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Memantine increases the
dendritic complexity of
hippocampal young neurons
in the juvenile brain after
cranial irradiation
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and Ahmed M. Osman1*†

1Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden, 2Pediatric
Oncology, Karolinska University Hospital, Stockholm, Sweden
Introduction: Cranial irradiation (IR) negatively regulates hippocampal

neurogenesis and causes cognitive dysfunctions in cancer survivors, especially

in pediatric patients. IR decreases proliferation of neural stem/progenitor cells

(NSPC) and consequently diminishes production of new hippocampal neurons.

Memantine, an NMDA receptor antagonist, used clinically to improve cognition

in patients suffering from Alzheimer’s disease and dementia. In animal models,

memantine acts as a potent enhancer of hippocampal neurogenesis. Memantine

was recently proposed as an intervention to improve cognitive impairments

occurring after radiotherapy and is currently under investigation in a number of

clinical trials, including pediatric patients. To date, preclinical studies

investigating the mechanisms underpinning how memantine improves

cognition after IR remain limited, especially in the young, developing brain.

Here, we investigated whether memantine could restore proliferation in the

subgranular zone (SGZ) or rescue the reduction in the number of hippocampal

young neurons after IR in the juvenile mouse brain.

Methods: Mice were whole-brain irradiated with 6 Gy on postnatal day 20 (P20)

and subjected to acute or long-term treatment with memantine. Proliferation in

the SGZ and the number of young neurons were further evaluated after the

treatment. We also measured the levels of neurotrophins associated with

memantine improved neural plasticity, brain-derived neurotrophic factor

(BDNF) and nerve growth factor (NGF).

Results:We show that acute intraperitoneal treatment with a high, non-clinically

used, dose of memantine (50 mg/kg) increased the number of proliferating cells

in the intact brain by 72% and prevented 23% of IR-induced decrease in

proliferation. Long-term treatment with 10 mg/kg/day of memantine,

equivalent to the clinically used dose, did not impact proliferation, neither in

the intact brain, nor after IR, but significantly increased the number of young

neurons (doublecortin expressing cells) with radial dendrites (29% in sham

controls and 156% after IR) and enhanced their dendritic arborization. Finally,
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we found that long-term treatment with 10 mg/kg/day memantine did not affect

the levels of BDNF, but significantly reduced the levels of NGF by 40%.

Conclusion: These data suggest that the enhanced dendritic complexity of the

hippocampal young neurons after treatment with memantine may contribute to

the observed improved cognition in patients treated with cranial radiotherapy.
KEYWORDS
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Introduction

Adult hippocampal neurogenesis persists in the rodent brain,

from neural stem/progenitor cells (NSPC) residing in the

subgranular zone (SGZ). They divide frequently and differentiate

into glial or neuronal precursors (1). More than 50% of the newborn

cells undergo apoptosis shortly after exiting the cell cycle, and a

subset of the neuronal progenitors survives and gives rise to new

granule neurons (1–3). Newborn neuronal progenitors acquire

distinct developmental morphologies during the process of

maturation (4) and transiently express the microtubule-associated

protein doublecortin (DCX) along their immature stages, often

referred to as young or immature neurons (5, 6). Within the first

two weeks after birth, newborn granule neurons acquire a

morphology resembling the mature neurons, characterized by a

radial projection of the dendritic processes towards the molecular

layer and axons extending to the cornu ammonis 3 region (CA3) (7).

They become fully mature within 4-6 weeks after birth (1, 8). In

rodents, newborn granule neurons have been shown to contribute

to certain cognitive tasks such as pattern separation and

maintenance of memory functions (1, 9, 10). In humans,

persistence of postnatal hippocampal neurogenesis remains

debated, however, there is a consensus that DCX-expressing

young neurons are detectable during the first decade of

childhood, and whether these cells are newborn neurons or late

developing neurons is still an active area of research (11–13).

Several factors regulate NSPC proliferation and neurogenesis.

Negative regulators include stress, inflammation, aging and

radiation (14–16). Cranial irradiation (IR) is an effective tool to

treat brain tumors, but it results in long-term neurocognitive

sequelae in cancer survivors, especially pediatric patients (17, 18).

Accumulating evidence suggests IR-induced loss of hippocampal

neurogenesis is one of the mechanisms behind impaired cognition

observed in rodent models and IR-treated patients (19–21). In

rodents, several reports have linked NSPC dysfunction after IR

and the resultant cognitive impairments to microglial activation

and induction of neuroinflammation (16, 22–24). These cognitive

deficits are more severe in females, both in animal models and

patients (19, 25).

Positive regulators of neurogenesis include physical activity,

environmental enrichment, and pharmacological agents such as

memantine (14, 26). Memantine is an uncompetitive and low-
02
affinity N-methyl-D-aspartate glutamate (NMDA) receptor

antagonist that exerts neuroprotection properties, increases

synaptic plasticity (27–29), and is currently approved in clinical

practice in the treatment of Alzheimer´s disease patients (30, 31). In

animal models, memantine has been shown to substantially

increase NSPC proliferation in the intact and diseased brain, that

in turn leads to increased neurogenesis and to improved cognition

(26, 32–35). Previous studies have linked the memantine-induced

enhanced neurogenesis and neural plasticity to increased

production of the neurotrophins brain-derived neurotrophic

factor (BDNF) and the nerve growth factor (NGF) (32, 36).

Cancer survivors subjected to cranial IR and treated with

memantine demonstrated improved cognition (37, 38). For

pediatric patients, there are ongoing clinical trials assessing

the feasibility of leveraging memantine to reduce cognitive

impairment after radiotherapy for central nervous system tumors

(ClinicalTrials.gov; identifiers: NCT03194906 and CT04217694).

To date, the underlying mechanisms by which memantine

improves cognition after IR are yet not fully understood. Recent

studies in rodents have shown that pre-treatment with memantine

improves synaptic plasticity after IR (39, 40). Whether memantine

influences hippocampal neurogenesis after IR is yet limited to one

study performed in an adult mouse IR model (41). Given that the

rate of hippocampal neurogenesis is considerably higher in young

animals (42, 43); leading to more severe injuries in the young, still

developing brain (44), we set out to investigate whether treatment

with memantine improves proliferation in the SGZ and restores the

IR-induced reduction in the number of hippocampal young

neurons after IR in the juvenile brain. We tested different

treatment paradigms administered after subjecting the mice to IR.

We show that treatment with a high, not clinically used, dose of

memantine significantly increased proliferation in the SGZ in the

intact brain and reduced the IR-induced loss of proliferation, but

was not sufficient to restore the IR-induced reduction in the number

of the young neurons in the hippocampus. Continuous

supplementation with a lower, equivalent to clinically used, dose

did not promote proliferation in the SGZ neither in the intact, nor

the irradiated brain, but rather enhanced the dendric complexity of

the young neurons in the GCL in the dentate gyrus of the

hippocampus. Finally, we found that continuous supplementation

with a low, clinically relevant, dose of memantine did not affect the

levels of BDNF, but significantly reduced the levels of NGF.
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Materials and methods

Animals

Female C57Bl6/J mice (Charles River, Sulzfeld, Germany) were

used in all studies, as IR-induced cognitive deficits are more severe in

females, both in animal models and patients (19, 25). Mice were

housed and maintained in a controlled 12/12 h light/dark cycle, 20°C

ambient temperature and 80% relative humidity, with access to food

and water ad libitum. All the experimental procedures were carried

out according to the European and Swedish animal welfare regulations

approved by the northern Stockholm ethical committee (application

nr. N248/13). Litter-mate mice were randomly divided into 4

treatment groups: sham controls (SH) receiving vehicle; SH treated

with memantine; IR receiving vehicle; IR treated with memantine.
Irradiation procedure

Twenty-day-old (P20) mice were anesthetized with isoflurane

(5% and 1.5% for induction and maintenance, respectively) in a

mixture of oxygen/air (1:1) at a flow rate of 0.3 L/min. A single dose

of 6 Gy was administered, at a dose rate of 0.73 Gy/min using X-RAD

320 X-ray machine (PXi Precision X-ray, North Branford, CT, USA).

SH animals were only anesthetized with isoflurane for a similar time

as the IRmice. Using the linear quadratic model and an a/b ratio of 3
for late effects in normal brain tissue, the acute exposure of 6 Gy used

in this study is equivalent to 11 Gy when delivered in 2 Gy fractions

(45), that is sufficient to impair neurogenesis and worsen

neurocognitive performance in mice (46, 47).
Memantine preparation and administration

Memantine hydrochloride (Sigma-Aldrich #M9292) was

dissolved in saline solution (0.9% sodium chloride) to achieve a

concentration of 10 mg/ml and stored at +4°C. For all treatment

paradigms, mice received a single intraperitoneal (i.p.) injection of a

loading dose of 50 mg/kg (high dose) memantine or an equal volume

of vehicle (saline) administered within 30 min after IR, followed by

continuous treatment with 10 mg/kg/day (low dose) of memantine

for 2 weeks supplied in the drinking water (referred to as long-term

treatment). This dose achieves a steady-state plasma concentration of

~0.5 mM equivalent to the therapeutic levels achieved when patients

are treated with 20 mg/day of memantine (35, 48), referred to as a

clinically relevant dose henceforth. Vehicle-treated animals were

supplied with regular water. For the intermittent treatment, mice

received the loading dose of memantine, followed by a daily single i.p.

injections of 10 mg/kg memantine or an equal volume of saline

(Figures 1A, 2A, Supplementary Figures 1A, 2A).
5-bromo-2’-deoxyuridine administration

For all experiments, BrdU (SigmaAldrich #B5002) was injected

i.p. at a dose of 50 mg/kg to label proliferating cells, including
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NSPCs and their prolific progenies residing in the SGZ (49, 50). To

assess proliferation in the SGZ after treatment with a single high

dose of memantine, animals received 2 injections of BrdU (4 h

apart) three days after treatment with memantine (Figure 1A). To

assess proliferation in the SGZ after long-term oral treatment with

a low dose of memantine, animals received BrdU during the last

three days of treatment with memantine, single injection a

day (Figure 2A).
Tissue preparation

Mice were transcardially perfused with saline and the brains

were collected. Brain hemispheres were separated, and the right

hemisphere (without cerebellum or the olfactory bulb) was placed

into a 2 ml microcentrifuge tube, snap-frozen on dry ice and stored

at -80°C and further processed for protein extraction and

ELISA (see below). The left hemisphere was stored in 4%

paraformaldehyde (PFA, Histolab Products AB, Sweden), and

fixed for 48 h at +4°C. Samples were then dehydrated in 30%

sucrose (Sigma #S7903; made in 0.1 M phosphate buffer) for at least

2 days and processed for immunohistochemistry (see below).
Immunohistochemistry and
immunofluorescence

Twenty-five mm thick sagittal free-floating sections were cut in a

1:12 series interval using a sliding microtome (Leica SM2010R) and

stored in 2 ml Eppendorf tubes containing a cryoprotectant solution

(25% glycerol, 25% ethylene glycol in 0.1M phosphate buffer) and

kept at +4°C.

After several washes with 1× Tris-buffered saline (TBS), samples

were incubated in sodium citrate solution (NaCi, 10 mM, pH 6.0)

for 30 min at 80°C for antigen retrieval. When immunoperoxidase

staining used, sections were incubated in a 0.6% hydrogen peroxide

(H2O2) solution for 30 min to quench the endogenous peroxidase.

Sections were incubated in a blocking solution containing 5%

donkey serum (Jackson ImmunoResearch Laboratories, West

Grove, PA) and 0.1% Triton X-100 for 60 min at room

temperature to prevent the non-specific-binding of the antibodies.

Sections were then incubated with the following primary antibodies

at 4°C for 48 - 72 h: rat anti-BrdU (1:500, Serotec #OBT0030G),

goat or mouse anti-DCX (1:500; Santa Cruz Biotechnology #sc-

8066 or #sc-271390, respectively), rabbit anti-DCX (1:500; Abcam

#Ab207175). Sections were rinsed with TBS and incubated with the

appropriate secondary antibodies for 1 h (for immunoperoxidase

staining) or 2 h (for immunofluorescence) at room temperature.

The following secondary antibodies were used: Biotinylated donkey

anti-rat IgG (#712-066-150), biotinylated donkey anti-goat IgG

(#705-065-147) and biotinylated donkey anti-mouse IgG (#715-

065-151), (all from ImmunoResearch Laboratories; 1:1000), Alexa-

555 donkey anti-rabbit IgG (1:1,000; Molecular probes/Life

Technologies #A31572). Hoechst 33342 (Molecular Probes/Life

Technologies #H3570) was used as a nuclear counterstain when

fluorescence staining was used. To visualize the immunoperoxidase
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staining, sections were incubated for 1 h at room temperature in

avidin-biotin solution (1:100; Vectastain ABC Elite kit, Vector

Laboratories, Burlingame, CA). The color precipitate was

developed with a solution containing H2O2, nickel chloride, and

3-3´diaminobenzidine tetrahydrochloride (DAB; 1:100; Saveen

Werner AB, Malmö, Sweden). Sections were mounted into slides,

dehydrated with NeoClear (Merck #1.09843.5000, Germany) and

coverslipped using NeoMount mounting medium (Merck

#1.09016.0500, Germany). ProLong Gold anti-fade reagent

(Molecular probes/Life Technologies #P36930) was used as

mounting medium for the fluorescent staining.
Microscopy and cell quantification

The numbers of BrdU and DCX positive cells (BrdU+ and DCX

+, respectively) were quantified in two independent sets of sections

where the immunoreactivity of each marker was visualized using
Frontiers in Oncology 04
the immunoperoxidase and DAB staining method (described

above). Quantification was performed using a bright field

microscope (AxioImager M2; Carl Zeiss microscopy, Germany)

equipped with the StereoInvestigator software (MicroBrightField

Inc.). The analyses were performed in sections containing the dorsal

hippocampus spaced 150 mm apart (i.e. every sixth series). The area

of interest was traced using the 10× objective lens and quantification

was performed using the 20× objective lens. The BrdU+ cells were

only quantified in the subgranular zone (SGZ) where NSPCs and

their progenies reside. The DCX+ cells were quantified in both the

SGZ and the granule cell layer (GCL). For quantification of DCX+

cells, the light condenser below the slide holder was raised to its

maximum level, the light illumination was turned on to its

maximum, and the exposure time was adjusted in the

StereoInvestigator software to allow visualization of the cell

bodies of DCX+ cells. Cells were considered for quantification

only when the cell body was clearly defined. For both analyses,

the cell density was determined by dividing the total number of
A

B

DC

FIGURE 1

Treatment with a single i.p. injection of a high dose of memantine (Mem) rescues proliferation in the SGZ after IR. (A) Scheme for the experimental
design. (B) Representative images for BrdU+ cells in the hippocampus of the treatment groups. BrdU+ cells were only quantified in the subgranular
zone (SGZ; red dotted area) of the dentate gyrus where neural stem/progenitor cells (NSPCs) and their progenies reside. Scalebar = 100 mm. SH,
sham; Veh, Vehicle; Mem, Memantine; IR, irradiated; CA1, Cornu ammonis 1; ML, Molecular layer. (C) Quantification of BrdU+ cells in the SGZ. n = 4
per group. Data represent mean ± SEM. Two-way ANOVA with Tukey’s post hoc test for multiple comparisons. *P < 0.03, **P < 0.003. ns, not
significant. (D) Percentage of reduction of BrdU+ cells in the SGZ after IR compared to sham control treated with Veh. n = 4. Data represent mean ±
SEM. Unpaired t-test **P = 0.007.
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quantified cells by the volume of the tissue where the cells were

quantified. The volume of the tissue was determined by multiplying

the traced area by the tissue thickness and the series interval (i.e. the

area × 25 × 6).
Analysis of dendritic complexity of
young neurons

To analyze the arborization and dendritic complexity of the young

neurons after treatment with memantine, immunofluorescence

staining for DCX was performed (described above) and z-stack

images were acquired from two sections per animal containing the

dorsal hippocampus using a laser scanning confocal microscopy

(LSM700, Carl Zeiss, Germany). Images were processed for

reconstruction and filament tracing on Imaris software (Imaris V

9.6). Only individual cells that could be traced with sufficient
Frontiers in Oncology 05
certainty there was no overlap with processes from neighboring cells

were consider for analysis. Thus, this analysis was only performed in

the irradiated animals, as it was challenging to trace individual cells in

the sham control animals without overlap from neighboring cells

(Figures 3D; Supplementary Figure 3). A total of 64 and 95 DCX+

cells with radial processes were reconstructed from IR + vehicle or IR +

memantine animals, respectively, and analyzed for the number of

branching points, Sholl intersections and the area covered by the

dendric processes.
Protein extraction and ELISA

Ice-cold protein extraction buffer (50 mM Tris-HCl; Sigma

#T1503, 100 mM NaCl; Sigma, #S7653; 5 mM EDTA, Sigma #

E5134 and 1 mM EGTA, Sigma #E3889) supplemented with

protease inhibitor cocktail (Roche #11836170001) and
A

B

DC

FIGURE 2

Long-term oral treatment with a low dose of Mem does not impact proliferation in the SGZ. (A) Scheme for the experimental design. (B) Representative
images for BrdU+ cells in the hippocampus of the treatment groups. BrdU+ cells were only quantified in SGZ (red dotted area). Scalebar = 100 mm. (C)
Quantification of BrdU+ cells in the SGZ. SH + Veh n = 6; SH + Mem n = 6; IR + Veh n = 6; IR + Mem n = 5. Data represent mean ± SEM. Two-way
ANOVA with Tukey’s post hoc test for multiple comparisons. *P < 0.05, **P < 0.005. ns, not significant. (D) Percentage of reduction of BrdU+ cells in the
SGZ after IR compared to sham control treated with Veh. IR + Veh n = 6; IR + Mem n = 5. Data represent mean ± SEM. Unpaired t-test, ns, not significant.
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phosphatase inhibitors (Roche #04906837001) were added to the

frozen tissue and homogenized with a sonicator. Samples were then

centrifuged for 10 min in 4°C at 10,000×g and the supernatant was

transferred into 0.5 ml tubes and stored at -80°C. The total protein
Frontiers in Oncology 06
concentration was determined using the Pierce BCA protein assay

kit (Thermo Fischer Scientific #23225).

The levels of BDNF were measured using a BDNF ELISA kit

(Abcam #ab212166), and NGF was measured using mouse a NGF
A

B

D E F G

C

FIGURE 3

Long-term oral treatment with a low dose of Mem increases the number of DCX+ cells with radial processes and their dendritic complexity. (A)
Representative images for DCX+ cells in the dentate gyrus of the treatment groups. DCX+ cells were quantified in SGZ and the granule cell layer
(GCL) (red dotted area). Scalebar = 50 mm. (B) Quantification of total DCX+ cells. SH + Veh n = 6; SH + Mem n = 6; IR + Veh n = 6; IR + Mem
n = 5. Data represent mean ± SEM. Two-way ANOVA with Tukey’s post hoc test for multiple comparisons. ****P < 0.0001. ns = not significant.
(C) Quantification of DCX+ cells with radial processes projecting towards the ML. SH + Veh n = 6; SH + Mem n = 6; IR + Veh n = 6; IR + Mem
n = 5. Data represent mean ± SEM. Two-way ANOVA with Tukey’s post hoc test for multiple comparisons. ****P < 0.0001. (D) Representative
images of filament tracing performed on DCX+ cells with radial processes from IR animals treated with either Veh or Mem. In the lower panel,
cells with yellow tracing (yellow arrow) display no overlap with a nonboring cell that considered for analysis. By contrast, cells with the white tracing
(white arrows) display an overlap with a neighboring cell, which excluded from the analysis. Scalebar = 10 mm. (E-G) Analysis of dendritic complexity
of the DCX+ cells in the IR animals at 2 wks after treatment with Veh (n = 64 cells) or Mem (n = 95 cells). (E) Quantification of the branching points.
(F) Scholl analysis for the number of intersections in the dendritic tree. (G) Measurement of the area covered by the dendritic tree. Data represent
mean ± SEM. Unpaired t-test. ****P < 0.0001.
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ELISA kit (LifeSpan Biosciences #LS-F2522). The assays were

performed according to the manufacturer’s instructions.
Statistical analysis

The statistical analysis was performed using GraphPad Prism

software (GraphPad Software, Inc., San Diego, CA, USA). Data are

presented as mean ± SEM. Two-way ANOVA with Tukey´s post

hoc test for multiple comparisons was used when comparing

multiple treatment groups. Unpaired t-test was applied when

comparing two treatment groups. Statistical significance was

considered when P < 0.05.
Results

A single, high dose of memantine increases
proliferation in the SGZ in the intact brain
and partially ameliorates the IR-induced
reduction of proliferation

To investigate whether treatment with memantine restores

proliferation in the SGZ after IR, we first treated the mice with a

single i.p. injection of 50 mg/kg, a dose approximately 10-fold

higher than clinical therapeutic doses in humans (referred to as

non-clinically relevant henceforth), but previously reported to

increase NSPC proliferation in the intact adult brain (26, 33).

Sham controls (SH) and IR animals were treated with either

memantine or vehicle (0.9% sodium chloride) immediately after

whole-brain IR. Three days later, animals received two injections of

the thymidine analog BrdU to label dividing cells, including NSPCs

and their proliferating progenies in the SGZ (49, 50), given 4 h

apart, and the animals were sacrificed 1 day later (Figure 1A). In the

hippocampus, BrdU positive (BrdU+) cells were observed in the

SGZ, where NSPCs and their progenies reside, as well as in areas

outside the neurogenic zone, both in SH and IR animals, such as the

hilus, the molecular layer and the of the cornu ammonis 1 region

(CA1) (Figure 1B), where oligodendrocyte precursors or microglia

proliferate in the postnatal hippocampus (51, 52). As the purpose of

this study was to evaluate the effect of memantine on proliferation

of potential NSPCs and their progenies, we analyzed the number of

BrdU+ cells in the SGZ. In SH animals, memantine treatment

resulted in a 72% significant increase in the number of BrdU+ cells

in the SGZ compared to those receiving vehicle (Figures 1B, C). As

expected, IR significantly reduced the number of BrdU+ cells

compared to SH controls (Figures 1B, C), but when we compared

the percentage of the decreased proliferation in the SGZ between IR

animals receiving vehicle with those treated with memantine (both

compared with SH control receiving only vehicle as baseline

control), we found that treatment with memantine significantly

preserved 23% of proliferation in the SGZ (Figure 1D). This

indicates that memantine at a higher dose promotes proliferation

in the SGZ in the intact brain, and partially preserves their

proliferation after IR.
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Long-term treatment with a clinically
relevant dose of memantine does not alter
proliferation, neither in the intact brain, nor
after IR

Next, we wanted to investigate whether maintaining the treatment

with a clinically used dose of memantine would rescue proliferation in

the SGZ after IR. SH and IR animals first received a loading dose of 50

mg/kg of memantine or vehicle immediately after whole-brain IR,

followed by continuous treatment with 10 mg/kg/day of memantine

for 2 weeks supplied in the drinking water. This dose achieves a

steady-state plasma concentration of ~0.5 mM equivalent to clinical

therapeutic levels achieved when patients are treated with 20 mg/day

of memantine (35, 48), referred to as a clinically relevant dose

henceforth. Vehicle-treated animals were provided regular drinking

water (Figure 2A). BrdU labeling of proliferating cells was performed

during the last 3 days of the treatment period (Figure 2A). We found

that continuous treatment with a low dose of memantine did not

increase the number of BrdU+ cells in the SGZ, neither in SH, nor

after IR (Figures 2B, C), and did not rescue the decreased proliferation

in the SGZ after IR (Figure 2D). These results indicate that long-term

oral treatment with a clinically relevant dose of memantine did neither

impact proliferation in the SGZ in the intact brain, nor improved IR-

induced reduction of proliferation in the SGZ.
Long-term oral treatment with a clinically
relevant dose of memantine does not
increase the number of young neurons,
but enhances their arborization

We wanted to investigate whether maintaining the treatment

with a clinically relevant dose of memantine impacts the number of

the young neurons in the GCL. Animals were treated with

memantine for 2 weeks (Figure 2A), and the young neurons were

identified by expression of DCX (DCX+) cells (5). As expected, the

number of DCX+ cells significantly dropped after IR (67% in IR +

vehicle and 58% in IR + memantine, compared to SH + vehicle as

baseline control) (Figures 3A, B). Long-term oral treatment with a

low dose of memantine did not increase the number of DCX+ cells,

neither in SH, nor IR animals (Figures 3A, B; however, it

significantly increased the number of DCX+ cells with radial

processes projecting towards the molecular layer, both in SH

(29%) and IR (156%) animals (Figures 3A, C). To exclude that

this effect was because the loading dose (50 mg/kg) administered

initially after IR, we analyzed the total number of DCX+ cells and

DCX+ cells with radial processes 2 weeks after receiving only

a single i.p. injection of 50 mg/kg or vehicle, and we

found comparable numbers between the treatment groups

(Supplementary Figures 1A-C). Also, we did not observe an

increase in the total number of DCX+ cells or those with radial

processes when the animals received an intermittent treatment with

daily i.p. injections of 10 mg/kg of memantine for 2 weeks

(Supplementary Figures 2A-C). We next analyzed whether long-

term oral treatment with memantine impacts young neuron
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plasticity by performing filament tracing of the dendritic processes

of DCX+ cells in the IR animals, as it is feasible to trace individual

cells due to the low number of cells remaining after IR, thus

avoiding the overlap with the neighboring cells that often occurs

in the SH animals (Figure 3D; Supplementary Figure 3A). We found

that treatment with memantine significantly increased the number

of branching points (3-fold), the Sholl intersections (2-fold) and the

filament area coverage (2-fold) (Figures 3D-G). Collectively, these

data show that long-term oral administration of a clinically relevant

dose of memantine does not resuce the IR-induced loss of

hippocampal young neurons, but rather promotes their radial

projection towards the molecular layer and enhances the

arborization and the complexity of their dendric processes after IR.
Long-term oral treatment with memantine
reduces the levels of the NGF

Previous reports have shown that treatment with memantine

increases neurogenesis and enhances neural sprouting, and these

effects are in part mediated by increased production of the

neurotrophins BDNF and NGF (32, 36). Therefore, we wanted to

address if the increased dendritic complexity of the young neurons

observed after long-term oral treatment with memantine involves

these neurotrophins. Therefore, we measured the protein levels of

BDNF and NGF in brain homogenates using ELISA. We did not

detect any changes in the levels of BDNF, neither after IR, nor after

treatment with memantine (Figure 4A). Moreover, we found that IR

did not affect the levels of NGF, but unexpectedly treatment with

memantine resulted in a 40% reduction in its levels, both in SH and

IR animals (Figure 4B). These data show that the increased

dendritic complexity of the young neurons after treatment with

memantine is not associated with increased levels of BDNF or NGF,

at least at this timepoint of our treatment scheme.
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Discussion

We addressed for the first time the effects of treatment with

memantine on cell proliferation in the SGZ and the number of

young neurons after IR in the juvenile brain. We show that a high

dose of memantine increases proliferation in the SGZ in the intact

brain and this partially prevents the loss of proliferation after IR.

Long-term oral treatment with a clinically relevant dose of

memantine yielding steady-state plasma levels of ~0.5mM (35),

equivalent to what is reached with daily treatment with 20 mg/

day in patients (48),, does not enhance proliferation in the SGZ, but

increases the arborization and the dendritic complexity of the

young neurons in the dentate gyrus.

Memantine is used clinically to treat patients with dementia

and Alzheimer´s disease (30, 31). Animal models revealed

that memantine increases neural plasticity and hippocampal

neurogenesis in various pathological conditions known to

negatively impact neurogenesis, such as and Alzheimer’s disease

and depression, and these effects correlate with improved cognition

performance (32–34). In the context of the irradiated brain, as in

the treatment of brain tumors, memantine has been tested clinically,

and moderately ameliorated the cognitive deficits in cancer

survivors (37). In animal models of IR, memantine increased

neural plasticity, as evidenced by increased neurite spine densities,

and prevented the deterioration of long-term potentiation

deterioration in the hippocampus, given that treatment was

started before IR (39, 40). Mounting evidence from animal

models suggests that cognitive decline resulting from IR is, at

least in part, due to loss of hippocampal neurogenesis (15, 16, 19,

20). Previous interventions aimed to increase proliferation and

hippocampal neurogenesis, such as treatment with lithium or

physical exercise, succeeded to improve cognition in IR animals

(46, 53–56). Here, when we tested the effects of memantine, as a

potent enhancer of the proliferation in the SGZ, we observed that
A B

FIGURE 4

Long-term oral treatment with a low dose of Mem decreases the levels of NGF and does not affect BDNF. (A) Protein levels of BDNF in the different
treatment groups measured by ELISA. SH + Veh n = 6; SH + Mem n = 6; IR + Veh n = 6; IR + Mem n = 5. Data represent mean ± SEM. Two-way
ANOVA with Tukey’s post hoc test for multiple comparisons. ns = not significant. (B) Protein levels of NGF in the different treatment groups. SH +
Veh n = 6; SH + Mem n = 6; IR + Veh n = 6; IR + Mem n = 5. Data represent mean ± SEM. Two-way ANOVA with Tukey’s post hoc test for multiple
comparisons. *P < 0.03. ns, not significant.
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only a relatively high dose of 50 mg/kg, but not a clinically relevant

dose of 10 mg/kg, enhanced proliferation in the intact juvenile brain

and ameliorated the degree of proliferation loss in the SGZ caused

by IR. However, high and low doses of memantine have been shown

to correlate with negative and positive neurocognitive outcomes,

respectively (57) suggesting that the enhanced cognitive

performance attained after treatment with a low dose of

memantine is achieved independently of the effect on

proliferation in the SGZ.

IR not only reduces the generation of granule neurons (15, 19, 58,

59), but also worsens the integration of the new neurons, which could

partially be rescued by physical exercise, leading to an improved

behavioral pattern in rodents after IR (46). Here, we show that long-

term treatment with a clinically used dose of memantine drastically

increases the number of the young neurons with radial process and

boosts the complexity of their dendrites. Yet, whether the observed

enhanced dendritic complexity of the young neurons after treatment

with memantine would promote their integration into the

hippocampal circuitry remains to be functionally tested, but it is

tempting to speculate this may contribute to improve cognition, as

previously demonstrated in animal studies upon treatment with

lower doses of memantine (29, 57).

Contrary to our findings in the juvenile brain, a recent study

performed in adult mice (41), treatment with memantine was

shown to restore the production of new hippocampal neurons

after IR. Animal age is known to regulate the levels of

hippocampal neurogenesis and influence the severity of IR-

induced brain injury (42–44, 60). In addition to age explaining

the different outcomes obtained after IR and memantine treatment,

another important factor to consider is the brain irradiation

paradigm applied. In the study by Hokama and colleagues (41),

mice received a total dose of 10 Gy given in five fractions, 2 Gy per

fraction. In our study, mice received a single fraction of 6 Gy. Using

the linear quadratic model and an a/b ratio of 3 for late effects in

normal brain tissue, the overall biological effective dose and

sensitivity of NSPCs in the hippocampus depend on the number

of fractions and the dose given per fraction (45, 61).

Several mechanisms are involved in the integration of newborn

neurons in the hippocampal circuitry and the promotion of neural

plasticity and cognition. Among these are signaling pathways

coupled to neurotrophic factors, such as BDNF and NGF (62,

63). Here we did not detect differences in BDNF levels, neither

after treatment with memantine, as previously described (28, 32),

nor after IR. However, to our surprise, we observed that the levels of

NGF were significantly reduced. Despite numerous reports

associating increased levels of NGF with greater neuronal

sprouting (64–66), modulation of NGF by memantine is as of yet

controversial (36, 67), and generation of solid data in this regard

remain necessary, particularly to elucidate the surprising correlation

between decreased levels of NGF and increased dendritic

complexity of young neurons. Although there is a possibility that

our treatment and analysis scheme in this study might have not

captured the optimal time course at which these trophic factors

exert their effects on the young neurons, the molecular mechanisms

underlying memantine-induced enhanced neural plasticity may not

be limited to BDNF and NGF. Hence generation of transcriptomic
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or proteomic data over a different time courses after treatment may

robustly aid in discovering novel targeted pathways (68).

In summary, we show that long-term oral treatment with a

clinically used dose of memantine administered after subjecting the

mice to cranial irradiation did not promote proliferation in the SGZ,

but rather enhanced the arborization of the dendritic processes of

the young neurons. Increased dendritic complexity of young

neurons may be one of the mechanisms behind the moderate

functional improvement observed in adult cancer survivors

treated with memantine (37). A follow up study considering

pretreating the mice with memantine before ensuing cranial

irradiation is warranted, as it would better represent what is

applied in clinical studies (ClinicalTrials.gov; identifiers:

NCT03194906 and CT04217694), to evaluate whether this

approach would confirm the findings of this study or yield

different outcomes. Moreover, treatment paradigms aiming for

restoration of hippocampal neurogenesis after IR by long-term

treatment with a low dosage of memantine could be combined

with other factors known to rescue proliferation of NSPCs and their

progenies in the SGZ after IR, such as physical activity (53), lithium

(56, 69) or metformin (47). Notably, memantine and lithium are

currently approved drugs for treating CNS disorders (30, 31, 70).
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SUPPLEMENTARY FIGURE 1

Single i.p. injection of a high dose of Mem does not impact on the number of
DCX+ cells with radial processes at 2 weeks post-treatment. (A) Scheme for

the experimental design. wk = week. (B) Quantification of total DCX+ cells in

the subgranular zone (SGZ) and the granule cell layer in the dentate gyrus of
the treatment groups. n = 3 per group. Data represent mean ± SEM. Two-way

ANOVA with Tukey’s post hoc test for multiple comparisons. ****P < 0.0001.
ns = not significant. (C) Quantification of DCX+ cells with radial processes.

n = 3 per group. Data represent mean ± SEM. Two-way ANOVA with Tukey’s
post hoc test for multiple comparisons. ****P < 0.0001. ns = not significant.

SUPPLEMENTARY FIGURE 2

Intermittent administration of a low does not no impact on the number of

DCX+ cells with radial processes at 2 weeks post-treatment. (A) Scheme for
the experimental design. wk = week. (B) Quantification of total DCX+ cells in

the SGZ and the GCL in the dentate gyrus of the treatment groups. SH + Veh
n = 4; SH +Memn= 6; IR + Veh n = 3; IR +Memn= 4. Data represent mean ±

SEM. Two-way ANOVA with Tukey’s post hoc test for multiple comparisons.

****P <0.0001. ns = not significant. (C) Quantification of DCX+ cells with
radial processes. n = 3-6 per treatment. Two-way ANOVA with Tukey’s post

hoc test for multiple comparisons. *P < 0.03, **P < 0.005. ns = not significant.

SUPPLEMENTARY FIGURE 3

Filament tracing of DCX+ cells in sham controls animals. (A) Representative
immunofluorescent images show filament tracing of reconstructed DCX+

cells in the GCL of SH animals treated with either Veh or Mem. Accurate
tracing of individual cells without an overlap with neighboring cells was

challenging as demonstrated by the yellow and white tracing in each
treatment group. Scalebar = 30 mm.
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