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Clear cell renal cell carcinoma:
immunological significance of
alternative splicing signatures
Jiayu Zhang, Hongyi Jiang, Dapang Rao* and Xishi Jin*

Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University,
Wenzhou, China
Background: Renal cell carcinoma (RCC) accounts for 90% of renal cancers,

of which clear cell carcinoma (ccRCC) is the most usual histological type. The

process of alternative splicing (AS) contributes to protein diversity, and the

dysregulation of protein diversity may have a great influence on

tumorigenesis. We developed a prognostic signature and comprehensively

analyzed the role of tumor immune microenvironment (TIME) and immune

checkpoint blocking (ICB) treatment in ccRCC.

Methods: To identify prognosis-related AS events, univariate Cox regression

was used and functional annotation was performed using gene set

enrichment analysis (GSEA). In this study, prognostic signatures were

developed based on multivariate Cox, univariate Cox, and LASSO

regression models. Moreover, to assess the prognostic value, the

proportional hazards model, Kruskal–Wallis analysis, and ROC curves were

used. To obtain a better understanding of TIME in ccRCC, the ESTIMATE R

package, single sample gene set enrichment analysis (ssGSEA) algorithm,

CIBERSORT method, and the tumor immune estimation resource (TIMER)

were applied. The database was searched to verify the expression of C4OF19

in tumor and normal samples. Regulatory networks for AS-splicing factors

(SFs) were visualized using Cytoscape 3.9.1.

Results: There were 9,347 AS cases associated with the survival of ccRCC

patients screened. A total of eight AS prognostic signatures were developed

with stable prognostic predictive accuracy based on splicing subtypes. In

addition, a qualitative prognostic nomogram was developed, and the

prognostic prediction showed high effectiveness. In addition, we found

that the combined signature was significantly associated with the diversity

of TIME and ICB treatment-related genes. C4ORF19 might become an

important prognostic factor for ccRCC. Finally, the AS-SF regulatory

network was established to clearly reveal the potential function of SFs.

Conclusion: We found novel and robust indicators (i.e., risk signature,

prognostic nomogram, etc.) for the prognostic prediction of ccRCC. A new

and reliable prognostic nomogram was established to quantitatively predict
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the clinical outcome. The AS-SF networks could provide a new way for the

study of potential regulatory mechanisms, and the important roles of AS

events in the context of TIME and immunotherapy efficiency were exhibited.

C4ORF19 was found to be a vital gene in TIME and ICB treatment.
KEYWORDS

clear cell renal carcinoma (ccRCC), alternative splicing (AS), tumor immune
microenvironment (TIME), prognosis, immunotherapy
1 Introduction

Over the past decades, the global incidence of renal cell

carcinoma (RCC) is increasing (1, 2). Among urinary cancers, the

mortality rate of renal cell carcinoma ranks first in the world (2). As

the main subtype of renal cell carcinoma, clear cell renal carcinomas

(ccRCCs) are among the most malignant tumors in urology,

responsible for approximately 90,000 deaths annually (3).

Approximately 30% of patients with ccRCC have metastases at

the first diagnosis, and 20%–40% have recurrence after tumor

resection (4, 5). In traditional clinical work, there are some good

prognostic biomarkers developed in RCC. However, these

approaches may be unreliable due to heterogeneity within the

patients (6). Consequently, there is an urgent need for a new

approach to predict clinical results more accurately, so as to

provide help in choosing treatment strategies.

In recent years, more and more evidence has emphasized the role

of immune response as an essential feature of the occurrence and

development of ccRCC and therapeutic outcomes (3).

Immunotherapy has attracted great attention because of its
f AS events; AA,

ate promoter; AT,

xons; RI, retained

phocyte antigen 4;

a; HAVCR2, also

, indoleamine 2,3‐

ion operator; OS,

programmed cell

CD1, also known

ed index—a visual

cid; ROC, receiver

e sample gene set

tumor‐infiltrating

; TIMER, tumor

ulin domain and

metastasis; Tregs,

danderson.org/

CGA) : h t tp : / /

g/; CIBERSORT:

02
encouraging results in a variety of malignant tumors (7). Therefore,

the most effective strategies were identifying ccRCC patients with

molecular signatures, improving prognostic accuracy, and optimizing

immunotherapy based on molecular risk distributions.

Alternative splicing (AS) is defined as the process of producing

different mRNA splicing isomers from pre-mRNA by different

splicing methods (8). AS events were well known for involving AT,

AP, AD, AA, ME, ES, and RI. In post-transcriptional regulation,

alternative splicing plays a critical role, and more and more studies

indicate that alternative splicing is closely linked to cancer cell invasion

and metastasis (3, 9, 10). In addition, we learned that splicing factors

had a great influence on the regulation of AS events (11). There was a

need to mention that abnormal splicing factors could contribute to

oncogenic splicing isoforms (12, 13). Unfortunately, there was a lack

of adequate understanding of the relationship between the prognostic

signature, immunotherapy, and TIME.

In this study, as a result of an integrated analysis of AS events, we

characterized TIME and discovered potential molecular mechanisms

involved in tumorigenesis. The AS pattern of the KIRC cohort in

TCGA was described, and the correlation between AS events and

survival was verified using comprehensive bioinformatic analysis.

Afterward, the predictive prognostic signatures based on AS events

were built and then proven. Next, to meet the clinical application and

promote development, we made an AS-clinicopathologic nomogram

which could effectively predict the prognosis and guide clinical work.

After that, we comprehensively analyzed the association of the

prognostic signature newly established with TIME complexity and

immune checkpoint blocking (ICB) treatment outcomes. Furthermore,

we found a new key gene—C4ORF19, and the underlying role of

C4ORF19 in ccRCC was investigated. In the end, we established the

AS-SF regulatory network to clarify the underlying mechanisms of

ccRCC occurrence and development. The AS-SF networks could

provide a new way for the study of potential regulatory mechanisms.
2 Materials and methods

2.1 Multiomics data acquisition

The transcriptome and survival data of the ccRCC patients in

this study came from The Cancer Genome Atlas portal website
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(TCGA). Also, the AS data of TCGA came from SpliceSeq, and the

SF expression data were obtained from the SpliceAid 2 database

(www.introni.it/spliceaid.html). All analyses strictly followed

TCGA’s published guidelines, and the detailed analysis flowchart

can be found in Figure 1.
2.2 AS profile recognition process

When setting the PSI value above 0.75 as the point for filtration,

samples were partitioned. Using the UpSetR software package, the

UpSet plot was drawn and seven subtypes of AS events were found.

We named AS by splicing types, ID numbers in splicing sequences,

and corresponding parental gene names. There was a case that

C4orf19 was the corresponding parent gene name, 69001 was the ID

number in SpliceSeq, and AT was the splicing type in “C4orf19|

69001|AT”.
2.3 Screening AS events associated
with survival

When we detected the PSI standard deviation less than 0.01, the

data of AS events were deleted. The connection between the overall

survival (OS) and AS events was found in the univariate Cox

regression analysis (Additional file 1: Table 1), which was

exhibited in the UpSet map and volcano map. In addition, each

bubble chart of the seven subtypes summarized the 20 most

important AS events.
2.4 Prognostic signature and nomogram

Firstly, candidate models for each splicing pattern were

determined by least absolute shrinkage and selection operator

(LASSO) regression analysis, in which way we could also avoid

model overfitting. Next, multivariate Cox regression analysis was

applied to screen prognostic predictors from the identified AS

events. Because the pattern of AS events in post-transcriptional
Frontiers in Oncology 03
modification was independent of each subtype, the AS events

identified in each of the splicing subtypes described above were

integrated and then another prognostic feature was generated.

Afterward, risk scores were calculated according to the formula:

risk score = bAS event1 × PSIAS event1 +⋯ + bAS eventn × PSIAS

eventn. The specific formulas for each prognostic signature can be

found in Additional file 1: Table 2. Consequently, the low-risk

group and the high-risk group were born by the calculated median

risk scores. The “survival” R package was employed to analyze K–M

survival curves. The predictive value of this prognostic signature

was validated by using time-dependent receiver operating

characteristic (ROC) curves. Then, univariate and multivariate

Cox regression analyses were exploited to ascertain whether this

signature could be used as an independent prognostic factor. In

addition, stratified survival analysis further verified whether

prognostic performance in patients was independent of clinical

data including age; sex; pathological grade; T, N, and M categories;

and tumor stage. Then, we calculate the AUC from the ROC curve

to systematically measure the value of the accuracy of the model for

1-, 2-, and 3-year OS. Finally, to accurately calculate the OS of

ccRCC patients, we established prognostic nomograms to obtain

the survival probabilities of 1, 2, and 3 years. Then, there was a

calibration curve showing the prognostic value of the AS-

constructed nomogram. It should be noted that the model was

highly predictive when the calibration curve was close to 45°.
2.5 Risk score and characteristics of
tumor-infiltrating immune cells

Information on immune infiltrates such as B cells from each

specimen was downloaded from TIMER. The ssGSEA algorithm of

the R package “GSEAbase” was performed to elucidate the

enrichment of two different risk subgroups in 29 gene sets related

to immune function. Subsequently, we calculated the purity of the

tumor and the degree of cell invasion (stromal and immune cells)

using the R package “ESTIMATE” to validate the significantly

different characteristics of the TIME between the low-risk and

high-risk groups. The proportion of 22 immune cell types in the
FIGURE 1

Overall research design. Flow process diagram presenting the process of comprehensive analysis.
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tumor sample was recognized by assessing the relative subsections

of RNA transcripts from CIBERSORT.
2.6 ICB treatment

According to existing research, the expression level of key genes

associated with immune checkpoint blockade might have a close

relationship with the clinical results of ICB treatment (14, 15). Six

key genes (PD‐L1, IDO1, PD‐L2, PD‐1, CTLA‐4, and TIM‐3) of

immune checkpoint blockade therapy in ccRCC (16, 17) were

obtained. Afterward, to investigate the potential role of risk score

in immune checkpoint blockade therapy of ccRCC, AS-based

prognostic characteristics were significantly related to the

expression levels of four key genes for immune checkpoint

blockade. At last, the expression levels of 47 immune checkpoint

genes (i.e., CTLA4, BTLA, etc.) were compared in low-risk and

high-risk patients.
2.7 Splicing regulatory network

A total of 404 SFs derived from a previous study (18) are

exhibited in Additional file 1: Table 3, and the RNA-seq profiles of

SFs can be found in the TCGA database. In addition, we conducted a

Spearman correlation analysis to assess the connection between SFs

and survival-related AS events. p <0.001 and correlation coefficient

>0.6 were the cutoff values. In the end, Cytoscape (version 3.9.1) was

applied to build an underlying SF-AS regulatory network.
2.8 Experimental proof

2.8.1 Immunohistochemistry
From Outdo Biotech (Shanghai, China), we purchased one

ccRCC tissue microarray (TMA, Cat. HKid-CRCC060PG-01).

TMA HKID-CRCC060PG-01 contained 30 paired adjacent tissues

and 30 ccRCC tissues. Moreover, Outdo Biotech (Shanghai, China)

also provided detailed clinicopathological features of this TMA, and

TMA was approved ethically by the Clinical Research Ethics

Committee, Outdo Biotech (Shanghai, China).

On TMA samples of ccRCC tissues, immunohistochemistry

(IHC) was performed according to the standard procedure. For

antigen retrieval, EDTA was used, and the primary antibodies were

incubated overnight at 4°C. The primary antibody used in the study

was anti-C4ORF19 (1:500 dilution; Cat. PA5-60368, RRIDP:

AB_2639064, Thermo Fisher Scientific). Lastly, using Aperio

Digital Pathology Slide Scanners, stained TMA was scanned to

visualize antibody staining and hematoxylin counterstaining.
Frontiers in Oncology 04
2.8.2 Real-time polymerase chain reaction
Human renal cancer tissue and adjacent/normal tissue came

from the biological sample library of the Second Affiliated Hospital

of Wenzhou Medical University (Yuying Children’s Hospital of

Wenzhou Medical University). The sample numbers were

KI220001, KI220002, KI220003, LI220005, and KI220006.

Quantitative real-time polymerase chain reaction (qRT-PCR) was

performed (approval nos. 2022-K-151-01, 2022-K-151-02, and

2022-K-151-03 by the ethics committee).

According to the extraction standards provided by the reagent

manufacturer, TRIzol kit (Invitrogen, Carlsbad, CA, USA) was used to

extract total RNA (tRNA). We used a NanoDrop 2000

spectrophotometer to determine RNA concentration and purity. In

the following steps, total RNA was reverse-transcribed into cDNA

using the RevertAid First Strand cDNA Synthesis Kit (TaKaRa:Tokyo,

Japan). SYBR Green detection reagent (TaKaRa) and LightCycler® 96

Real-Time PCR System (Roche, IN, USA) were used for quantitative

polymerase chain reaction (qPCR). Finally, the 2−DDCq method was

used to examine gene expression data. All primers were synthesized by

Sangon Biotech (Shanghai, China). The sequences of all primers used

in qPCR are shown in Table 1.
2.9 Statistical analysis

In this study, for comparisons between two different groups, we

used the Wilcoxon test, and for comparisons between more than

two groups, we used the Kruskal–Wallis test. OS was the time

between diagnosis and death. The K–M log-rank test was employed

to plot the survival curse. Moreover, the Pearson correlation test

was applied to explore the correlation between risk score, clinical

variables, and degree of immune cell infiltration and immune

checkpoint. When the result of the CIBERSORT algorithm p ≥

0.05, further study was abandoned. Then, in order to verify the

independent prognostic prediction abilities of risk signatures,

univariate and multivariate analyses were carried out by the Cox

regression model. For 1-, 2-, and 3-year OS, we used ROC curves to

evaluate their prognostic value. p <0.05 was regarded as statistically

significant. All statistical analyses were performed using R software

in version 4.1.2.
3 Results

3.1 Basic information on patients and AS
events in ccRCC

Five hundred thirty-seven patients with ccRCC were obtained

from the TCGA database, and 11 patients without complete
TABLE 1 Sequences of all primers used in qPCR.

Genes Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′)

C4orf19 CAGCCTGGGTGACAGTGCAA AACCAGCTCGGTCCCTTCCT

GADPH GCGGGGCTCTCCAGAACATC TCCACCACTGACACGTTGGC
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information were rejected. Therefore, 526 patients in total were

included. Table 2 presents the basic clinical data of all ccRCC

patients. In addition, by using the UpSet plot (Figure 2A), we

analyzed the AS event profiles comprehensively and displayed gene

intersections among the seven subtypes of AS events. It could be

seen that ES was the most frequent splicing pattern, while ME was

the least frequent.
3.2 Finding survival-related AS events

Univariate Cox regression analysis showed that 9,347 AS events

were significantly associated with survival (p < 0.05). Furthermore, a

detailed record of the data can be found in Additional file 1: Table 1.

In Figure 2B, the gene interactions among the seven types of

survival-related AS events are shown. Moreover, ES was still the

main splicing pattern. On the other hand, the volcano map was

designed to present the distribution of AS events (Figure 3A), and

the top 20 AS events with significant survival correlation from seven

subtypes were summarized by using the bubble graphs

(Figures 3B–H).
3.3 Establishment of the verified
prognostic signature

In this study, the prognostic abilities of the survival-related AS

events found in the previous step were evaluated by using the
Frontiers in Oncology 05
stepwise LASSO algorithm and multivariate Cox regression

analysis. Moreover, the LASSO regression analysis results of

ALL AS events and seven AS event subtypes are exhibited in

Figures 4A, B, 5A–G, 6A–G. Next, the best survival-related AS

events, which were determined by multivariate Cox analysis, were

performed to build eight AS prognostic signatures, namely, AA,

AD, AP, AT, ES, ME, RI, and ALL. The formulas for each

prognostic signature are detailed in Additional file 1: Table 2.

Using the median risk score as a standard for further study, ccRCC

patients were ranked into low- and high-risk groups. The

distribution of eight different AS events (AA, AP, AT, AD, ME,

RI, ES, and ALL) and their PSI values in the two subgroups and

patients was exhibited in the heatmap (Figures 4C, 7A, D, 8A, D,

9A, D, 10A). In the same way, the distribution of risk score

(Figures 4D, 7B, E, 8B, E, 9B, E, 10B) and the dot plot of

survival status (Figures 4E, 7C, F, 8C, F, 9C, F, 10C) indicated a

lower overall survival in the higher-risk patients. Furthermore, the

Kaplan–Meier curve also confirmed that in the low-risk subgroup,

patients had a significantly better prognosis than those in the high-

risk subgroup (Figures 4A, 11A, C, E, G, 12A, C, E, G; all P < 0.05).

The results showed that the areas under the risk score curves of 1-,

2- and 3-year survival were all greater than 0.70, indicating that

the established prognostic signature had highly sensitive and

specific survival prediction ability (Figures 4G, 11B, D, F, G,

12B, D, F, G). Moreover, the risk score might become an

independent prognostic signature of the ccRCC (univariate Cox

model in Figures 4H and 13A, C, E, G, I, K, M and multivariate

Cox regression analysis in Figures 4I and 13B, D, F, H, J, L, N).
3.4 Construction of the verified nomogram

According to the difference in the risk score in different subtypes

of clinical variables, clinical significance was explored. With the

progression of tumor grade (most p < 0.05, Figure 14A);

clinicopathological stage (most p < 0.05, Figure 14B); and T, M, and

N stages (most p < 0.05, Figures 14C–E), the risk score significantly

rose, suggesting that prognostic risk score had a positive correlation

with tumor progression. Next, the prognostic nomogram established

for forecasting the prognosis of ccRCC patients is exhibited in

Figure 14F. It was well known that there was a great prognostic

capability of 1-, 2-, and 3-year OS in the nomogram plot when the

calibration curve was close to the diagonal (Figures 14G–I).
3.5 Risk score and TIME characterization

In order to further investigate the possibility of using risk score

as an immune indicator, we performed correlation analyses between

risk score and immune score (from the ESTIMATE algorithm),

ssGSEA characteristics, and TIC subtypes and levels (from the

CIBERSORT method). The high-risk patients achieved a higher

immune score and ESTIMATE score and lower tumor purity

(Figures 15A–C), which suggested higher immune infiltration.

However, there was no significant difference in stromal score

(Figure 16). Then, in Figures 15D, E, immune-related signatures
TABLE 2 Baseline data of all ccRCC patients.

Characteristics Type N Proportion

Age ≤65 352 65.55%

>65 185 34.45%

Gender Female 191 35.57%

Male 346 64.43%

Grade G1–2 244 45.44%

G3–4 285 53.07%

Unknown 8 1.49%

Stage I–II 326 60.71%

III–IV 208 38.73%

Unknown 3 0.56%

T stage T1–2 344 64.06%

T3–4 193 35.94%

M stage M0 426 79.33%

M1 79 14.71%

Unknown 32 5.96%

N stage N0 240 44.69%

N1 17 3.17%

Unknown 280 52.14%
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were shown to differ between the two subgroups, where

immunological scores corresponding to immune-related

signatures were exhibited for each patient in the low-/high-risk

group. The results revealed that the infiltration of immune cells

such as CD8+ T cells, macrophages, T helper cells, Tfh, Th1 cells,

Th2 cells, and TIL and the immune signatures such as

parainflammation, T-cell co-inhibition, T-cell co-stimulation,

checkpoint, inflammation-promoting, and cytolytic activity were

significantly increased with increased risk score (Figure 15F). On

the contrary, iDCs, mast cells, and type IIIFN response were

significantly decreased with increased risk score (Figure 15F). The

CIBERSORT algorithm results showed that the proportion of CD8+

T cells, activated CD4 memory T cells, follicular helper T cells,
Frontiers in Oncology 06
Tregs, and M0 macrophages was positively associated with risk

score, and the proportion of naive B cells, memory B cells, M1

macrophages, M2 macrophages, resting dendritic cells, and resting

mast cells was negatively associated with risk score (Figure 15G). In

conclusion, the ALL prognostic signature could be a kind of new

method to clarify the ccRCC immunoregulatory network.
3.6 Correlation between the ALL
prognostic signature and ICB key therapy

With the increasing attention paid to ICB therapy in clinical

work, immune checkpoint inhibitors have greatly changed the
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(A) The UpSet plot of gene interactions among the seven types of AS events in the TCGA KIRC cohort. (B) The UpSet plot of gene interactions among
the seven types of prognostic relevant AS events.
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FIGURE 3

The survival-relevant alternative splicing (AS) events. (A) The volcano plots of survival-relevant AS events. The most significant survival-relevant AAs,
ADs, APs, ATs, ESs, MEs, and RIs in the TCGA KIRC cohort (B–H).
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FIGURE 4

Confirmation of the ALL AS-based prognostic signature. (A) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of the whole
AS events. (B) Ten times cross‐validation for tuning parameter selection in the LASSO regression. (C) Heatmap of the percent spliced index (PSI)
value of ALL signature AS events in clear cell renal carcinoma (ccRCC). The colors from red to green show a trend from high expression to low
expression. (D) Distribution of the ALL signature risk score. (E) The survival status and duration of ccRCC patients. (F) The K–M curve presenting
survival in the high-risk and low-risk sets. (G) ROC analysis of the risk scores for overall survival prediction. The AUC was calculated for ROC curves,
and sensitivity and specificity were calculated to assess score performance. Proportional hazards model results. (H) Univariate Cox regression results.
(I) Multivariate Cox regression results.
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FIGURE 5

LASSO coefficient of prognostic relevant AS events. (A) AA. (B) AD. (C) AP. (D) AT. (E) ES. (F) ME. (G) RI.
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FIGURE 6

A graph of the error rate of cross-validation. (A) AA. (B) AD. (C) AP. (D) AT. (E) ES. (F) ME. (G) RI.
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FIGURE 7

(A) Heatmap of the PSI value of AA events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(B) Distribution of the AA prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the AA prognostic signature.
(D) Heatmap of the PSI value of AD events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(E) Distribution of the AD prognostic signature risk score. (F) The survival status and duration of ccRCC patients in the AD prognostic signature.
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FIGURE 8

(A) Heatmap of the PSI value of AP events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(B) Distribution of the AP prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the AP prognostic signature.
(D) Heatmap of the PSI value of AT events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(E) Distribution of the AT prognostic signature risk score. (F) The survival status and duration of ccRCC patients in the AT prognostic signature.
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FIGURE 9

(A) Heatmap of the PSI value of ES events in ccRCC. The colors from red to green show a trend from high expression to low expression. (B)
Distribution of the ES prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the ES prognostic signature. (D)
Heatmap of the PSI value of ME events in ccRCC. The colors from red to green show a trend from high expression to low expression. (E)
Distribution of the ME prognostic signature risk score. (F) The survival status and duration of ccRCC patients in the ME prognostic signature.
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clinical decision-making of cancer oncology (19, 20). We screened

out six key immune checkpoint inhibitor genes (PDCD1, CD274,

PDCD1LG2, CTLA‐4, HAVCR2, and IDO1) (21, 22) for further

analysis. Then, to uncover the potential role of risk signature in ICB

therapy for ccRCC, we comprehensively analyzed the association

between the ALL prognostic signature and ICB key targets

(Figure 17A). The results showed that the ALL prognostic

signature had a significant positive association with PDCD1 (r =

0.3; p = 6.1e−12; Figure 17B) and CTLA4 (r = 0.33; p = 8.8e−15;

Figure 17D) and a significant negative association with HAVCR2

(r = −0.13; p = 0.0035; Figure 17C) and CD274 (r = −0.13; p =

0.0025; Figure 17E). Furthermore, 36 of the 47 (i.e., HHLA2, CD44,

etc.) ICB key gene expression levels between the low- and high-risk

groups were significantly dysregulated in the further correlation

analysis (Figure 17F). These results suggested that the level of the
Frontiers in Oncology 10
ALL prognostic signature does affect the expression changes of ICB

key genes, which could be a valuable factor.
3.7 Role of C4ORF19 in the prognosis and
ICB treatment of vital genes

In this study, we found only one prognostic AS-related gene,

C4ORF19, whose expression level was significantly downregulated.

According to the TCGA database, the expression level of C4ORF19

in normal adjacent tissues was higher than that in tumor tissues

(Figure 18A). The IHC experiment showed that the expression level

of C4ORF19 in ccRCC tissue was significantly lower than that in

normal tissue, and the experimental results of qPCR also confirmed

this point (p = 0.0115) (Figure 19). It could be clearly seen that the
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FIGURE 10

(A) Heatmap of the PSI value of RI events in ccRCC. The colors from red to green show a trend from high expression to low expression.
(B) Distribution of the RI prognostic signature risk score. (C) The survival status and duration of ccRCC patients in the RI prognostic signature.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1206882
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1206882
expression levels of C4ORF19 in different tumor grades (Figure 18C,

almost p < 0.05), different pathological stages (Figure 18D, almost

p < 0.05), T state, M state, and gender (Figures 18E–G, almost p <

0.05) had significant statistical significance. In order to further
Frontiers in Oncology 11
assess the prognostic value of C4ORF19 in ccRCC, K–M analyses

were performed between patients with low and high expression of

C4ORF19. A higher C4ORF19 expression level significantly

correlated with a longer overall survival time, as illustrated in
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FIGURE 11

(A) Kaplan–Meier curve presenting survival in the AA prognostic signature. (B) ROC analysis of the risk scores in the AA prognostic signature. (C)
Kaplan–Meier curve presenting survival in the AD prognostic signature. (D) ROC analysis of the risk scores in the AD prognostic signature. (E)
Kaplan–Meier curve presenting survival in the AP prognostic signature. (F) ROC analysis of the risk scores in the AP prognostic signature. (G) Kaplan–
Meier curve presenting survival in the AT prognostic signature. (H) ROC analysis of the risk scores in the AT prognostic signature.
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FIGURE 12

(A) Kaplan–Meier curve presenting survival in the ES prognostic signature. (B) ROC analysis of the risk scores in the ES prognostic signature.
(C) Kaplan–Meier curve presenting survival in the ME prognostic signature. (D) ROC analysis of the risk scores in the ME prognostic signature.
(E) Kaplan–Meier curve presenting survival in the RI prognostic signature. (F) ROC analysis of the risk scores in the RI prognostic signature.
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Figure 18B (p < 0.001). Moreover, in 28 of 47 immune check

blockade-associated genes (i.e., PDCD1, CTLA4, etc.), there were

significant dysregulations in the expression levels between the low

C4ORF19 group and high C4ORF19 group in different subgroups

(Figure 18H). Then, a possible role for C4ORF19 in ICB treatment

of ccRCC was explored by analyzing the association between

C4ORF19 and ICB key targets adjusted for tumor purity

using TIMER. The TIMER results exhibited that C4ORF19 had a

significant positive correlation with CD274 (r = 0.361; p = 1.21e−15)

and HAVCR2 (r = 0.137; p = 3.15e−03) and a significant negative

correlation with PDCD1 (r = −0.129; p = 5.46e−03) and CTLA4 (r =

−0.095; p = 4.11e−02; Figure 18I), suggesting that C4ORF19 may

play a vital role in the ICB treatment of ccRCC.
3.8 C4ORF19 in TIME

Firstly, we classified ccRCC patients into high/low C4ORF19

groups for further study according to the median C4ORF19
Frontiers in Oncology 12
expression level. The ESTIMATE results showed significantly

higher stromal and immune scores in the low C4ORF19 group

than in the high C4ORF19 group, suggesting more infiltration of

stromal and immune cells and lower tumor purity in the low

C4ORF19 group (Figures 20A–D). Moreover, the relationship

between the gene copy number of the different mutation types

and main immune cells is exhibited in Figure 20E. Afterward, a

positive correlation was found between C4ORF19 expression level

and B-cell infiltration, while a negative correlation was found

between C4ORF19 expression level and CD8+ T-cell infiltration.

There was no significant difference in the expression level of

C4ORF19 when CD4+ T cells, macrophages, and neutrophils

were infiltrated (Figure 20F). The consequences of ssGSEA

presented that the infiltration fraction of aDCs, CD8+ T cells,

DCs, macrophages, pDCs, Th1 cells, Th2 cells, NK cells,

parainflammation, T helper cells, Tfh, TIL, APC co-stimulation,

checkpoint, T-cell co-stimulation, CCR, cytolytic activity,

inflammation-promoting, and IFN-response type-I were

significantly increased when the C4ORF19 expression level was
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FIGURE 13

(A) Univariate Cox regression analyses in the AA prognostic signature. (B) Multivariate Cox regression analyses in the AA prognostic signature.
(C) Univariate Cox regression analyses in the AD prognostic signature. (D) Multivariate Cox regression analyses in the AD prognostic signature.
(E) Univariate Cox regression analyses in the AP prognostic signature. (F) Multivariate Cox regression analyses in the AP prognostic signature.
(G) Univariate Cox regression analyses in the AT prognostic signature. (H) Multivariate Cox regression analyses in the AT prognostic signature.
(I) Univariate Cox regression analyses in the ES prognostic signature. (J) Multivariate Cox regression analyses in the ES prognostic signature.
(K) Univariate Cox regression analyses in the ME prognostic signature. (L) Multivariate Cox regression analyses in the ME prognostic signature.
(M) Univariate Cox regression analyses in the RI prognostic signature. (N) Multivariate Cox regression analyses in the RI prognostic signature.
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FIGURE 14

Correlation of risk score with clinical features and construction of nomogram. (A) Correlation of risk score with tumor grade. (B) Correlation of risk
score with clinicopathological stage. (C) Correlation of risk score with T status. (D) Correlation of risk score with M status. (E) Correlation of risk
score with N status. (F) A nomogram was constructed by stage and risk signature for predicting the survival of ccRCC patients. (G) One‐year
nomogram calibration curves. (H) Two‐year nomogram calibration curves. (I) Three‐year nomogram calibration curves.
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FIGURE 15

Correlation between infiltrating immune cells and the ALL AS-based prognostic signature. (A) Comparison of tumor purity between the low- and high-
risk groups. (B) Comparison of immune score between the low- and high-risk groups. (C) Comparison of ESTIMATE score between the low- and high-
risk groups. (D) Heatmap exhibited enrichment of 29 immune signatures of the low-/high-risk groups. Blue represents low activity and red represents
high activity. (E) Heatmap of 29 immune signatures and immune scores of two different risk score groups. Blue represents low activity and red
represents high activity. (F) Difference of enrichment of immune-related signatures between the low-risk and high-risk groups. (G) Distinction of
infiltrating immune cell subpopulations and levels between the low-/high-risk groups. * means p<0.05, * * means p<0.01, * * * means p<0.001.
Frontiers in Oncology frontiersin.org13

https://doi.org/10.3389/fonc.2023.1206882
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1206882
declining (Figure 20G). The consequences of the CIBERSORT

analysis of the TCGA cohort presented that the proportions of

plasma cells, Tregs, activated memory CD4 T cells, and M0

macrophages were significantly higher and the proportions of

monocytes and resting dendritic cells were significantly lower in

patients with low C4ORF19 expression (Figure 20H).
Frontiers in Oncology 14
3.9 Establishment of the SF-AS
regulatory network

The upregulated and downregulated genes were the results of

the correlation analysis with the corresponding gene expression

levels in tumor samples (Additional file 1: Table 4). Finally, to better

explain the underlying mechanisms of AS regulation, we used 351

upregulated AS events (yellow diamond), 88 downregulated AS

events (green triangle), and 31 SFs (blue hexagon; Figure 21) to

establish the correlation network between SF expression level and

PSI value of prognostic AS events. In the regulation network, the

most important four nodes (Additional file 1: Table 4) consisting of

two upregulated AS events (METTL3|26596|RI and FADS3|16305|

RI) and two SFs (DDX39B and LUC7L) were identified. As a result,

these SFs had great potential to further mediate the occurrence and

development of tumors in ccRCC as key regulatory factors involved

in abnormal AS regulation.
4 Discussion

Among urinary cancers, the mortality rate of renal cell

carcinoma ranks first in the world (2). In addition to being one of

the most malignant urologic tumors, ccRCC is also one of the most

common subtypes of renal cell carcinoma (3). Genetic, molecular,

and clinicopathological characteristics of ccRCC could not
FIGURE 16

Comparison of the stromal score between the low-/high-
risk groups.
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FIGURE 17

Association between the ALL AS-based prognostic signature and key immune checkpoint genes. (A) Correlation analyses between immune
checkpoint inhibitors CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1 and risk score. (B) Correlation between risk score and PDCD1.
(C) Correlation between risk score and HAVCR2. (D) Correlation between risk score and CTLA4. (E) Correlation between risk score and CD274.
(F) Comparison of immune checkpoint blockade-related gene expression levels between the low-risk group and high-risk groups. *means p<0.05, *
* means p<0.01, * * * means p<0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1206882
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1206882
A B D

E F

G

I

H

C

rho = 0.054
p = 2.44e−01

partial.rho = 0.361
p = 1.21e−15

Purity CD274

0.25 0.50 0.75 1.00 0 2 4 6 8
0

1

2

3

4

5

0

1

2

3

4

5

C
4O

R
F1

9 
Ex

pr
es

si
on

 L
ev

el
 (l

og
2 

TP
M

)

partial.rho = −0.129
p = 5.46e−03

PDCD1

0 2 4 6
0

1

2

3

4

5

Expression Level       Purity                                              Expression Level

partial.rho = −0.095
p = 4.11e−02

CTLA4

0 1
2

3 4
0

1

2

3

4

5

Expression Level

partial.rho = 0.137
p = 3.15e−03

HAVCR2

2.5 5.0 7.5
0

1

2

3

4

5

Expression Level

FIGURE 18

The clinical significance of C4ORF19 in ccRCC. (A) C4ORF19 was of lower expression in ccRCC tumor tissue than in normal tissue. (B) Higher
ZDHHC16 expression levels revealed longer overall survival. (C) Correlation of C4ORF19 expression with tumor grade. (D) Correlation of C4ORF19
expression with major pathological stages. (E) Correlation of C4ORF19 expression with T status. (F) Correlation of C4ORF19 expression with M
status. (G) Correlation of C4ORF19 expression with gender. (H) Comparison of immune checkpoint blockade-related gene expression levels
between the low C4ORF19 group and high C4ORF19 group. (I) Correlation of C4ORF19 with CD274, PDCD1, CTLA4, and HAVCR2. *means p<0.05,
* * means p<0.01, * * * means p<0.001.
FIGURE 19

Expression levels of C4ORF19 in ccRCC tissues. (A) Representative microphotographs revealed C4ORF19 expression in tumor tissues using IHC
staining. Brown, C4ORF19. Blue, hematoxylin. Bar = 200 mm. (B) Representative microphotographs revealed C4ORF19 expression in paratumor
tissues using IHC staining. Brown, C4ORF19. Blue, hematoxylin. Bar = 200 mm. (C) qPCR showed low expression of C4ORF19 in ccRCC tissue.
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accurately forecast clinical therapy outcomes and the prognosis of

patients (23). RCC has dissimilar immunological features in

pathogenesis and treatment. Thus, there is a great need to further

investigate powerful prognostic tools to predict immunotherapeutic

outcomes and to recognize patients for whom immunotherapy

might be effective.

Growing studies have proven that AS, which refers to a post-

transcriptional modification procedure, functions in physiological

and pathological processes (8). The irregular regulation of AS

generally indicated that tumors occurred and developed,

including ccRCC (10). Therefore, dysregulated expressed genes

have the potential to be utilized as new prognostic indicators and
Frontiers in Oncology 16
effective therapeutic targets. Unfortunately, we still lacked enough

understanding of the relationship of the AS prognostic signature

with TIME and immunotherapy results in ccRCC.

In this study, we made full use of univariate Cox regression

analysis. As a result, we found 9,347 AS events to be significantly

associated with survival, in order to further explore the prognostic

value of AS events. Afterward, based on a comprehensive

bioinformatics analysis, we summarized and validated eight (AP,

AD, AA, AT, ME, RI, ES, ALL) prognostic predictive signatures, all

of which showed strong predictive abilities in ccRCC. In addition,

when c cRCC pa t i en t s we r e g rouped a c co rd ing to

clinicopathological stage and tumor grade, these signatures still
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FIGURE 20

The role of C4ORF19 in TIME features. (A) Comparison of stromal score between the low/high C4ORF19 groups. (B) Comparison of immune score
between the low/high C4ORF19 groups. (C) Comparison of ESTIMATE score between the low/high C4ORF19 groups. ESTIMATE score.
(D) Comparison of tumor purity between the low/high C4ORF19 groups. (E) Copy number of immune cells in ccRCC. (F) Relationship between
C4ORF19 expression level with B cells, CD8+ T cells, CD4+ T cells, macrophages, and neutrophils. (G) Comparison of ssGSEA enrichment between
the low/high C4ORF19 groups. (H) Comparison of CIBERSORT results between the low/high C4ORF19 groups. *means p<0.05, * * means p<0.01, *
* * means p<0.001.
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had excellent predictive ability. We drew a nomogram to better

serve the clinic. As expected, the predicted results of the nomogram

were in good agreement with the actual results. As mentioned

above, we developed and presented the SF-AS regulatory network to

interpret the underlying mechanisms of AS regulation.

Although our new nomogram shows good predictive ability, we

believe that the nomogram we created using risk score and stage

cannot replace the IMDC score model and the nomograms based

on clinical data at present (24, 25). This is because we did not

classify renal clear cell carcinoma into metastatic and non-

metastatic types, making it difficult to make accurate

comparisons. Therefore, external validation of big data may be a

more acceptable method to assess the effectiveness of our

nomogram. However, this does not mean that our new

nomogram is an invalid effort. Our proposed risk score has the

potential to be an independent factor in predicting the prognosis of

renal clear cell carcinoma.

By exploring the role of AS events in TIME with the method

described above, we found that there was generally a high level of

infiltration and a more active immune state in the high-risk group,

which indicates that immune recognition and antitumor effects are

present. Moreover, these results suggested that risk scores could

facil itate the prediction of immunotherapy outcomes.

Unfortunately, we had no way to explore the association between

risk score and ICB treatment outcomes because there was no ICB

treatment dataset in the ccRCC cohort. Then, risk score had a

significantly positive relationship with PDCD1 and CTLA4 and a

significantly negative relationship with HAVCR2 and IDO1.

Furthermore, it was worth mentioning that risk score was

significantly connected with 36 (i.e., HHLA2, etc.) ICB gene
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expression levels. These results above confirmed that risk scores

did have the potential to help develop more scientific and

personalized immunotherapy strategies.

C4ORF19 (Chromosome 4 Open Reading Frame 19) is a

protein-coding gene. Wang W. et al. reported that regulated

C4ORF19 could promote colon adenocarcinoma cell proliferation,

invasion, and migration (26). However, our understanding of the

role of C4ORF19 in clear cell renal carcinoma is not clear so far.

This study indicated that C4ORF19 was significantly downregulated

in cell lines, largely suggesting a poor prognosis for ccRCC. In ICB

immunotherapy for ccRCC, the C4ORF19 expression level

correlated significantly with clinicopathological stage, tumor

grade, and key genes (i.e., IDO1). However, the potential

biological role of C4ORF19 was unclear and required further study.

In general, ccRCC patients with higher risk scores or lower

levels of C4ORF19 expression had higher levels of immune cell

i nfi l t r a t i on in the tumor env i ronmen t , sugge s t ing

immunophenotypic activation, but shorter overall survival.

Therefore, we hypothesized that the ICB pathways might

influence the antitumor effect of immune cells, and the risk score

was related to the expression of immune checkpoint

blockade targets.

This study had the following advantages in exploring new

prognostic factors for ccRCC. First of all, as a result of this study,

we were able to uncover the role of AS events in the formation of

TIME diversity and complexity as well as their role in the prediction

of ICB therapy outcomes, which had not been clarified. In addition,

to uncover the comprehensive landscape of TIME in ccRCC, the

ESTIMATE R package, ssGSEA algorithm, CIBERSORT method,

and TIMER database exploration were employed. Finally, the study
FIGURE 21

The regulatory network between SFs and survival-related AS events. The yellow or green nodes indicated that the AS events were positively or negatively
correlated with survival. Blue hexagons symbolized SFs. The positive/negative correlations (r > 0.6 or r ≤ 0.6) between SFs and AS events were shown
with red/blue lines.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1206882
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1206882
emphasized the biological function of C4ORF19 in clear cell renal

carcinoma for the first time.

The current research also had several shortcomings. First of all,

the AS events in ccRCC were investigated using the public TCGA

cohort, which was not validated using the in-house cohort. In

addition, the effectiveness of prognostic indicators including the

ALL prognostic signature and prognostic nomogram still needed to

be verified through clinical trials. Furthermore, the conclusion that

the key gene C4ORF19 was downregulated in ccRCC tumor tissue

still required a larger number of experiments.
5 Conclusion

All in all, we systematically analyzed the prognostic value of

RNA splicing patterns in order to strengthen the prognostic

prediction of ccRCC. The nomogram we developed using risk

score and stage is not as effective in predicting prognosis

compared with the nomogram based on clinical data. Despite this,

our proposed risk score has the potential to be an independent factor

in predicting the prognosis of ccRCC. In addition, the promising

targets for ccRCC antitumor therapy were identified from the AS-SF

regulatory network. After comprehensive bioinformatics analysis of

AS events, the AS atlas was closely correlated with the TIME

characteristics and immunotherapy of ccRCC. However, these

findings still required more experimental and clinical exploration

to verify. At the same time, the mechanism of tumor occurrence and

development of ccRCC and the impact of these AS events still need

to be further explored.
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10. Climente-González H, Porta-Pardo E, Godzik A, Eyras E. The functional impact
of alternative splicing in cancer. Cell Rep (2017) 20(9):2215–26. doi: 10.1016/
j.celrep.2017.08.012

11. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-
retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR
splicing factor phosphorylation. Mol Cell (2010) 39(6):925–38. doi: 10.1016/
j.molcel.2010.08.011

12. El Marabti E, Younis I. The cancer spliceome: reprograming of alternative
splicing in cancer. Front Mol Biosci (2018) 5:80. doi: 10.3389/fmolb.2018.00080

13. Yang Q, Zhao J, Zhang W, Chen D, Wang Y. Aberrant alternative splicing in
breast cancer. J Mol Cell Biol (2019) 11(10):920–9. doi: 10.1093/jmcb/mjz033

14. Atkins MB, Tannir NM. Current and emerging therapies for first-line treatment
of metastatic clear cell renal cell carcinoma. Cancer Treat Rev (2018) 70:127–37.
doi: 10.1016/j.ctrv.2018.07.009

15. Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade
in B-cell lymphomas. Nat Rev Clin Oncol (2017) 14(4):203–20. doi: 10.1038/
nrclinonc.2016.168

16. Xu W, Atkins MB, McDermott DF. Checkpoint inhibitor immunotherapy in
kidney cancer. Nat Rev Urol (2020) 17(3):137–50. doi: 10.1038/s41585-020-0282-3

17. Cimadamore A,Massari F, Santoni M, Lopez-Beltran A, Cheng L, Scarpelli M, et al.
PD1 and PD-L1 inhibitors for the treatment of kidney cancer: the role of PD-L1 assay.
Curr Drug Targets (2020) 21(16):1664–71. doi: 10.2174/1389450121666200324151056

18. Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, et al. Cancer genome
atlas research network, Buonamici S, Yu L. Somatic mutational landscape of splicing
Frontiers in Oncology 19
factor genes and their functional consequences across 33 cancer types. Cell Rep (2018)
23(1):282–96. doi: 10.1016/j.celrep.2018.01.088

19. Wang Y, Wu L, Tian C, Zhang Y. PD-1-PD-L1 immune-checkpoint blockade in
Malignant lymphomas. Ann Hematol (2018) 97(2):229–37. doi: 10.1007/s00277-017-
3176-6

20. Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint
inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther (2015) 37(4):764–82.
doi: 10.1016/j.clinthera.2015.02.018

21. Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, et al.
Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in
regression of murine gliomas. Clin Cancer Res (2017) 23(1):124–36. doi: 10.1158/
1078-0432.CCR-15-1535

22. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint
blockade: response evaluation and biomarker development. Nat Rev Clin Oncol (2017)
14(11):655–68. doi: 10.1038/nrclinonc.2017.88

23. Kim MC, Jin Z, Kolb R, Borcherding N, Chatzkel JA, Falzarano SM, et al.
Updates on immunotherapy and immune landscape in renal clear cell carcinoma.
Cancers (Basel) (2021) 13(22):5856. doi: 10.3390/cancers13225856

24. Heng DY, XieW, ReganMM, Harshman LC, Bjarnason GA, Vaishampayan UN,
et al. External validation and comparison with other models of the International
Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a
population-based study. Lancet Oncol (2013) 14(2):141–8. doi: 10.1016/S1470-2045
(12)70559-4

25. Zhang G, Wu Y, Zhang J, Fang Z, Liu Z, Xu Z, et al. Nomograms for predicting
long-term overall survival and disease-specific survival of patients with clear cell renal
cell carcinoma. Onco Targets Ther (2018) 11:5535–44. doi: 10.2147/OTT.S171881

26. Wang W, Lin X, Yu R, Zhou S, Liu Y, Jia H, et al. Down-regulated C4orf19
confers poor prognosis in colon adenocarcinoma identified by gene co-expression
network. J Cancer (2022) 13(4):1145–59. doi: 10.7150/jca.63635
frontiersin.org

https://doi.org/10.1038/nature08909
https://doi.org/10.1111/jcmm.15924
https://doi.org/10.1016/j.celrep.2017.08.012
https://doi.org/10.1016/j.celrep.2017.08.012
https://doi.org/10.1016/j.molcel.2010.08.011
https://doi.org/10.1016/j.molcel.2010.08.011
https://doi.org/10.3389/fmolb.2018.00080
https://doi.org/10.1093/jmcb/mjz033
https://doi.org/10.1016/j.ctrv.2018.07.009
https://doi.org/10.1038/nrclinonc.2016.168
https://doi.org/10.1038/nrclinonc.2016.168
https://doi.org/10.1038/s41585-020-0282-3
https://doi.org/10.2174/1389450121666200324151056
https://doi.org/10.1016/j.celrep.2018.01.088
https://doi.org/10.1007/s00277-017-3176-6
https://doi.org/10.1007/s00277-017-3176-6
https://doi.org/10.1016/j.clinthera.2015.02.018
https://doi.org/10.1158/1078-0432.CCR-15-1535
https://doi.org/10.1158/1078-0432.CCR-15-1535
https://doi.org/10.1038/nrclinonc.2017.88
https://doi.org/10.3390/cancers13225856
https://doi.org/10.1016/S1470-2045(12)70559-4
https://doi.org/10.1016/S1470-2045(12)70559-4
https://doi.org/10.2147/OTT.S171881
https://doi.org/10.7150/jca.63635
https://doi.org/10.3389/fonc.2023.1206882
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Clear cell renal cell carcinoma: immunological significance of alternative splicing signatures
	1 Introduction
	2 Materials and methods
	2.1 Multiomics data acquisition
	2.2 AS profile recognition process
	2.3 Screening AS events associated with survival
	2.4 Prognostic signature and nomogram
	2.5 Risk score and characteristics of tumor-infiltrating immune cells
	2.6 ICB treatment
	2.7 Splicing regulatory network
	2.8 Experimental proof
	2.8.1 Immunohistochemistry
	2.8.2 Real-time polymerase chain reaction

	2.9 Statistical analysis

	3 Results
	3.1 Basic information on patients and AS events in ccRCC
	3.2 Finding survival-related AS events
	3.3 Establishment of the verified prognostic signature
	3.4 Construction of the verified nomogram
	3.5 Risk score and TIME characterization
	3.6 Correlation between the ALL prognostic signature and ICB key therapy
	3.7 Role of C4ORF19 in the prognosis and ICB treatment of vital genes
	3.8 C4ORF19 in TIME
	3.9 Establishment of the SF-AS regulatory network

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


