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Genetic testing of the APC gene by sequencing analysis and MLPA is available

across commercial laboratories for the definitive genetic diagnosis of familial

adenomatous polyposis (FAP). However, some genetic alterations are difficult to

detect using conventional analyses. Here, we report a case of a complex

genomic APC-TP63 rearrangement, which was identified in a patient with FAP

by a series of genomic analyses, including multigene panel testing, chromosomal

analyses, and long-read sequencing. A woman in her thirties was diagnosed with

FAP due to multiple polyps in her colon and underwent total colectomy.

Subsequent examination revealed fundic gland polyposis. No family history

suggesting FAP was noted except for a first-degree relative with desmoid

fibromatosis. The conventional APC gene testing was performed by her former

doctor, but no pathogenic variant was detected, except for 2 variants of

unknown significance. The patient was referred to our hospital for further

genetic analysis. After obtaining informed consent in genetic counseling, we

conducted a multigene panel analysis. As insertion of a part of the TP63

sequence was detected within exon16 of APC, further analyses, including

chromosomal analysis and long-read sequencing, were performed and a

complex translocation between chromosomes 3 and 5 containing several

breakpoints in TP63 and APC was identified. No phenotype associated with

TP63 pathogenic variants, such as split-hand/foot malformation (SHFM) or

ectrodactyly, ectodermal dysplasia, or cleft lip/palate syndrome (EEC) was
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1205847/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1205847/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1205847/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1205847/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1205847/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1205847/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1205847&domain=pdf&date_stamp=2023-08-03
mailto:mahirata@ncc.go.jp
https://doi.org/10.3389/fonc.2023.1205847
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1205847
https://www.frontiersin.org/journals/oncology


Oda et al. 10.3389/fonc.2023.1205847

Frontiers in Oncology
identified in the patient or her relatives. Multimodal genomic analyses should be

considered in cases where no pathogenic germline variants are detected by

conventional genetic testing despite an evident medical or family history of

hereditary cancer syndromes.
KEYWORDS

familial adenomatous polyposis, APC regulator of WNT signaling pathway, tumor
protein 63, multi-gene panel testing, adaptive sampling
Introduction

Familial adenomatous polyposis (FAP, OMIM: #175100) is a

rare colorectal cancer predisposition syndrome that is characterized

by the occurrence of multiple adenomatous colonic polyps. This

condition is also associated with various clinical features, such as

gastric fundic gland polyposis, desmoid fibromatosis, adenoma of

the ampulla of Vater, hepatoblastoma, and thyroid cancer (1). As

FAP is caused by germline pathogenic variants of the APC regulator

of the WNT signaling pathway (APC) gene, genotyping of the APC

gene is often essential for determining the clinical management of

patients, based on the reported genotype-phenotype correlations

(1–6). Currently, APC molecular genetic testing, including coding

sequence analysis and gene-targeted deletion or duplication

analysis, is available across commercial laboratories in Japan.

However, such conventional analyses occasionally fail to detect

pathogenic variants in a subset of patients with an evident

phenotype and family history of FAP (7–15). This is partly

because conventional analytic methods hardly detect some types

of genomic alterations, such as large-scale or complex structural

variants or variants located in noncoding regions, including deep

introns, and insertions or deletions of repetitive elements. Long-

read sequencing has recently attracted attention as a novel analytic

method that compensates for such weaknesses of conventional

sequencing (16).

This study reports a case with a complexAPC-TP63 rearrangement

in a patient with FAP that was not identified by conventional genetic

analysis but by a series of genetic analyses including multigene panel

testing, chromosomal analysis, and long-read sequencing.
Case presentation

The patient was a woman in her thirties. Because of a positive

fecal occult blood test result at an annual colorectal screening test, she

consulted another hospital and was diagnosed with FAP due to

multiple polyps (approximately 300 adenomas) in her colon. She

underwent total colectomy and subsequent gastrointestinal

examination, which revealed fundic gland polyposis. No other overt

phenotypes or anomalies were identified. One of her first-degree

relatives, her child had also exhibited desmoid fibromatosis, which is

a rare disease associated with FAP, in his/her pre-teen years, while he/

she did not have a colonoscopy because he/she was not yet at high
02
risk of polyposis. No associated disease or phenotype was identified in

other relatives including the proband’s parents (Supplementary Table

S1). APC gene testing, including targeted next-generation sequencing

and MLPA was submitted to a commercial laboratory by her former

attending doctor, but with the exception of 2 variants of unknown

significance, no pathogenic variant was detected in APC. The patient

was then referred to our hospital for further genetic analysis. After

obtaining informed consent for comprehensive genomic analysis of

cancer predisposition syndromes, we first conducted a multigene

panel (MGP) analysis.

For MGP testing, we used SureSelect Custom DNA Target

Enrichment Probes (Agilent, Santa Clara, CA), which were

originally designed to target 147 cancer-predisposing genes,

including APC and other genes associated with colorectal cancer

or polyposis. The target regions cover exons, intronic sequences at

the exon-intron junctions, promoters, and some other sequences in

the introns of high-penetrance genes. Subsequently, sequencing and

data analysis was performed using NextSeq (Illumina, San Diego,

CA) and csDAI ver3.0 (Mizuho Res. & Technol., Tokyo, Japan).

As our analytic pipeline detected insertion of a part of the TP63

sequence within exon16 of the APC gene, that is, APC :

NM_000038 .6 : exon16 : c . 5433_5434 insACAAAGGTTC

TACTGTTTGCAAAGCGTTTTGCATTCTTTGGGTAAGA

GGTGTTGGGCTTGTTATG(p.K1812Tfs*15), we reviewed the

sequence read by IGV. Based on the soft-clipped sequences and

gaps in read depth, we presumed the occurrence of 3 breakpoints in

APC and 1 in TP63 (Figure 1). Following a tentative definition of

DNA fragments APC-1 to -4 and TP63-1 and -2 based on the IGV

review, we presumed the occurrence of a rearrangement between

APC and TP63 and designed PCR primers for Sanger sequencing

(Figure 1 and Supplementary Table S2). Sanger sequencing was

conducted using the BigDye Terminator v3.1 or v1.1 Cycle

Sequencing Kit with an ABI PRISM 3130 Genetic Analyzer

(Applied Biosystems, Foster City, CA). The SEQUENCHER

v.5.4.6 (GENE CODES Corp., Ann Arbor, MI) was used to

analyze and visualize the electropherograms. Sanger sequencing

successfully validated each breakpoint and revealed a complex

interchromosomal rearrangement between APC and TP63

(Figures 2A–E and Supplementary Figure S1). We detected these

breakpoint sequences in the proband and in a first-degree relative

with desmoid fibromatosis. In addition, G-band and spectral

karyotyping (SKY) at a commercial laboratory identified

derivative chromosomes 3 (der[3]) and 5 (der[5]), exhibiting
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presumed interchromosomal rearrangements by MGP testing, as

well as a novel insertion of 5q15-22 into 3q12 in der[3] and a

rearrangement between 5q15 and 3q28 in der[5] (Figures 2F, G and

Supplementary Figure S2), which were not identified in MGP

testing and subsequent Sanger sequencing. To determine the loci

of the other breakpoints detected by chromosomal analyses and

validate the thorough rearrangements in chromosomes 3 and 5, we

conducted long-read sequencing with adaptive sampling. For long-

read sequencing, a DNA library was prepared using the SQK-

LSK110 DNA ligation kit (Oxford Nanopore Technologies, Oxford,

UK) and NEBNext (E7180S, New England Biolabos, Ipswich, MA)

after shearing genomic DNA into approximately 20 kb fragment by

G-TUBE (Covaris, Wobum, MA). The DNA library was subjected

to GridION sequencing (Oxford Nanopore Technologies) with an

adaptive sampling technique using R9.4.1 flow-cells (FLO-

MIN106D, Oxford Nanopore Technologies), following the

manufacturer’s protocol (16). Target regions for adaptive

sampling were designed to cover the putative breakpoints of

chromosomes 3 and 5 (Supplementary Table S3). Basecalling and

fastq conversion were performed by MinKNOW ver. 22.10.7. We

used Minimap2 for the alignment and generation of bam files (17)

(mean coverage for the target regions: 25.5x), while Nanomonsv

was employed for the detection of structural variants (18).

We also reviewed the genomic data using the integrative genomic

viewer (IGV) ver. 2.13.1, with BAM files generated from the FASTQ files

of MGP and long-read sequencing. Finally, long-read sequencing

detected the precise breakpoints in chromosomes 3 and 5: insertion of
Frontiers in Oncology 03
chr5:96,524,803-109,912,875 (5q15-21) between chr3:99,054,892 and

chr3:99,054,911 (3q12) in der[3], and deletion of chr5:96,524,798-

109,912,872 (5q15-21) in der[5], which were identified as novel

structural variants (Figure 3 and Supplementary Table S4), in addition

to the proven breakpoints in APC and TP63 (Supplementary Figure S3).

The APC structural variant was assumed to cause protein truncation of

APC (p.Ser1340Ter) and to be a likely pathogenic variant. We identified

another structural variant: an insertion of a simple-repeat region

(Supplementary Figure S4, Supplementary Table S4), located in an

intronic region of the Endoplasmic Reticulum Aminopeptidase 1

(ERAP1) gene. Finally, we present a schematic of the whole landscape

of the structural variants of chromosomes 3 and 5 in Figure 4 and

Supplementary Table S4.
Discussion

This s tudy ident ified complex interchromosomal

rearrangements between chromosomes 3 and 5 and their precise

breakpoints using a series of integrated genomic analyses, including

G-banding, Sanger sequencing, MGP analysis, and long-read

sequencing (Figure 4).

Conventional genetic testing for APC includes sequence

analysis that targets coding and splicing regions, and gene-

targeted deletion/duplication analyses such as MLPA. However,

such analyses occasionally fail to detect certain types of genetic

variants. Previous genetic testing of APC has failed to identify
B

A

FIGURE 1

Presumed breakpoints in APC (A) and TP63 (B) by integrative genomics viewer (IGV). Top box of IGV indicates chromosomal positions; middle,
mapped read depth; bottom, mapped read sequences. Vertical red arrows indicate 3 (BP1-3) and 1 (BP4) breakpoints in APC and TP63, respectively,
which were presumed by soft-clipped reads and read-depth gaps. Horizontal grey arrows indicate the positions and directions of primers for Sanger
sequencing (Supplementary Table S2).
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pathogenic variants in 18–50% of patients with FAP (7–15). MGP

analysis does not identify the whole landscape of genetic variants,

but we included some of the deep-intronic regions of APC and other

high-penetrant genes in the design of our MGP to aid copy number

and other structural analyses in the computational analytical

pipelines, which suggested chromosomal rearrangements in the

patient. This finding prompted us to conduct further chromosomal

analyses, such as G-banding and SKY, which detected

interchromosomal rearrangements between chromosomes 3 and 5
Frontiers in Oncology 04
with several breakpoints. We finally performed long-read

sequencing using an adaptive sampling technique targeting

putative breakpoint regions and identified each precise breakpoint

on chromosomes 3 and 5 (Figure 4 and Supplementary Table S4).

Long-read sequencing analysis is useful for the detection of

complex chromosomal structural alterations. Recently, an adaptive

sampling technique has been developed for efficient analysis of

target regions of interest (16). In fact, detection of novel pathogenic

variants using this novel analysis technique has been reported in
B

C

D

E

F G

A

FIGURE 2

Sanger sequencing around presumed breakpoints in APC and TP63 and G-banding of chromosomes 3 and 5. (A, B) Electrophoresis of amplicons of
target regions for Sanger sequencing. Arrow heads indicate the target size (A: 155bp, B: 474bp) of PCR products. (C–E) Sequencing chromatograms
around presumed breakpoints and schematics of rearranged genomic fragments. Fragment labels correspond to those shown in Figures 1A and B.
(F, G) Right panels show G-banding images of paired chromosomes 3 (F) and 5 (G). Left panels show G-banding images of paired chromosomes 3
(F) and 5 (G). Right panels show chromosome schematics based on G-banding and spectral karyotyping (SKY) analyses.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1205847
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Oda et al. 10.3389/fonc.2023.1205847
various genetic diseases (19–21). To define the target regions, prior

examinations using other genomic analyses, including MGP and

chromosomal analysis, are essential, indicating the importance of

integrated and cascade genomic analysis.

Importantly, a genotype-phenotype correlation of the APC gene

has been shown in FAP. Pathogenic variants around the identified

breakpoint, such as codon 1,340 in exon 16 of APC were located in

the region, which has been associated with profuse FAP: codons

1,250-1,464 (1), while the occurrence of desmoid tumors has been
Frontiers in Oncology 05
associated with pathogenic variants in codons 400–1493 (4, 22).

More than 100 but not profuse colorectal adenomatous polyps were

found in the proband, while desmoid tumors were detected in her

first relative, who also harbored the APC variant. As all these

findings were not compatible with the genotype-phenotype

correlation, more evidence regarding the genotype-phenotype

correlation of APC rearrangements and its underlying mechanism

needs to be accumulated to discuss the possibility of disease onset

and suggest optimal surveillance.
B

C

A

FIGURE 3

Breakpoints identified by long-read sequencing. IGV shows mapped reads with soft-clipped sequences around breakpoints on 3q12 (A), 5q15 (B), and
5q21.3 (C). identified by long-read sequencing. Fragments were tentatively defined, based on the breakpoints. Grey arrow heads indicate soft-clipped
alternative reads mapped in IGV. The soft-clipped alternative sequences were confirmed by BLAT and schematically displayed by fragment arrows.
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Chromosomal rearrangements were also detected in the TP63

gene. Because the breakpoint in TP63 was in the common position

of all transcript variants of TP63 (23), the variant was presumed to

be deleterious to the function of TP63. Pathogenic variants of

TP63 are known to be associated with split-hand/foot

malformation (SHFM, OMIM: #605289) or ectrodactyly,

ectodermal dysplasia, and cleft lip/palate syndrome (EEC,

OMIM: #604292) (24). Moreover, homozygous deletion of

Trp63 in mice causes aplasia of limb buds (25). The proband

and her relatives had no obvious phenotype associated with TP63

pathogenic variants. Previous studies have shown that TP63

missense variants might have a dominant negative effect on the

function of TP63 or frameshift variants might act as pathogenic

affecting TP63-alpha isoforms (26–30). The variant identified in

this study was detected in a heterozygous state, presumably

inducing nonsense-mediated mRNA decay of all TP63 isoforms,

which might not cause SHFM or EEC. However, as TP63 is known

to have a redundant function to that of TP53 (31), pathogenic

variants of which cause the Li-Fraumeni syndrome, we may need

to consider a possibly higher risk of cancer and carefully follow up

the patients with this variant.

In conclusion, multimodal genomic analyses including long read

sequencing should be considered in cases where no pathogenic

germline variants were detected by conventional genetic testing

despite an evident medical or family history of hereditary cancer

syndrome. To trigger such a cascade genomic analysis, MGP, which
Frontiers in Oncology 06
is increasingly used as a front line in genetic testing, should be equipped

with a bait design and analytical pipelines to suggest structural variants.
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