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Germline and somatic drivers in
inherited hematologic
malignancies

Julian Zoller, Despina Trajanova and Simone Feurstein*

Department of Internal Medicine, Section of Hematology, Oncology & Rheumatology, University
Hospital Heidelberg, Heidelberg, Germany
Inherited hematologic malignancies are linked to a heterogenous group of

genes, knowledge of which is rapidly expanding using panel-based next-

generation sequencing (NGS) or whole-exome/whole-genome sequencing.

Importantly, the penetrance for these syndromes is incomplete, and disease

development, progression or transformation has critical clinical implications.

With the earlier detection of healthy carriers and sequential monitoring of these

patients, clonal hematopoiesis and somatic driver variants become significant

factors in determining disease transformation/progression and timing of

(preemptive) hematopoietic stem cell transplant in these patients. In this

review, we shed light on the detection of probable germline predisposition

alleles based on diagnostic/prognostic ‘somatic’ NGS panels. A multi-tier

approach including variant allele frequency, bi-allelic inactivation, persistence

of a variant upon clinical remission and mutational burden can indicate variants

with high pre-test probability. We also discuss the shared underlying biology and

frequency of germline and somatic variants affecting the same gene, specifically

focusing on variants in DDX41, ETV6, GATA2 and RUNX1. Germline variants in

these genes are associated with a (specific) pattern or over-/underrepresentation

of somatic molecular or cytogenetic alterations that may help identify the

underlying germline syndrome and predict the course of disease in these

individuals. This review is based on the current knowledge about somatic

drivers in these four syndromes by integrating data from all published patients,

thereby providing clinicians with valuable and concise information.

KEYWORDS
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Introduction

In 1999, Song et al. characterized the first inherited leukemia syndrome by recognizing

that germline RUNX1 variants lead to lifelong thrombocytopenia and an increased risk of

myelodysplastic syndrome (MDS) and acute leukemia (AL) (1). Subsequently, many more

genes have been associated with a germline predisposition to develop hematologic

malignancies, which has led to the inclusion of the entity ‘myeloid neoplasms with
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germline predisposition’ into the revised 2016 World Health

Classification (WHO) (2). In 2022, the WHO update

incorporated additional newly associated genes and extended the

phenotype of some of the syndromes to also include a

predisposition to lymphoid malignancies (3). Generally, these

syndromes are distinguished into three different categories (1):

myeloid neoplasms without a preexisting disorder or organ

dysfunction (e.g. CEBPA, DDX41), (2) myeloid neoplasms with a

preexisting platelet disorder (ANKRD26, ETV6, RUNX1) and (3)

myeloid neoplasms with potential other organ dysfunctions. The

latter category covers a diverse spectrum of syndromes like bone

marrow failure syndromes, telomere biology disorders and

predisposition syndromes related to pathogenic variants in

GATA2, SAMD9 and SAMD9L. Likewise, the International

Consensus Classification of myeloid neoplasms and acute

leukemias in 2022 also encompassed hematologic neoplasms with

germline predisposition in a similar format (4). Germline

predisposition to hematologic malignancies has also been

integrated in clinical guidelines such as the European

LeukemiaNet and the National Comprehensive Cancer Network

(5, 6). The most frequent germline syndromes are caused by

pathogenic variants in transcription factors like CEBPA, ETV6,

GATA2, and RUNX1, in the RNA helicase DDX41, and a variety of

genes associated with telomere biology disorders and inherited bone

marrow failure (7).

With the advent of diagnostic/prognostic next-generation

sequencing (NGS) panels designed for somatic variants, germline

variants are invariably detected as well, and recognition of these

germline syndromes has increased. Since sequencing is performed

on DNA from bone marrow/peripheral blood representing the

affected tissue, the presence of a variant at a germline variant

allele frequency (VAF) alone is not sufficient to presume germline

origin. A multi-tier approach including confirmation in true

germline material is usually required and specific criteria may

indicate a higher likelihood for the presence of a germline variant.

Additional cytogenetic and molecular alterations are requisite

for the transformation of a clone with a pathogenic germline variant

to MDS or AL. These alterations may include (1): Additional well-

known driver variants such as loss-of-function (LOF) variants in

tumor suppressors, gain-of-function variants in (proto-) oncogenes

and variants in genes involved in DNA repair, chromatin

modification, transcriptional activation, DNA methylation and

numerous others. Patients with congenital neutropenia represent

an example for a strong association of somatic variants truncating

the cytoplasmic domain of CSF3R with an impending leukemic

transformation in variant carriers (8); (2) Contributory cytogenetic

alterations that are well-known to promote disease. For instance,

the association of germline SAMD9/SAMD9L variants with

monosomy 7 is significant and essential for leukemogenesis in

most patients (9, 10); (3) Bi-allelic inactivation with a second

somatic hit on the other allele has been frequently observed in

DDX41, CEBPA, RUNX1, TP53, and to a much lesser extent, in

GATA2 and is consistent with initiation or progression of disease

(11–15). Additional factors such as an increase of the clonal VAF or

an increase in somatic mutational burden also affect transformation

or progression of disease (16–19).
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Identifying the factors pointing to disease progression or

transformation is critical for the follow-up of patients with

germline syndromes and may affect the timing of treatment

initiation, type of treatment and (preemptive) hematopoietic stem

cell transplantation (HSCT). Current recommendations for patients

with germline syndromes consist of a baseline bone marrow biopsy

and additional bone marrow biopsies upon significant and

persistent changes in blood counts (20). The timing and intervals

of bone marrow biopsies and cytogenetic/molecular (re-) analyses

may be tailored based on the individual risk of clonal alterations in

these patients.

In this review, we discuss how germline variants can be

identified using NGS-based panels primarily designed for somatic

variants. We also assess somatic drivers in patients with germline

variants in DDX41, ETV6, GATA2 and RUNX1 by reviewing the

published evidence and analyzing the type and pattern of both

germline and somatic variants in these genes and their role in

malignant transformation.
Germline variants detected upon
diagnostic/prognostic sequencing of
tumor tissue

The current standard of diagnosis and risk-stratification for

myeloid and lymphoid malignancies are NGS panels based on a

variety of genes known to be frequently mutated in the malignant

clone. Risk-stratification elicited from molecular genetics are

implemented in numerous risk scores, among others: the

European LeukemiaNet risk classification for acute myeloid

leukemia (AML) (5) and the Molecular International Prognostic

Scoring System (IPSS-M) for MDS (16). These bear significant

weight in estimating the patient’s individual risk and prognosis.

Although we generally use the term ‘somatic NGS-panel’, these

panels can also detect germline variants. Several studies have

reported that NGS-based prognostic panels performed at the time

of diagnosis frequently detect germline variants (14, 15, 21–32). The

spectrum of germline mutated genes depends on the genes covered

by the NGS panel and whether the panel has been designed to

include copy number variants (CNVs), which also represent

common predisposition alleles (33, 34). The following criteria

indicate a higher likelihood of an underlying germline syndrome:

(1) VAF — a heterozygous variant would be expected at/near

heterozygosity (VAF 40-60%) and a recessive variant at/near

homozygosity (VAF 90-100%) or in the compound heterozygous

state. Of note, the VAF threshold may differ depending on the panel

used so that the afore mentioned thresholds do not exclude the

presence of a germline variant outside of this range (Table 1). (2)

Presence of bi-allelic inactivation — specifically, tumor suppressors

are often inactivated by a second hit on the trans allele, a

phenomenon that has been well-described for CEBPA, DDX41,

RUNX1, and TP53 among others (Table 1) (11, 12, 14, 15, 37). (3)

The persistence of a pathogenic/likely pathogenic variant at a

germline VAF over the course of disease when remission is

achieved is another clue and can be utilized when longitudinal
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sequencing data are present (Table 1). However, clonal

hematopoiesis of unknown potential (CHIP) can also explain the

persistence of a variant in remission/after therapy, when these

variants were not part of the malignant clone. (4) Some variants

are only reported in germline, for example LOF variants in DDX41

are usually considered of germline origin (Table 1). The association

of the mutational burden, defined as the total number of somatic

variants in a patient, as independent prognostic variable with

worsening outcomes has been well-established in MDS (16–18).

The recently implicated IPSS-M concludes that the additional

number of somatic variants in so called residual genes, that were

not individually weighted, does lead to an additive increase in risk

from 0 to 2, followed by saturation of worsening outcomes when 3

or more variants are present (16). A higher than usual mutational

burden has been linked to a germline syndrome affecting the

mismatch-specific DNA N-glycosylase MBD4. MBD4 acts as

safeguard against damage from 5mC deamination and its

deficiency results in increased risk to develop CHIP/AML,

colorectal polyposis and uveal melanoma with significantly

increased mutational burden compared to sporadic cases (35, 36).

In AML specifically, MBD4-deficiency displays a 33-fold higher

mutational burden with a unique mutational signature, where 95%

of variants are CG>TG substitutions (Table 1) (35). Only few

patients with autosomal recessive MBD4-deficiency and evidence

of CHIP/AML have been described to date. In contrast to this rather

distinct germline syndrome, most other germline syndromes are

associated with a mutational burden similar to patients with

sporadic disease affecting the same gene. Therefore higher, or

lower mutational burden is not per se indicative of a

germline syndrome.

Importantly, performing panel-based NGS designed for somatic

variants cannot be used to rule out an underlying germline

syndrome. Non-coding regions such as the 5’UTR in ANKRD26,

containing all known germline predisposition alleles for this gene or

the deep intronic enhancer in GATA2 are not covered by a panel

directed towards somatic variants. The same is true for CNVs,

accounting for 10-15% of all predisposition alleles as mentioned

earlier (33, 34), that are usually not detected either. Somatic and

germline variant interpretation is based on a combination of

different criteria (38, 39) and mechanisms of disease, location of

variants and functional assessment may vary resulting in different

evaluations of pathogenicity. Table 1 summarizes the criteria

suggesting a germline variant related to sequencing data and the

genes with higher pre-test probability of variants confirmed

in germline.
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Leukemogenesis in DDX41 germline-
mutated patients relies on bi-allelic
inactivation of the trans DDX41 allele

DDX41 is a multifunctional DEAD box helicase that operates as

a DNA sensor, initiating an innate immune response, as a tumor

suppressor through regulation of pre-mRNA splicing and RNA

processing and as a modulator of gene expression of numerous

oncogenes, tumor suppressor genes and genes involved in immune

response and antigen presentation (40–42). DDX41 germline

variants cause the most frequent hematopoietic germline

syndrome yet known (12, 43). Based on published studies of

DDX41 carriers, approximately 1.5% to 3.8% of unselected MDS/

AML patients carry a germline DDX41 variant (12, 43, 44),

indicating that variants in this gene carry a high pre-test

probability for a germline origin. Presumably somatic DDX41

variants occur in approximately 2.4% of all MDS patients (16)

and less than 1% of AML patients (45–47), strengthening the

assumption that the majority of identified DDX41 variants may

indeed be germline.

Based on a compilation of all published DDX41 germline variants

(12, 21, 22, 25, 33, 43, 44, 48–67), LOF variants, including nonsense,

frameshift and canonical splice variants in DDX41 amass to the

majority of germline LOF variants (65.4%, n=641, Figure 1A).

Almost all LOF variants (98,1%, n=629) occur early in the gene and

are predicted or confirmed to undergo nonsense-mediated decay

(NMD) (Figure 1A) with no functional protein product. Based on

population data (https://gnomad.broadinstitute.org/) two founder

variants, p.? (also known as p.M1I or p.M1?, NM_016222.4) and

p.D140fs are common in the European (Non-Finnish) population at a

VAF of 0.000156 and 0.000185, respectively, and p.A500fs is a founder

variant most often detected in the East Asian subpopulation with a

slightly lower VAF of 0.000109. Together, these three founder variants

account for 39.9% (n=391) of all described germline patients so far

(Figure 1A). Other variants like nonsynonymous substitutions (n=280,

28.6%) and indels (n=51, 5.2%) are also well-known predisposition

alleles (Figure 1A). Few patients have been reported with non-

canonical splice variants and one CNV has been described,

encompassing exons 12 to 17 (67).

Germline DDX41 variants predispose to myeloid malignancies,

most often MDS and AML and to a lesser extent chronic

myelomonocytic leukemia (CMML) or myeloproliferative

neoplasms (MPNs) (Figure 1B). Lymphoid malignancies such as

chronic lymphatic leukemia (65), large granular lymphocytic

leukemia (62), lymphoplasmacytic lymphoma (65), plasma cell
TABLE 1 Germline variants identified in somatic diagnostic panels for hematologic malignancies.

Indication for an underlying germline variant

(1) AD: VAF (het variant): 40-60%; AR: VAF (hom variant): 90-100% or comp het
(2) Bi-allelic inactivation
(3) Persistence of a pathogenic/likely pathogenic variant at germline VAF over the course of disease when remission is achieved
(4) Variants only occurring in germline (e.g. LOF variants in DDX41) (21, 23, 25, 26, 32)
(5) Significantly higher mutational burden, unique mutational signature (95% of variants are CG>TG substitutions) for variants in MBD4 (35, 36)
frontiersin.o
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disorders (62, 65) and others have been reported in few patients

with DDX41 germline variants (Figure 1B). However, a causative

association has not been clearly established. The median age of

onset — unlike most other germline syndromes — is similar to the

expected disease onset in sporadic disease: 67 years (n=328) in

DDX41 germline mutated AML patients and 68 years (n=326) in

MDS patients (Figure 1B), which is congruent with the average age

of onset for AML (68 years, https://seer.cancer.gov/statfacts/html/

amyl.html) and MDS (71 years) patients (70). It is rarely diagnosed

in patients before the age of 40 (1.6%, Figure 1B). The penetrance is

reduced and currently estimated at roughly 50% (12). This germline

syndrome often goes unnoticed as a result of this reduced

penetrance, older age at diagnosis, and consequently fewer

families with a positive family history.

Hematopoietic malignancies with a DDX41 variant —

irrespective whether this is a germline or somatic variant —

define a distinct subgroup with a lower allelic burden, frequent

association with a normal karyotype (Table 2) and overall more

favorable prognosis (12, 44, 64, 65, 71). The favorable prognosis is

retained in patients with otherwise poor prognostic markers such

as multi-hit TP53 variants when compared to age-matched

controls (12, 43, 64). The disease shows a clear male

predominance with a penetrance of hematologic malignancies

that appears three-times higher in males than females

(Figure 1B) (12, 25, 43).

Heterozygous DDX41 LOF, however, is not sufficient to initiate

leukemogenesis, and the majority of AML and MDS patients with
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germline variants carry additional somatic nonsynonymous

substitutions primarily in the helicase catalytic center of the other

allele. Approximately 82% of all patients with germline DDX41

variants acquire a somatic hit with a mean VAF of 11%, 68.8% of

those variants are located within the helicase domain and 19.7%

within the DEAD box domain (Figure 1A, Table 2). The most

common variant is p.R525H found in 71.7% of patients with a

somatic hit and located within the helicase domain (Figure 1A).

This hotspot variant perturbs ATPase activity and interferes with

cell growth in a dominant-negative manner (72). Other common

somatic variants include nonsynonymous substitutions p.T227M,

p.P321L, p.E345D and p.G530D/S (Figure 1A). Curiously, while

almost all LOF variants were confirmed germline with a somatic

nonsynonymous substitution, three cases of an identical germline

substitution within the DEAD box, p.R369G, with a confirmed LOF

somatic DDX41 variant (p.E2* and p.S4*) have been described (12,

25, 44).

The most common co-occurring somatic variants were found in

ASXL1 (15%), TP53 (9%), DNMT3A (8%), CUX1 (6%), TET2 (6%)

and SRSF2 (5%) (Figure 1B, Table 2). Recurrent molecular markers

such as variants in NMP1, CEBPA or internal tandem duplications

(ITDs) of FLT3 have only been described in few patients (12, 65). A

normal karyotype was described in most patients for whom

cytogenetic data were available (76.3%, n=242, Table 2). A range

of different cytogenetic alterations e.g. del(5q), -7/del(7q), +8, del

(20q), loss of chromosome Y and others, all frequently reported in

MDS and AML with myelodysplasia-related changes, has been
B

A

FIGURE 1

Lollipop plot and Oncoplot of all known DDX41 germline variants. (A) Schematic of the DDX41 transcript NM_016222.4 and its protein domains and
exon distribution with the location of all reported variants. Germline variants are shown above the schematic and somatic variants below the
schematic. The variant count is displayed on the x axis and the variant type is represented by different colors of the lollipops as outlined in the
legend. (B) Oncoplot depicting DDX41 variant carriers and their associated gender, diagnosis, age at diagnosis, variant type and most common co-
occurring somatic variants including percentages. AML, acute myeloid leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic
syndrome; MPN, myeloproliferative neoplasm. This schematic was created using cBioPortal (https://www.cbioportal.org/) (68, 69).
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detected in the remaining patients. A complex karyotype was

reported in several patients, most often including a del(5q),

presumably derived from clonal evolution of a pre-existing del

(5q) clone (12, 44, 65). Recurrent, subgroup-defining cytogenetic

aberrations have only been described in four cases, two patients

with inversion inv(16) (43, 65) and another two with a translocation

t(8;21) (43, 65), again highlighting the near-absence of recurrent

molecular or cytogenetic aberrations in DDX41 germline-mutated

patients. Little is known about clonal evolution in healthy carriers

since most cases reported in the literature are already diseased. With

the high percentage of bi-allelic inactivation of DDX41, low

mutational burden and frequent absence of cytogenetic

alterations, it stands to argue that bi-allelic inactivation is the

main driver of disease. Prodromal features such as cytopenia with

or without clonal markers and/or some level of dysplasia not

meeting MDS criteria (yet) are infrequent (Figure 1B) and usually

lead to an MDS/AML diagnosis down the line.
ETV6-deficiency is associated with
predominantly lymphoid malignancies
concomitant with a normal or
hyperdiploid karyotype

ETV6, located on chromosome 12p13, is part of the large ETS

transcription factor family, comprising 28 genes primarily

controlling tumor initiation and development. Its functional

domains consist of a highly conserved N-terminal PNT domain

involved in protein-protein interactions with itself and other

proteins including FLI1, another member of the ETS family

implicated in megakaryocyte lineage commitment (73). A central

regulatory domain mediates repressive complex recruitment

(including SMRT, Sin3A and NCOR) and autoinhibitory activity

(74), and the C-terminal ETS domain conveys DNA binding (75).

In cancer, structural variants of this gene are common and occur in

a wide variety of different hematologic and solid tumors — with

more than 30 translocation partners known to date (76). The well-

known recurrent translocation t(12, 21)(p13;q22), resulting in a

RUNX1-ETV6 fusion, is identified in 20-25% of pediatric acute
Frontiers in Oncology 05
lymphatic leukemia (ALL) (77). Somatic variants of this gene are

less frequent than structural alterations and have been reported in

up to 5% of patients with T-ALL (78, 79), 2.7% of patients with

MDS (16) and 1.1% in AML (39, 45, 46). Heterozygous germline

variants of this gene were first reported in 2015 and go along with

lifelong thrombocytopenia and a predisposition to both lymphoid

and myeloid malignancies (80). The manner of inheritance is

autosomal dominant with a near-complete penetrance exceeding

90% for thrombocytopenia but incomplete penetrance for

hematologic malignancies, estimated in the range of 30% (75, 81).

Based on the published studies to date (58, 75, 82–93), B-ALL is the

most common malignant phenotype (n=26, 20%), followed by

MDS/AML (n=8, 6.2%). At least two cases of mixed phenotype

leukemia have been described (80, 82). There is no clear causal

association between the few cases of patients with germline ETV6

variants diagnosed with diffuse large B-cell lymphoma and

polycythemia vera (83, 85, 94). The median age at onset of a

hematologic malignancy is 11 years. Thrombocytopenia is present

in most individuals from birth — albeit at times only recognized

later in life — and when present is of moderate severity (median of

85+/-28 G/l) accompanied with a mild to moderate bleeding

propensity. Nonsynonymous substitutions and LOF variants,

predicted to undergo NMD, depict most of the variants reported

to date (n=85, 65.9% and n=31, 24%, respectively, Figure S1). The

nonsynonymous substitution, p.P214L (NM_001987.5), represents

the most common recurrent variant, located within the central

region, while other substitutions are mostly scattered across the C-

terminal ETS domain (Figure S1). Intragenic CNVs have been

described in two families, spanning exons 2 and 5 (84, 89). A

constitutional balanced translocation t (12,14)(p13.2;q23.1) was

identified in one family with familial B-ALL without

thrombocytopenia and breakpoints were located in intron 1 of

ETV6 and RTN1, respectively (86). Bi-allelic inactivation of ETV6 in

the leukemic clone is rare, be it somatic variants or cytogenetic

deletions of the trans allele and have only been described in few

cases (Table 2) (82, 95). Karyotypic abnormalities often include a

normal or hyperdiploid karyotype, consistent with common

alterations detected in (childhood) B-ALL (Table 2). The pattern

of somatic co-occurring variants in the leukemic clone resembles a

typical pattern seen in ALL or AML/MDS without any obvious
TABLE 2 Somatic drivers in patients with germline DDX41, ETV6, GATA2 and RUNX1 variants.

DDX41 ETV6 GATA2 RUNX1

Bi-allelic
inactivation

Very common, 82% patients acquire a
somatic hit in DDX41

Rare 6% acquire a somatic hit in
GATA2

Common, 26% patients acquire a somatic hit
in RUNX1

Molecular
variants

Lower mutational burden, most
common co-occurring somatic variants:
ASXL1 (15%), TP53 (9%), DNMT3A
(8%), CUX1 (6%), TET2 (6%) and
SRSF2 (5%)

Unspecific Most common co-occurring
somatic variants: ASXL1 (39%),
STAG2 (34%), SETBP1 (16%),
BCOR (7%), RUNX1 (7%), and
EZH2 (6%)

Most common co-occurring somatic variants:
TET2 (15%), FLT3 as ITD or TKD variant
(12%), SRSF2 (12%), ASXL1 (11%), WT1 (8%),
DNMT3A (8%), BCOR (8%) and BCORL1
(8%)

Cytogenetic
alterations

Most often normal karyotype (76.3%) Normal or
hyperdiploid
karyotype, consistent
with B-ALL as most
common phenotype

Most common cytogenetic
alterations: monosomy 7/del(7q)
(37.8%), trisomy 8 (24.5%) and
der(1;7)(q10;p10) (16%)

Unspecific
B-ALL, B-cell acute lymphatic leukemia; ITD, internal tandem duplication; TKD, tyrosine kinase domain.
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association of specific molecular or cytogenetic alterations with

germline ETV6 deficiency (Table 2). A longitudinal study of four

ETV6 germline mutated carriers did not reveal any evidence of

clonal hematopoiesis however, the number of patients was too small

to draw conclusions at this time (88).
Somatic ASXL1-, STAG2- and SETBP1
variants, monosomy 7/del(7q) and
trisomy 8 drive myeloid malignancies
in GATA2-deficiency

GATA2 is a key zinc-finger transcription factor encompassing

two zinc finger domains that regulate hematopoietic stem and

progenitor cell self-renewal, survival, and differentiation (96).

Somatic GATA2 variants occur in 1.9% of all MDS patients (16)

and 3.3% of all AML patients (39, 45, 46), mainly affect the first zinc

finger domain and often co-occur with CEBPA variants. In contrast,

GATA2 germline variants are frequently found within the second

zinc finger domain. These variants are common in childhood MDS,

accounting for 15% of advanced and 7% of all primary pediatric

MDS cases (97). GATA2-deficiency is strongly associated with

monosomy 7 and is observed in more than half of all childhood

MDS cases with monosomy 7 (97). Roughly 4 to 5% of MDS

patients diagnosed as young adults carry GATA2 germline variants

(34, 98), however, the likelihood of a germline GATA2-deficiency
Frontiers in Oncology 06
decreases significantly with the age at diagnosis. More than half of

all variants arise de novo, resulting in the lack of a positive family

history and evidence of segregation among affected family members

(11, 99). The phenotype is highly variable and includes

hematopoietic and non-hematopoietic features, encompassing

immunodeficiency predominantly through reduced or absent

monocytes, B cells, natural killer cells, neutrophils, and/or

dendritic cells, MDS/AML, pulmonary disease, vascular/lymphatic

dysfunction, and hearing loss (11, 100). The penetrance for any

phenotypic features is near-complete, whereas penetrance for

myeloid malignancies is variable and incomplete, and most likely

lies within a range of 30 to 75% (10, 97, 101, 102).

Based on published GATA2 germline variants (11, 58, 89, 103–

112), most variants are truncating LOF variants (46%, n=296) or

nonsynonymous variants (44.1%, n=284, Figure 2A). CNVs

account for 3.2% (n=20), with most of them being whole-gene

deletions (21, 97, 104, 113–119). As opposed to somatic

nonsynonymous variants located mainly within the first zinc

finger domain, germline nonsynonymous substitutions are —

with few exceptions — located within the second zinc finger

domain (Figure 2A). Variants in the first versus second zinc

fingers seem to harbour different functional consequences and co-

occur with specific leukemic lesions (96). Hotspot amino acids

within the second zinc finger are C349, C352, T354, T357, T358,

L359, W360, R361, N371, A372, C373, L375, P385, M388, R396,

and R398 (Figure 2A). A unique mechanism of disease are variants

within a deep-intronic +9.5 44bp intronic enhancer element,
B

A

FIGURE 2

Lollipop plot and Oncoplot of all known GATA2 germline variants. (A) Schematic of the GATA2 transcript NM_032638.5 and its protein domains and
exon distribution with the location of all reported germline variants. The variant count is displayed on the x axis and the variant type is represented
by different colors of the lollipops as outlined in the legend. (B) Oncoplot depicting GATA2 variant carriers and their associated gender, diagnosis,
age at diagnosis, variant type and most common co-occurring somatic variants including percentages. ALL, acute lymphatic leukemia; AML, acute
myeloid leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome. This schematic was created using cBioPortal
(https://www.cbioportal.org/) (68, 69).
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consisting of an e-box, GATA and Ets/FLI1 motif and two spacers.

Currently, causative variants have only been described in the e-box

and ets/FLI1 motifs and make up roughly 6% of GATA2 germline

variants (97, 120), abrogating normal steady-state hematopoiesis

and embryonic development (121).

Most patients with GATA2-deficiency have been diagnosed

with MDS, CMML/juvenile myelomonocytic leukemia, MDS/

MPN overlap, AML and bone marrow failure (78.3%, n=508,

Figure 2B). The median age of onset for GATA2-related myeloid

disease is 17 years (n=426, Figure 2B). Few cases of B- or T-ALL

(105, 116, 122–124) and primary myelofibrosis (112) have been

described (Figure 2B).

The most common co-occurring somatic variants are found in

ASXL1 (39%), STAG2 (34%), SETBP1 (16%), BCOR (7%), RUNX1

(7%), and EZH2 (6%, Figure 2B, Table 2). A second hit on the other

GATA2 allele was reported in 6% of patients (Figure 2B, Table 2).

Compared to sporadic AML/MDS cases, variants in ASXL1,

SETBP1 and STAG2 are statistically overrepresented in GATA2-

deficiency, while variants in DNA methylation modifiers DNMT3A

and TET2 seem to be less common (Figure 2B). Monosomy 7/del

(7q) is the most common cytogenetic alteration and is found in

37.8% of patients (n=165), followed by trisomy 8 in 24.5% (n=107)

of cases (Table 2). A derivative chromosome der(1;7)(q10;p10),

resulting in an unbalanced chromosomal translocation with trisomy

1q and deletion 7q, is also commonly observed in GATA2-

deficiency (16%, n=35, Table 2). In contrast to monosomy 7/del

(7q) and trisomy 8, the der(1;7) is a rare chromosomal alteration

and significantly enriched in patients with GATA2-deficiency (109).

ASXL1- and STAG2 variants as well as monosomy 7 and trisomy 8

have been observed in several patients with no overt hematologic

malignancy, however, these are also common driver variants in the

patients with hematologic malignancies.
Germline RUNX1 variants frequently
display bi-allelic inactivation in the
malignant clone

The master transcription factor RUNX1 is located on

chromosome 21q22 and acts as transcriptional regulator of

normal hematopoiesis. Functional domains comprise a highly

conserved Runt-homology domain (RHD) spanning 128 amino

acids, a C-terminal transactivation and inhibitory domain and a

VWRPYmotif binding transcriptional repressors (125). Three main

isoforms A, B, and C are expressed by the use of two promotors and

alternative splicing and display isoform-specific functions

controlling stem cell expansion and hematopoietic differentiation

(126–128).

RUNX1 is frequently mutated in myeloid malignancies in

approximately 14.2% of patients with MDS (16) and 10.5% of

patients with AML (45–47). RUNX1 variants are considered poor

prognostic factors in both MDS and AML and HSCT is mandated

whenever possible (5, 16). Structural variants involving RUNX1 are

frequent, in fact RUNX1 is the most common target of

chromosomal translocations found in AL. The translocation
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t(8;21)(q22;q22) resulting in a RUNX1-RUNX1T1 fusion is a

recurrent genetic abnormality in AML and accompanied by a

favorable prognosis (5). The above mentioned translocation t (12;

21), giving rise to a ETV6-RUNX1 fusion protein defines a subtype

of pediatric ALL and various other RUNX1 translocation partners

have been described as well (125).

Germline RUNX1 variants were first linked to inherited

thrombocytopenia and predisposition to myeloid malignancies in

1999 by Song et al. (1). It is currently estimated that in

approximately 16% of RUNX1-mutated AML patients the

identified RUNX1 variant is indeed of germline origin — higher

percentages were reported but germline pathogenicity was not

established for all variants (15, 29). This leads to the occurrence

of a germline RUNX1 variant in about 1 to 2% of an unselected

AML population (29, 31). The penetrance is near-complete for mild

to moderate thrombocytopenia with normal sized platelets,

potentially in combination with an additional bleeding propensity

caused by platelet alpha or dense granule secretion defects and/or

impaired platelet aggregation (129). Several patients with

intermittent or transient thrombocytopenia have been described

so that serial assessment of the platelet count should be considered

in patients with presumed normal platelet count. The penetrance

for hematologic malignancies is incomplete and estimated at about

40-50% (130, 131).

Based on literature research including all published patients

with a causative RUNX1 germline variant (15, 34, 115, 132–170),

most germline variants are LOF variants, including nonsense,

frameshift, and canonical splice variants (n=244, 53.6%) and

roughly one third of these variants are located in the C-terminal

transactivation domain predicted to not undergo NMD but instead

promoting decreased transactivation capacity (Figure 3A).

Strikingly, CNVs account for 15.4% (n=70) of patients, including

whole-gene deletions and both in-frame and out-of-frame recurrent

intragenic deletions and duplications. A recurrent deletion of exons

1 and 2 or exons 1 to 3 (NM_001754.5), removing the N-terminal

20 to 33 amino acids of isoform C together with its distal promotor,

has been detected in multiple unrelated families with a classic

phenotype (37, 149, 155, 168, 171–174). Intragenic duplications

are rare but have been independently discovered in two families

(135, 169). Nonsynonymous substitutions comprise 29.9%

(n=132) of all variants and are mostly located within the RHD

that is essential for DNA binding (Figure 3A). Causative

nonsynonymous variants are primarily found within amino acids

89 to 204 of the RHD, which is where the b-sheet portion of the core
binding factor b heterodimerization domain starts, noted as

functionally important. Hotspots within the RHD consist of

amino acids R107, K110, A134, R162, R166, S167, R169, G170,

K194, T196, D198, R201, and R204 (Figure 3A) (129, 175). Outside

of these amino acid hotspots, most other variants are private and

only occur in one index patient/family (Figure 3B). Germline indels

and noncanonical splice variants are infrequent. A germline

translocation t(16;21)(p13;q22) has been described, translocating

the distal promotor used for isoform C and the +23 enhancer to

chromosome 16 (176). The breakpoint is localized in intron 1 of

RUNX1 with a high content of simple tandem repeats, consistent

with the major breakpoint pattern in the recurrent somatic t(12;21)
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in ALL (177). Another germline translocation t(11;21)(q13;q22) is

also primarily affecting isoform C with the breakpoint located

within the same chromosomal region of 21q22 (178).

Most germline RUNX1-related malignancies are myeloid

malignancies, in particular MDS, CMML, and AML that account

for 37.3% (n=170) of patients (Figure 3B). Given its rarity in a

sporadic population, T-ALL (4.4%, n=20) is overrepresented in

these patients and has also been established as part of the phenotype

(129, 179). Few cases diagnosed with B-ALL (137, 163, 167), non-

Hodgkin lymphoma (37, 180), MPN (35), chronic lymphatic

leukemia (181) or eosinophilic leukemia (155) have been

identified but a causative relationship has not been established

(Figure 3B). The median age at diagnosis is 42 years for MDS/AML

and 22 years for T-ALL (Figure 3B).

Concomitant somatic variants frequently occur on the other

RUNX1 allele (26% of patients) as bi-allelic inactivation and as

discussed earlier, increase the pre-test probability of a germline

allele (Figure 3B, Table 2). Other frequent co-occurring somatic

variants were detected in TET2 (15%), FLT3 as ITD or tyrosine

kinase domain variant (12%), SRSF2 (12%), ASXL1 (11%), WT1

(8%), DNMT3A (8%), BCOR (8%) and BCORL1 (8%) (Figure 3B,

Table 2). Early-onset CHIP has been previously described in

RUNX1 variant carriers and preleukemic individuals were found

to carry variants in DNMT3A, TET2, KMT2A, KRAS and U2AF1,

consistent with CHIP (37, 139, 153, 174, 182, 183). Recurrent

CDC25C variants were reported in ~50% of RUNX1-mutated

patients and hierarchical architecture analysis showed that these

variants represent an early event during transformation, defining a

pre-leukemic clone (140). Other studies have frequently detected
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variants in TET2, BCOR, PHF6, CDC25C, SRSF2, and GATA2 (13,

37, 184). In one study, BCOR variants were particularly common

with up to four different variants per patients, however, presence,

number or VAF did not correlate with clonal evolution or disease

progression (185). Upon cytogenetic analyses, a normal karyotype

was most frequently detected, followed by monosomy 7/del(7q),

translocations with no apparent recurrent breakpoints/

translocation partners and trisomy 8 (Table 2). Only few patients

were investigated cytogenetically prior to the development of a

hematologic malignancy.
Conclusion

Germline variants predisposing to inherited hematologic

malignancies are detected more and more frequently due to

increased recognition and detection using NGS-based diagnostic/

prognostic panels. A multi-tier approach of several different criteria

can be utilized to identify patients with a probable germline variant: (1)

germline VAF, (2) bi-allelic inactivation, (3) longitudinal persistence of

a pathogenic/likely pathogenic variant at germline VAF when

remission is achieved, (4) variants that only occur in germline, and

— in the case of MBD4 variants— (5) significantly higher mutational

burden. The clone size in relationship to the blast count, the frequency

of somatic variants in the gene in question, and whether the variant has

been previously reported as somatic variant and/or is consistent with

the mechanism of disease may also be considered (66).

Germline variants in DDX41, ETV6, GATA2, and RUNX1 have

been well-described and may be uncovered upon initial diagnostic/
B

A

FIGURE 3

Lollipop plot and Oncoplot of all known RUNX1 germline variants. (A) Schematic of the RUNX1 transcript NM_032638.5 and its protein domains and exon
distribution with the location of all reported germline variants. The variant count is displayed on the x axis and the variant type is represented by different
colors of the lollipops as outlined in the legend. (B) Oncoplot depicting RUNX1 variant carriers and their associated gender, diagnosis, age at diagnosis,
variant type and most common co-occurring somatic variants including percentages. AML, acute myeloid leukemia; CMML, chronic myelomonocytic
leukemia; FPD, familial platelet disorder not otherwise specified; MDS, myelodysplastic syndrome; Runt, RUNX1 homology domain; RunxI, RUNX1 inhibition
domain (aka transactivation domain). This schematic was created using cBioPortal (https://www.cbioportal.org/) (68, 69).
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prognostic work-up and subsequently confirmed in appropriate

germline material. Importantly, the spectrum of germline

predisposition alleles has been expanded over the past few years

with the advent of whole-exome or whole-genome sequencing or

NGS panel-based sequencing covering non-coding areas and

functional testing of variants of unknown significance (VUS).

CNVs are frequently identified as causative alleles in patients with

RUNX1- and GATA2-deficiency at a frequency of 15.4% and 3.2%

respectively, and few families with intragenic deletions of DDX41

and ETV6 have been reported as well (67, 84, 89). Germline

translocations are infrequent but occur in genes that are

otherwise known as common translocation partners in the

leukemic clone, namely ETV6 (86) and RUNX1 (176, 178) and

disrupt the promotor region. Other variants such as noncanonical

splice variants and the recurrent variants in the deep-intronic

enhancer element of GATA2 may be not detected or easily

overlooked and require functional testing to establish

pathogenicity. When suspicion is high based on family history

and/or phenotypic criteria, upfront negative testing should be

critically questioned, and further testing or re-analysis of the

sequencing data considered.

Specific molecular or cytogenetic drivers have been identified

and associated with distinct germline syndromes: The development

of myeloid disease in DDX41 germline mutated patients most often

requires bi-allelic inactivation of the DDX41 trans allele through

nonsynonymous substitutions primarily within the helicase

domain. Patients are more prone to have a normal karyotype and

other recurrent, WHO-subgroup defining aberrations are

exceedingly rare. Germline variants in ETV6, most often

associated with B-ALL, have a normal or hyperdiploid karyotype

that is consistent with this type of malignancy. Specific drivers of

disease are not apparent but the number of patients with reported

molecular/cytogenetic data is small. GATA2-deficiency displays a

significant correlation with ASXL1-, SETBP1- and STAG2 variants,

monosomy 7/del(7q), trisomy 8, and der(1;7)(q10;p10). The der

(1;7)(q10;p10) is a specific aberration that only occurs in 0.4% of

children and adolescents with MDS and wild-type GATA2 (109)

and may be used as an indicator of a germline GATA2 variant.

Lastly, a second somatic hit of the other allele is also common in

patients with germline RUNX1 variants and somatic variants in

BCOR, BCORL1 and CDC25C may be more prevalent in these

patients. CHIP affecting genes such as DNMT3A, TET2, KMT2A,

KRAS and U2AF1 and recurrent variants in CDC25Cmay represent

early markers of clonal evolution and disease progression in carriers

of a RUNX1 germline variant. Generally, early- versus late somatic

alterations in the process of leukemic transformation are not well-

studied and patients without obvious hematologic malignancy often

do not receive a baseline bone marrow biopsy. Longitudinal pre-

leukemic data are needed to identify early markers of clonal

evolution and disease progression.

An emergent discussion is whether co-occurring somatic

alterations can be used to predict the presence of a germline

syndrome and help determining the pathogenicity of the variant

when it is formally classified as a VUS. The above-mentioned

markers may be applied in a multi-tier approach in addition to

the VAF, bi-allelic inactivation, longitudinal persistence of variants
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and other factors to assess the likelihood of a germline variant in

DDX41, ETV6, GATA2 and RUNX1. Most somatic alterations are

not specific enough to be employed within the framework of

American College of Medical Genetics and Genomics/Association

for Molecular Pathology rules for germline variant interpretation

(39). As an exception, bi-allelic DDX41 inactivations with

nonsynonymous substitutions affecting hotspot amino acids or

the presence of a der(1;7)(q10;p10) in patients with suspected

GATA2-deficiency might confer enough significance, however,

this would possibly only apply in combination with other

phenotypic features.

In summary, this review provides new insights into the

identification of germline syndromes by means of diagnostic/

prognostic NGS data as well as specificity and pattern of somatic

drivers in patients with germline DDX41, ETV6, GATA2, and

RUNX1 variants based on large patient cohorts. These data will

help to predict the clinical course of disease and thereby improve

and individualize the clinical management for these patients.
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