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Background:Despite the high prevalence of lung cancer, with a five-year survival

rate of only 23%, the underlying molecular mechanisms of non-small cell lung

cancer (NSCLC) remain unknown. There is a great need to identify reliable

candidate biomarker genes for early diagnosis and targeted therapeutic

strategies to prevent cancer progression.

Methods: In this study, four datasets obtained from the Gene Expression

Omnibus were evaluated for NSCLC- associated differentially expressed genes

(DEGs) using bioinformatics analysis. About 10 common significant DEGs were

shortlisted based on their p-value and FDR (DOCK4, ID2, SASH1, NPR1, GJA4,

TBX2, CD24, HBEGF, GATA3, and DDR1). The expression of significant genes was

validated using experimental data obtained from TCGA and the Human Protein

Atlas database. The human proteomic data for post- translational modifications

was used to interpret the mutations in these genes.

Results: Validation of DEGs revealed a significant difference in the expression of

hub genes in normal and tumor tissues. Mutation analysis revealed 22.69%,

48.95%, and 47.21% sequence predicted disordered regions of DOCK4, GJA4,

and HBEGF, respectively. The gene-gene and drug-gene network analysis

revealed important interactions between genes and chemicals suggesting they

could act as probable drug targets. The system-level network showed important

interactions between these genes, and the drug interaction network showed that

these genes are affected by several types of chemicals that could serve as

potential drug targets.

Conclusions: The study demonstrates the importance of systemic genetics in

identifying potential drug- targeted therapies for NSCLC. The integrative system-

level approach should contribute to a better understanding of disease etiology

and may accelerate drug discovery for many cancer types.
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Introduction

The increasing incidence of lung cancer has made it the leading

cause of cancer death among all human carcinomas. Globally, more

than one million people die from lung cancer every year. Lung

cancer (LC) consists of two main subtypes, non-small-cell lung

cancer (NSCLC) and small-cell lung cancer (SCLC). The chief

pathological form of lung cancer is NSCLC, accounting for 80-

85% of cases. It includes adenocarcinoma (LUAC) and squamous

cell carcinoma (LUSC) (1). With the remarkable advancement of

medical technology in recent years, there is still an overall 5-year

survival rate of 10-15% with no positive prognosis for lung cancer

(2). The reason may be partly due to the problems encountered in

the early diagnosis of the disease, in addition to the ineffective

pharmacological targets for NSCLC patients (3). Mostly, the

diagnosis of NSCLC is made when the disease has reached a

progressive stage (2, 4). Some of the important risk factors that

have shown an association with NSCLC are tobacco and air

pollution, occupational hazards, and dietary and genetic factors

that also contribute to its occurrence (5, 6). Over the past two

decades, the treatment options for NSCLC have advanced

significantly, requiring the need for alternatives to conventional

treatment approaches, for example, molecularly targeted therapies

and immunotherapies (3, 6).

The c omputational biology and systems biology approaches

have greatly facilitated the drug discovery process, which has

substantially minimized the cost of drug development. Several

drug targets have been identified in our previous studies for

breast cancer (7–9), colorectal cancer, methicillin- resistant

Staphylococcus aureus (10–12), type 2 diabetes mellitus (13), and

hTERT inhibitors (14). There is a great role for genes in the

diagnosis, treatment, and prognosis of NSCLC when compared to

histological classification. One of the most powerful and reliable

techniques to quantify the expression of all genes is RNA

microarray analysis (7, 10, 13–15). G ene expression profiling in

NSCLC has been extensively done using RNA microarrays;

nevertheless, not all genes have been fully explored. D ifferential

expression analysis has been widely used as a bioinformatics tool in

oncology research in recent years. The differentially expressed genes

(DEGs) can be used to explore major diagnoses and identify

effective therapeutic approaches for NSCLC, which play a crucial

role in the management of cancer occurrence and progression (16).

One of the bases for identifying novel targets and the molecular

mechanism of NSCLC is to understand the interactions among the

identified DEGs, their important signaling pathways, and the

proteins through which they interact and cross- talk. Therefore,
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exploring the existing database and validating the effective targets is

beneficial for the early diagnosis and therapeutic approach

of NSCLC.

In this study, four microarray gene datasets (GSE1987,

GSE17073, GSE 54495, and GSE118370) from the Gene

Expression Omnibus (GEO) were accessed and analyzed. DEGs

were analyzed between NSCLC tissue and normal lung tissue.

Moreover, gene ontology, enrichment, and protein-protein

interaction network analysis were performed to clarify the

molecular mechanisms of the development and progression of

NSCLC. Microarray technology assists in identifying unusual

alterations in genome expression analysis. The identified DEGs

may have the potential for future targeted therapy, providing better

gene selection and serving as candidate biomarkers for NSCLC.

This study also identified the genetic variants of NSCLC and their

causes, which may help modify therapeutic strategies.
Materials and methods

Processing of microarray datasets

The Gene Expression Omnibus database (GEO) is a public

functional database for high- throughput screening of gene

expression data, microarray data, and gene chips. In this study,

we recovered genome expression datasets from GEO (Affymetrix

Human Genome U133A Plus 2.0 Array, Affymetrix Human

Genome U95A Array, and Affymetrix Human Genome U133

Plus 2.0 Array) [GSE1987, GSE17073, GSE 54495, GSE118370].

The GSE1987, GSE17073, GSE 54495, and GSE118370 datasets

contain 28, two, 17, and six NSCLC tissue samples and 9, 10, 13, and

six non-cancer tissue samples, respectively (Table 1). The software

tools used in this study are listed in Supplementary Table 1.
Raw data preprocessing, screening, and
integration of DEGs

The differentially expressed genes were analyzed using GEO2R

(http://www.ncbi.nlm.gov/geo2r), an interactive network tool for

screening between NSCLC and non-cancer samples. The tool helps

to compare and analyze two or more datasets under experimental

conditions. The significant DEGs were detected using the adjusted

p-values and the Benjamini- Hochberg false discovery rate. The

probe sets with no gene names or genes with multiple probe sets

were removed from the study. The upregulated genes were
TABLE 1 List of genome expression datasets analyzed in this study.

S. no Geo ID Sample count (case: control) Platform used Tissues

1. GSE1987 9:28 GPL91[HG_U95A] Affymetrix Human Genome U95A Array Lung tissue

2. GSE17073 10:2 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array Lung epithelial cells

3. GSE118370 6:6 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array Lung tissue

4. GSE54495 13:17 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array Lung epithelial cells
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identified using cut- off values of P<0.05 and logFC >1, while the

downregulated genes were identified with logFC <1.
Disease gene curation of DEGs

The c uration of significant DEGs was performed with the help

of the Comparative Toxicogenomics Database (CTD), the Online

Mendelian Inheritance in Man (OMIM), PubMed, and MeSH

databases in order to curate their role in NSCLC. The DAVID

database was used to retrieve the gene symbol, name, and UniProt

ID of the identified DEGs.
Gene enrichment analysis

To identify the functional annotation and gene ontology of the

shortlisted DEGs, the DAVID tool was used for functional

enrichment analysis for their p- and FDR values. The biological

function, transcription factors, and clinical phenotypes of NSCLC-

related DEGs were analyzed using the FunRich tool.
Mutation analysis

The genotype-phenotype association helps in decoding the

genetic variations, which aids in understanding the mutations

arising from cancer and the inherited disease- related processes.

Several single nucleotide variants (SNVs) are part of the human

genome and are involved in the progression of the disease. The

missense SNVs present at the PTM (post-translation modification)

protein sites are associated with disease progression due to the

substitution of approximately 21% of amino acids. This chemical

modification of the amino acid ultimately alters the function of the

protein (17). The online web tool ActiveDriverDB database was

used to analyze the mutations associated with differentially

expressed genes (17). The overall visual summary of the position,

frequency, and functional significance of the mutations in the DEGs

was provided by the needle plot mutation analysis. We observed the

predicted disordered region and the PTM sites for all mutations in

the protein sequence. The position of the gene sequence was

observed by placing the pin along the protein. The figure legends

explain the related mutational effects and PTM sites.
Protein-protein interaction

The protein-protein network analysis was performed to study

the interaction of each protein with one or more genes associated

with its molecular functions (18). The network reveals the altered

activity of these genes in normal or pathological conditions. The

potential NSCLC- related gene signatures associated with other

genes whose dysfunction results in the disease state were identified

through this network. The STRING database was used to analyze

the protein-protein interactions of the cDNA dataset DEGs (19).
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The high confidence score interaction was used in this network

analysis, having a score of 0.9-1. The target genes identified by this

network were then studied for their role in NSCLC using Cancer

GeneticsWeb, the National Cancer Institute, and the OMIM

databases. Cytoscape (version 3.9.1) (20) was used to visualize the

molecular network and Network Analyzer was used to calculate the

topological properties of the networks. The nodes in the network

categorized the degree of annotation between genes and diseases.
Identification and validation of
shortlisted DEGs

T o validate the expression pattern of identified DEGs in normal

and tumor tissues, the GEPIA database was utilized (21). GEPIA (Gene

Expression Profiling Interactive Analysis) is helpful in differential

expression analysis, patient survival analysis, correlation and

profiling plotting, and several other key interactive and customizable

features. G ene expression plots in GEPIA are based on TCGA clinical

annotations. The Human Protein Atlas database was used to validate

the translational levels of the identified oncogenes. V alidation was

performed using immunohistopathologic sections between the normal

and OSCC samples (https://www.proteinatlas.org/).
Toxicogenomic analysis

The comparative toxicogenomic database (CTD) was used to

perform the toxicogenomic analysis. The CTD helps in retrieving

the exposome data, which explores the chemical-genome to

phenome association. The analysis investigates the mechanism of

functional pathway signaling toward the progression of the disease.

The chemical-gene and disease interactions are inferred, revealing

the particular expression of the gene and its association with

disease (22).
miRNA prediction analysis

microRNAs (miRNAs) are small non- coding RNAs that act as

post-translational regulators that influence the genes involved in

biological signaling pathways. In order to study the gene etiology,

the expression and functional role of miRNA play a significant role

(23). The disease- specific functional and molecular annotation of

DEGs can be investigated by predicting the miRNA target (24). The

miRDB online database was used to predict the NSCLC- related

DEG miRNA targets for functional target prediction. The

prediction data includes several important descriptions, such as

3′-UTR region length, miRNA-candidate target pairs along with

target prediction scores, 3′-UTR sequences, miRNA seed binding

sites, miRNA target sequences, etc. A score >80 was considered

reliable, and the miRNA target was ranked (25, 26). The miRNA

targets were analyzed for their site of expression and the biological

pathways in which they are commonly used, with the help of the

FunRich tool.
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Drug-gene network

The drug -gene network analysis was performed to correlate the

shortlisted DEGs with the chemicals/drugs that affect the activity of

these genes. The CTD database was used to screen the chemical and

disease relationships with default parameters. A direct link between

the DEGs and anticancer drugs was developed. The FDA approval

status of the identified drugs was verified with the Drug

Bank database.
Results

Differential expression analysis and
identification of DEGs

The four datasets GSE17073, GSE1987, GSE54495, and

GSE118370 were used to screen and identify the DEGs after

obtaining the microarray normalization results. The dataset

GSE17073 contained 30 significant DEGs, GSE1987 contained

508 significant DEGs, GSE54459 contained five significant DEGs,

and GSE118370 contained 707 significant DEGs. The volcano plot

and the mean difference plot of DEGs from different datasets

revealed the significant genes that were upregulated and

downregulated. The blue color shows the down regulated genes,

while the red indicates the upregulated genes (Figure 1). In

GSE1987, GSE17073, GSE54495, and GSE118370, 403, zero, one,
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and 354 genes are upregulated, respectively, while 405, 30, four, and

353 DEGs are downregulated. In the Venn diagram, the overlap

between the datasets was observed, which showed an overlap of 10

significant DEGs with a p-value of <0.05 and logFC <1 for

downregulated genes and logFC >1 for upregulated genes

(Figure 2). Table 2 shows the expression profiles of the

microarray datasets.
Curation of DEGs

From four datasets, we found 10 common DEGs whose gene

symbols and biological annotations were retrieved using the David

tool. D isease-gene curation was performed by text mining with the

help of PubMed, PMC, PMIM, and MeSH (Supplementary

Table 1). It was observed that the DEGs DOCK4, ID2, GATA3,

SASH1, GJA4, TBX2, HBEF, NPR1, CD24, and DDR1 were the most

curated terms in the databases. The mapping of these genes by

cancer genetics was performed to further analyze their role in

carcinogenesis (Figure 3).
Enrichment analysis of DEGs

The enrichment analysis of DEGs showed that these genes were

significantly linked to the regulation of epithelial cell differentiation,

ear development, mammary gland alveolus development, regulation
FIGURE 1

Data accessed from GEO were analyzed in GEO2R. The box plot generated by R represents the normalization of the data obtained after the log
transformation. The volcano plot visualizes the DEGs by displaying the statistical significance –log10 p- value versus the log2 fold change. The
significantly upregulated and downregulated differentially expressed genes in NSCLC are the highlighted genes in the four datasets. The blue color
represents the downregulated genes, while the red color represents the upregulated genes in NSCLC.
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of cardiac contraction, cellular senescence, negative regulation of

transcription, DNA-templated synthesis, positive regulation of

endothelial cell migration, positive regulation of smooth muscle

cell proliferation, response to estrogen, and cell chemotaxis

(Table 3). The clinical phenotypes associated with the GATA3

gene were n ephrosis and renal agenesis. Vaginal agenesis, septate

vagina, uterine agenesis, and uterus didelphys are rarely associated

with this gene (Figure 4). The transcriptome analysis revealed

expressive transcription factors encoded by these genes, such as

LMO2, ELF2, TBX5, PPARG, and FOXC1 (Figure 4).
Mutational analysis

Dock4 consists of 30 post-translational modification (PTM) sites

having 305 recurrent cancer mutations on the 7- chromosome

number negative strand encoding 1966 protein residues with

22.69% predicted disordered regions. The mutation visualization

plot shows the DOCK4 isoform mutation at position 378 with the

reference amino acid residue V compared to the mutated amino acid
Frontiers in Oncology 05
residue L, which is enriched for phosphorylation-type mutations,

showing the distal mutation PTM impact with the affected site. At

position 1770, the L amino acid residue that was enriched with the

phosphorylation-type mutation showed proximal mutation. The

PTM impact with affected sites were 1769S. SASH1 showed a

68.48% predicted disordered region with 239 mutations observed

on chromosome number 6 on the positive strand. 247 protein

residues were encoded and 63 PTM sites were observed. At

positions 370 and 421, the reference G and R amino acid residues

were compared with W and C mutated amino acid residues showing

distal PTM mutation impact with affected sites 374S and 417S,

respectively. The affected sites at positions 925, 1231, and 1008

have P, L, and S residue sites enriched with a phosphorylation-type

mutation affecting PTMs showing a network-rewiring motif gain

mutation with mutated amino acid residue R, respectively. A

proximal PTM impact at the 837S and 839S affected sites at

position 841 was observed with reference amino acid residue D

compared to the mutated Y amino acid residue. Similarly, the

mutational analysis of GJA4 showed 48.95% of the sequence

predicted for disease pathophysiology. A total of 64 mutations were
TABLE 2 Expression profiles of the microarray datasets.

AFFYMETRIX_ 3PRIME_ IVT_ID Gene name logFC t p-value adj. p- Val B Aberration

205003_at DOCK4 1.461537 4.333 8.65E-04 0.039831 -0.4456 Upregulated

41644_at SASH1 9.99E-01 3.83 4.61E-04 1.28E-02 -0.2121 Downregulated

201565_s_at ID2 1.651813 6.222 3.52E-05 0.008697 2.6173 Upregulated

40687_at GJA4 1.54 4.74 2.99E-05 1.75E-03 2.3544 Upregulated

40560_at TBX2 1.52 4.35 9.80E-05 4.27E-03 1.2370 Upregulated

38037_at HBEGF 1.34 3.9 3.84E-04 1.13E-02 -0.0411 Upregulated

32625_at NPR1 1.49 3.68 7.16E-04 1.66E-02 -0.6214 Upregulated

209604_s_at GATA3 1.461537 4.333 8.65E-04 0.039831 -0.4456 Upregulated

266_s_at CD24 -2.06 -5.13 8.84E-06 7.14E-04 3.5054 Downregulated

1007_s_at DDR1 -9.14E-01 -3.71 6.64E-04 1.58E-02 -0.5521 Downregulated
FIGURE 2

Identification of common NSCLC- related oncogenes using the Venn diagram.
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found on the positive strand of chromosome number 1 for GJA4. The

number of PTM sites was one, with 333 amino acid residues. In

protein HBEGF, 21 mutations were observed on the negative strand

of chromosome number 5 encoding 208 protein residues with 47.12%

predicted disordered regions (Figure 5).

The mutational analysis of NPR1 showed 15 PTM-affected sites

with 151 mutations on the positive strand of chromosome number

1 encoding 1061 protein residues, representing 5.84% of predicted

disordered regions. GATA3 showed 76.98% disordered regions with

104 mutations on the positive strand of chromosome number 10

encoding 443 protein residues. In position 157, reference amino
Frontiers in Oncology 06
acid P showed network rewiring motif loss PTM impacts at affected

sites 156S and 162S compared with mutated amino acid T. In

positions 278, 268, and 200, reference amino acids G, A, and H and

mutated amino acids S, E, and Q showed distal PTM impact

enriched with phosphorylation, methylation, and ubiquitination-

type mutations, respectively. Similarly, the number of PTM sites for

DDR1 was 20, with 913 protein residues having 22.34% of the

predicted sequence for the disordered region. A total of 155

mutations were found on the positive strand of chromosome

number 6 for DDR1 (Figure 5). Eight isoforms of DDR1 were

found (Supplementary Table 2).
FIGURE 3

The NSCLC-related oncogenes were curated using CTD, MeSH, OMIM, and PubMed.
TABLE 3 Functional annotation and gene ontology of DEGs.

Term p-value Fold enrichment FDR

Regulation of epithelial cell differentiation 3.70E-03 482.7 6.50E-01

Ear development 4.70E-03 386.2 6.50E-01

Mammary gland alveolus development 8.40E-03 214.5 7.80E-01

Regulation of heart contraction 1.60E-02 113.6 9.20E-01

Cellular senescence 2.50E-02 71.5 9.20E-01

Negative regulation of transcription, DNA-templated 2.90E-02 9.8 9.20E-01

Positive regulation of endothelial cell migration 3.10E-02 56.8 9.20E-01

Positive regulation of smooth muscle cell proliferation 3.20E-02 55.2 9.20E-01

Response to estrogen 3.30E-02 54.4 9.20E-01

Cell chemotaxis 3.30E-02 54.4 9.20E-01

Positive regulation of protein kinase B signaling 5.90E-02 29.9 1.00E+00

Serine-threonine/tyrosine-protein kinase catalytic domain 6.00E-02 29 1.00E+00

Parathyroid hormone synthesis, secretion and action 6.30E-02 25.7 1.00E+00

Negative regulation of transcription from RNA polymerase II promoter 7.20E-02 6 1.00E+00

Cell proliferation 8.30E-02 20.8 1.00E+00

RNA polymerase II sequence-specific DNA binding transcription factor binding 8.70E-02 19.9 1.00E+00

DOMAIN: SH3 9.10E-02 19 1.00E+00

Receptor complex 9.10E-02 19 1.00E+00

Src homology-3 domain 9.20E-02 18.6 1.00E+00
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FIGURE 5

ActiveDriverDB database showing mutations impacting post-translational modification (PTM) sites in proteins. Needle plots indicate PTM site
mutations in the identified DEGs. The x-axis indicates the position of the amino acid sequence, while the y-axis shows the number of mutation s.
The shading of the x-axis reveals the type of PTM associated with the mutation site.
A B

FIGURE 4

(A) Clinical phenotypes associated with NSCLC-related DEGs using the FunRich tool. (B) Transcription factors identified for NSCLC DEGs using the
FunRich tool (p<0.05).
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Protein -protein network analysis

The STRING database was used to retrieve the related nodes and

edges of all NSCLC- associated DEGs (Figure 6). The PPI enrichment

p-value was 0.012 with 15 nodes and 17 edges. Figure 6B shows the

upregulated and downregulated oncogenes and their associated

genes, allowing us to evaluate their biological functions.
Validation of shortlisted DEGs

The Cancer Genome Atlas (TCGA) and the GEPIA databases

were employed to further validate our findings. The GEPIA NSCLC

data showed that the expressions of these identified DEGs were

significantly different between the normal and tumor tissues

(Figure 7). The trend was the same as observed in our data,

which is consistent with the GEO analysis. Moreover, the Human

Protein Atlas database, which showed deregulation of the

expression of these seven genes, was used to obtain their

immunohistochemistry staining data (Figure 8). E xpression of

the hub genes HBEGF, GJA4, DDR1, CD24, TBX2, GATA3, and

SASH1 did not appear to be prognostic in lung cancer. No

pathological data were found for DOCK4, NPR1, or ID2 genes.
Toxicogenomic analysis

The chemical-genotype-phenotype exposome data that may lead

to disease progression were explored with the help of toxicogenomic

analysis. The effect of different environmental chemicals on the

activity and expression of NSCLC- associated DEGs was curated.
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The data revealed the effects of several chemicals on the increase or

decrease of the expression of these NSCLC DEGs on gene activity at

different levels (Figure 9). It was also revealed that the co-treatment

expression leading to disease occurrence and the same chemical

exposure showed different reactivity for different genes. For example,

arsenic trioxide decreases the expression of GJA4, but it affects the

binding of GATA3. The details of the effect of these chemicals on

NSCLC genes are shown in Table 4.
miRNA target prediction

The miRNA targets were predicted with the help of the miRDB

database based on the algorithms. The miRNA targets such as hsa-

miR-302c-5p, hsa-miR-4531, hsa-miR-11181-5p, hsa-miR-4476,

hsa-miR-338-5p, hsa-miR-194-5p, hsa-miR-4279, hsa-miR-4742-

3p, hsa-miR-4530, and hsa-miR-199a-5p were predicted for

DOCK4, SASH1, ID2, GJA4, TBX2, HBEGF, NPR1, GATA3, and

CD24, respectively. The onset and progression of the disease may be

caused by the deregulation of these genes. Table 5 shows the

predicted scores, the total number of miRNA hits, and the seed

location of the DEGs. The functional enrichment analysis of these

miRNA targets was performed using the FunRich tool. The analysis

revealed some important biological pathways associated with these

targets, such as the PDGF receptor signaling network, the ErbB

receptor signaling network, the glypican signaling pathway, the

TRAIL signaling pathway, and the plasma membrane estrogen

receptor signaling pathway (Figure 10). The sites of expression for

these miRNA targets analyzed were brain (51.1%), placenta

(68.6%), ovary (56.2%), kidney (65.1%), heart (38.5%), skeletal

muscles (58.5%), and lung (62.9%), with p<0.001.
FIGURE 6

The protein-protein network analysis for identified NSCLC DEGs. (A) A network obtained from the STRING database shows a confidence score of
0.9. (B) A network obtained from the FunRich tool shows the association of several genes with NSCLC-related genes.
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Drug-gene network analysis

In order to explore the available treatment options for NSCLC,

a toxicogenomic analysis was performed. The anti-cancer drugs

gefitinib, doxorubicin, lapatinib, cisplatin, mitomycin,

cyclophosphamide, and thalidomide showed interactions with

the hub genes using the CTD database. Several other FDA-

approved drugs also showed interactions with the seed genes,

such as theophylline, rosiglitazone, aspirin, estradiol ,

phenylephrine, atorvastatin, and valproic acid. These drugs may
Frontiers in Oncology 09
serve as novel targets for these genes in the treatment of

NSCLC (Figure 9).
Discussion

The study is based on the evaluation of the genetic expression of

identified NSCLC DEGs and the understanding of the functional

enrichment of their genetic variants. The differential expression

analysis revealed 10 significant NSCLC- associated genes (DOCK4,
FIGURE 8

Validation of the identified DEGs at the translational level using the Human Protein Atlas database. The seed genes showed expression in the tissues
of NSCLC patients.
FIGURE 7

Validation of identified DEGs in the Cancer Genome Atlas (TCGA) database. The box plot shows the expression of genes in mRNA using data from
the TCGA database in GEPIA. The method for differential analysis is one-way ANOVA, using disease state. The data was consistent with our study,
and their p-values <0.05. The * indicates the difference in gene expression between normal and diseased tissues.
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FIGURE 9

Drug- gene network analysis. The network shows the interaction of important drugs with the identified differentially expressed genes in NSCLC. The
red color represents the NSCLC -related DEGs, and their interaction types, such as increased expression after responding to a substance, decreased
expression, co-treatment, binding, and phosphorylation are represented by different colors.
TABLE 4 Interaction of different chemicals/drugs with the identified NSCLC DEGs.

Gene Chemical Interaction Actions

CD24 Arsenic Trioxide Increases expression

CD24 Cobaltous chloride Increases expression

CD24 Eugenol Decreases expression

CD24 Lapatinib Decreases expression

CD24 Triptolide Increases expression

DDR1 Aflatoxin B1 Affects expression

DDR1 Caffeine Decreases phosphorylation

DDR1 Cisplatin Affects response to substance

DDR1 Mitomycin Affects response to substance

DOCK4 Aflatoxin B1 Affects expression

DOCK4 Caffeine Affects phosphorylation

DOCK4 Doxorubicin Affects response to substance

DOCK4 Ivermectin Decreases expression

DOCK4 Theophylline Affects co-treatment

GATA3 Arsenic Trioxide Affects binding, decreases reaction

GATA3 Bisphenol A Increases expression

GATA3 Bungarotoxins Decreases reaction, increases activity

GATA3 Clioquinol Affects binding, decreases reaction

GATA3 Cyclophosphamide Decreases expression

GATA3 Diethylhexyl Phthalate Decreases reaction, increases expression

GATA3 Diethylhexyl Phthalate Increases expression

GATA3 Ethanol Increases expression

GATA3 Levamisole Decreases expression, decreases reaction

(Continued)
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TABLE 4 Continued

Gene Chemical Interaction Actions

GATA3 Rosiglitazone Decreases reaction, increases degradation, increases ubiquitination

GATA3 Thalidomide Increases expression

GATA3 Troglitazone Affects co-treatment, increases expression

GATA3 Valproic Acid Increases expression

GJA4 Arsenic Trioxide Decreases expression

GJA4 Atenolol Increases expression

GJA4 Bisphenol A Increases expression

GJA4 Carvedilol Increases expression

HBEGF Aspirin Decreases reaction, increases expression

HBEGF Atorvastatin Decreases expression

HBEGF Cyclophosphamide Decreases expression

HBEGF Estradiol Increases abundance, increases expression

HBEGF Gefitinib Decreases reaction, increases activity, increases expression, increases secretion

NPR1 Octoxynol Affects co-treatment, increases activity

NPR1 Phenylephrine Increases activity increases localization, increases reaction

NPR1 Tacrolimus Affects expression, decreases reaction

SASH1 Caffeine Affects phosphorylation

TBX2 Ametryne Decreases expression

TBX2 Caffeine Affects phosphorylation
F
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TABLE 5 Predicted miRNA targets.

Gene
symbol

Gene description Target
score

miRNA
name

Total hits miRNA sequence Seed
location

3′-UTR
length

DOCK4 Dedicator of cytokinesis 4 100 hsa-miR-
302c-5p

195 UUUAACAUGGGGGUACCUGCUG 182, 1270,
1653

2173

SASH1 SAM and SH3 domain
containing 1

96 hsa-miR-
4531

204 AUGGAGAAGGCUUCUGA 2352, 3248 3498

ID2 Inhibitor of DNA binding 2 95 hsa-miR-
11181-5p

78 GUCUGACCAACCUCCUCCCGC 401 814

GJA4 Gap junction protein alpha
4

92 hsa-miR-
4476

20 CAGGAAGGAUUUAGGGACAGGC 164, 481 620

TBX2 T-box 2 86 hsa-miR-
338-5p

57 AACAAUAUCCUGGUGCUGAGUG 741 976

HBEGF Heparin-binding EGF- like
growth factor

99 hsa-miR-
194-5p

133 UGUAACAGCAACUCCAUGUGGA 677, 1381 1479

NPR1 Natriuretic peptide receptor
1

84 hsa-miR-
4279

34 CUCUCCUCCCGGCUUC 355 594

GATA3 GATA binding protein 3 97 hsa-miR-
4742-3p

128 UCUGUAUUCUCCUUUGCCUGCAG 738, 1115 1178

CD24 CD24 molecule 96 hsa-miR-
4530

94 CCCAGCAGGACGGGAGCG 217 1830

DDR1 Discoidin domain receptor
tyrosine kinase 1

100 hsa-miR-
199a-5p

89 CCCAGUGUUCAGACUACCUGUUC 1180, 1214,
1275, 1398

1735
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SASH1, ID2, GJA4, TBX2, HBEGF, NPR1, GATA3, and CD24) and

were considered the seed genes. The differential expression of the

cDNA datasets between cases and controls was explored at the

cellular level in lung tissues, and a possible association of these

genes was observed in NSCLC cancer. Microarray studies can help

in acquiring further information regarding the mechanisms of

human genetic disorders.

The protein-protein network analysis revealed that these hub

genes have an important association with the disease. These genes

showed interaction with several important genes that have a role in

NSCLC development, such as, EGFR (27), ERBB4 (28–30), SMAD3

(31–33), andNPPA (34), showing potential cross-talk between these

genes in the progression of NSCLC. The hub genes showed

important roles in TGF-beta, Rap1, ErbB, and GnRH signaling

pathways and hematopoietic cell lineages. T ranscriptome analysis

revealed expressive transcription factors encoded by these genes,

such as LMO2, ELF2, TBX5, PPARG , and FOXC1 . The

dysregulation of miRNAs in these genes leads to disease

progression and onset, as they are involved in the regulation of

post-transcriptional and translational events (35, 36). Therefore,

target prediction of miRNAs to aid in functional annotation is

crucial (37, 38).

The expression profiling was validated using different

databases, such as GEPIA and the Human Protein Atlas, which

confirmed the expression of these genes in the diseased state by

experimental analysis. The box plot obtained from GEPIA showed

an obvious difference in the expression of these genes in the

control and disease states. The large-scale characterization of

human genomes has become possible through DNA sequencing

studies, with different types of genetic variants, such as single

nucleotide variants (SNVs) and copy number variations being

revealed using this approach. The major challenge in current

biomedical research is to determine the association of genotype

with phenotypic characteristics, the molecular mechanisms

underlying a disease state, the mutations underlying a cancerous

state, or any disease variants (39, 40). Several projects are now

available that have a large catalog of genetic variants, such as the

Cancer Genome Atlas (TCGA), the International Cancer Genome

Consortium (ICGC), and others that provide information about

thousands of individual and tumor genomes. Post -translational
Frontiers in Oncology 12
modification (PTM) involves molecular switches of more than 400

amino acid chemical modifications that expand the functional

repositories of proteins (31, 41). Almost 400,000 human protein

sites are experimentally determined to act as PTM sites, which

include phosphorylation, acetylation, ubiquitination, and

methylation (42, 43). These PTM sites are helpful in

personalized therapies for cancer and are good drug target sites

as they aid in the interpretation of genetic variants, the association

of genotype and phenotype, and the underlying molecular

mechanisms of disease (44, 45). Our study revealed the PTM

sites of the hub genes that might be involved in the progression of

NSCLC. Moreover, the immunohistochemistry data also showed

the expression of these genes in the pathological condition of lung

cancer. SASH1 (SAM and SH3 domain-containing protein 1) has a

major role in cellular processes such as apoptosis and cellular

proliferation. It acts as a tumor suppressor protein. D ifferential

expression analysis revealed that SASH1 is downregulated in

NSCLC, which may be a factor leading to cancer progression.

Burgess et al. (46) studied the association of low SASH1 mRNA

expression with poor survival in adenocarcinoma. Their results

showed that the compounds that increase the expression level of

SASH1 could be used as a novel approach to treating NSCLC,

which warrants further studies (46, 47). The expression of HBEGF

and its role in lung cancer have been studied by several scientists.

HBEGF (heparin-binding EGF-like growth factor) belongs to the

EGF family of growth factors and acts as an EGFR ligand. It is

more potent than EGF in inducing cellular proliferation and

migration. HBEGF has been shown to be upregulated in several

cancers, including lung cancer. The gene generates signals for

differentiation, migration, proliferation, and cell survival by

binding to and over- activating the EGFR pathway (38, 48, 49).

Our analysis also revealed overexpression of this gene in NSCLC,

which could serve as a potential therapeutic target for NSCLC.

GJA4 is a gap junction (GJ) protein also known as Cx37. GJs are

involved in intracellular communication through junctions and

have an important role in homeostasis. The disruption of GJs

results in pathological states, most commonly carcinogenesis (50,

51). The transmembrane proteins, connexins, form the gap

junctions. Cxs can serve as tumor suppressors or tumor

promoters depending on the stage and type of cancer (52).
A B

FIGURE 10

(A) Biological pathway associated with the miRNA predicted targets. (B) Site of expression of mirProduct (p<0.05) showing significant expression in
the lungs.
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DOCK4 belongs to the DOCK180 family, which has diverse cell-

specific functions and plays an important role in the metastasis of

various tumors such as breast cancer, melanoma, and glioblastoma.

The proteins function by engaging in various protein-protein

interactions. Yu et al. (53) investigated the role of DOCK4 in the

prometastatic effects of TGF-b in lung adenocarcinoma. Their study

revealed that TGF-b induced rapid expression of DOCK4 in a

Smad-dependent manner. The induction of DOCK4 proved crucial

in TGF-B-driven lung adenocarcinoma metastasis (53). TBX2 (T-

box) plays a pivotal role in embryonic development and the control

of cell cycle progression and carcinogenesis. It has also been

implicated in several cancers, including melanoma, pancreatic

cancer, and breast cancer. Although studies have shown the role

of TBX2 as a tumor suppressor gene (54, 55), there is some evidence

correlating the overexpression of TBX2 in NSCLC. TBX2

upregulation was found to be upregulated in NSCLC, making it

an important prognostic marker in NSCLC (56). The DDR gene

belongs to a novel class of receptor tyrosine kinases and has a

potential role in cancer invasion. Evidence suggests that

upregulation of DDR1 in NSCLC contributes to progression and

poor prognosis, resulting in increased invasiveness (57, 58). CD24, a

ligand for P-selectin, has been shown to contribute to the metastatic

capacity of CD24- expressing cells (59). Kristiansen et al.

demonstrated the expression of CD24 in NSCLC is an

independent prognostic tumor marker, underscoring its

importance in the metastatic progression of cancer (60). Several

pieces of evidence have supported the role of hub genes in the

progression and development of NSCLC. The study provides a

better understanding of the genetic variations of the genes involved

in cancer progression, in addition to their interaction with other

proteins in the development of this disease.

D rug-gene network analysis has proven to be essential not only

for understanding disease pathophysiology but also for the

identification of new drug targets in drug design. The network

has identified several potential candidate drugs that have shown

associations with these genes.
Conclusions

The study aids in sorting out disease-specific genetic variants

from cDNA datasets using a network-based system- level approach.

Several complex phenotypic mechanisms, such as cellular

replication, apoptosis, mitotic division, and protein signaling,

could be understood using this comprehensive and effective
Frontiers in Oncology 13
method. We have found significant genes (SASH1, TBX2, HBEGF,

etc.) linked to NSCLC cancer that can serve as potential drug

targets. Potential interactions of these genes with other essential

genes leading to cell cycle progression and apoptosis, causing

carcinogenesis, have been found. These results can unravel the

possible mechanisms of NSCLC cancer progression and occurrence.
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