma: molecular pathogenesis and
therapeutic developments. Expert Rev Mol Med (2007) 9:1–24. doi: 10.1017/
S1462399407000312

11. Bray F, Colombet M, Mery L, Piñeros M, Znaor A, Zanetti R, et al. Cancer
incidence in five continents, Vol. XI Vol. 2017. . Lyon: International Agency for
Research on Cancer (2018).
frontiersin.org

https://doi.org/10.1126/science.1252786
https://doi.org/10.1186/2042-4280-2-1
https://doi.org/10.3389/fimmu.2021.734293
https://doi.org/10.1053/j.seminoncol.2004.09.008
https://doi.org/10.1016/j.critrevonc.2010.09.005
https://doi.org/10.1136/mp.53.5.248
https://doi.org/10.1016/0264-410x(90)90202-w
https://doi.org/10.1016/S1044579X02000858
https://doi.org/10.1002/ijc.32774
https://doi.org/10.1017/S1462399407000312
https://doi.org/10.1017/S1462399407000312
https://doi.org/10.3389/fonc.2023.1202117
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Low et al. 10.3389/fonc.2023.1202117
12. Chang ET, Ye W, Zeng Y-X, Adami H-O. The evolving epidemiology of
nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev (2021) 30:1035–47.
doi: 10.1158/1055-9965.EPI-20-1702

13. Pathmanathan R, Prasad U, Sadler R, Flynn K, Raab-Traub N. Clonal proliferations
of cells infected with Epstein–Barr virus in preinvasive lesions related to nasopharyngeal
carcinoma. N Engl J Med (1995) 333:693–8. doi: 10.1056/NEJM199509143331103

14. Coghill AE, HsuW-L, Pfeiffer RM, Juwana H, Yu KJ, Lou P-J, et al. Epstein–Barr
virus serology as a potential screening marker for nasopharyngeal carcinoma among
high-risk individuals from multiplex families in TaiwanEBV serology and NPC
screening in high-risk families. Cancer Epidemiol Biomarkers Prev (2014) 23:1213–9.
doi: 10.1158/1055-9965.EPI-13-1262

15. Ji MF, Wang DK, Yu YL, Guo YQ, Liang JS, Cheng WM, et al. Sustained
elevation of Epstein–Barr virus antibody levels preceding clinical onset of
nasopharyngeal carcinoma. Br J Cancer (2007) 96:623–30. doi: 10.1038/sj.bjc.6603609

16. Brennan B. Nasopharyngeal carcinoma. Orphanet J Rare Dis (2006) 1:23. doi:
10.1186/1750-1172-1-23

17. Adham M, Kurniawan AN, Muhtadi AI, Roezin A, Hermani B, Gondhowiardjo
S, et al. Nasopharyngeal carcinoma in Indonesia: epidemiology, incidence, signs, and
symptoms at presentation. Chin J Cancer (2012) 31:185–96. doi: 10.5732/cjc.011.10328

18. Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess
KR, et al. AJCC Cancer Staging Manual. (Vol. 1024). In Amin MB., Edge SB., Greene
FL. eds. (New York: Springer International Publishing) (2017) 17 p.

19. Camargo MC, Kim K-M, Matsuo K, Torres J, Liao LM, Morgan DR, et al. Anti-
Helicobacter pylori Antibody Profiles in Epstein-Barr virus (EBV)-Positive and EBV-
Negative Gastric Cancer. Helicobacter (2016) 21:153–7. doi: 10.1111/hel.12249

20. Shinozaki-Ushiku A, Kunita A, Fukayama M. Update on Epstein-Barr virus and
gastric cancer (review). Int J Oncol (2015) 46:1421–34. doi: 10.3892/ijo.2015.2856

21. Lee J-H, Kim S-H, Han S-H, An J-S, Lee E-S, Kim Y-S. Clinicopathological and
molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-
analysis. J Gastroenterol Hepatol (2009) 24:354–65. doi: 10.1111/j.1440-1746.2009.05775.x

22. Naseem M, Barzi A, Brezden-Masley C, Puccini A, Berger MD, Tokunaga R,
et al. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat Rev (2018)
66:15–22. doi: 10.1016/j.ctrv.2018.03.006

23. Koriyama C, Akiba S, Minakami Y, Eizuru Y. Environmental factors related to
Epstein-Barr virus-associated gastric cancer in Japan. J Exp Clin Cancer Res (2005)
24:547–53.

24. Kaizaki Y, Hosokawa O, Sakurai S, Fukayama M. Epstein-Barr virus-associated
gastric carcinoma in the remnant stomach: de novo and metachronous gastric remnant
carcinoma. J Gastroenterol (2005) 40:570–7. doi: 10.1007/s00535-005-1590-3

25. Camargo MC, Koriyama C, Matsuo K, KimW-H, Herrera-Goepfert R, Liao LM,
et al. Case-case comparison of smoking and alcohol risk associations with Epstein-Barr
virus-positive gastric cancer. Int J Cancer (2014) 134:948–53. doi: 10.1002/ijc.28402

26. Chuang M-K, Hong R-L. Nasopharyngeal carcinoma and pulmonary
lymphoepithelioma-like carcinoma – metastases or synchronous second primary
cancer. J Cancer Surviv (2015) 2:248–54. doi: 10.6323/JCRP.2015.2.3.08

27. Ho JC, Wong MP, Lam WK. Lymphoepithelioma-like carcinoma of the lung.
Respirology (2006) 11:539–45. doi: 10.1111/j.1440-1843.2006.00910.x
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