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F-ATP synthase inhibitory
factor 1 regulates metabolic
reprogramming involving
its interaction with c-Myc
and PGC1a
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F-ATP synthase inhibitory factor 1 (IF1) is an intrinsic inhibitor of F-ATP synthase.

It is known that IF1 mediates metabolic phenotypes and cell fate, yet the

molecular mechanisms through which IF1 fulfills its physiological functions are

not fully understood. Ablation of IF1 favors metabolic switch to oxidative

metabolism from glycolysis. c-Myc and PGC1a are critical for metabolic

reprogramming. This work identified that IF1 interacted with Thr-58

phosphorylated c-Myc, which might thus mediate the activity of c-Myc and

promote glycolysis. The interaction of IF1 with PGC1a inhibited oxidative

respiration. c-Myc and PGC1a were localized to mitochondria under

mitochondrial stress in an IF1-dependent manner. Furthermore, IF1 was found

to be required for the protective effect of hypoxia on c-Myc- and PGC1a-
induced cell death. This study suggested that the interactions of IF1 with

transcription factors c-Myc and PGC1a might be involved in IF1-regulatory

metabolic reprogramming and cell fate.

KEYWORDS

mitochondria, F-ATP synthase inhibitory factor 1, metabolic reprogramming, c-Myc, p-
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Introduction

F-ATP synthase inhibitory factor 1, encoded by ATP5IF1 gene, is an intrinsic inhibitor

of F-ATP synthase (1). The binding of IF1 to F-ATP synthase depends on matrix pH (2–4)

and its phosphorylation by PKA (5). IF1 acts as a regulator of mitochondrial biogenesis and

physiology (6–8). IF1 expression varies between different tissues and cell lines, and

mediates heterogeneous metabolic phenotypes and cell fate (6, 9, 10). IF1 inhibits

mitochondrial oxidative phosphorylation (OXPHOS) and enhances glycolytic activity,

promoting metabolic reprogramming to a Warburg phenotype (11). IF1 preserves

mitochondrial bioenergetics during hypoxia by preventing ATP hydrolysis (12). IF1

promotes mitochondrial depolarization during uncoupling and is essential to trigger
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mitophagy (13). IF1 regulates heme synthesis via modulation of

mitochondrial pH and redox potential (14). IF1 also modulates

angiogenesis by its ability to conserve ATP on the endothelial cell

surface (15).

c-Myc is a global amplifier of gene expression and has been

implicated in various cellular processes including cell proliferation,

differentiation, apoptosis, and metabolism (16). c-Myc binds to

open chromatin and stimulates transcription (17). c-Myc can access

many metabolic genes and genes associated with mitochondrial

function, which contributes to metabolic reprogramming (17).

Metabolic alterations induced by c-Myc activate AMPK, a sensor

of cellular energetic status that is signaled by intracellular ADP/ATP

and AMP/ATP ratios (18). c-Myc augments nuclear-encoded

mitochondrial gene expression and promotes mitochondrial

respiration, which directly facilitates generation of mitochondrial

reactive oxygen species (ROS) and, thus, genomic instability (19).

The oncogene is deregulated and contributes broadly to human

cancers, but is strictly regulated in normal cells (17, 20). c-Myc

targets several mitochondrial genes and regulates mitochondrial

biogenesis (21). C-Myc extracts induce mitochondrial outer

membrane permeabilization and cytochrome c release from

purified mouse liver mitochondria in a Bid-dependent manner

(22), indicating that c-Myc may interact with mitochondrial

proteins and regulate mitochondrial function.

The peroxisome proliferator-activated receptor gamma

coactivator 1-alpha (PGC1a) is a member of the PGC-1 family

and synchronizes the mitochondrial and nuclear genomes (23).

PGC1a coordinates mitochondrial biogenesis including synthesis

of mitochondrial proteins and phospholipids as well as

mitochondrial DNA replication (23, 24). Activation of PGC1a
stimulates mitochondrial oxidative metabolism through specific

bindings to various transcription factors (25). Reprogramming of

energy metabolism is one of the hallmarks of cancer cells (26).

PGC1a is a critical regulator of cancer progression by maintenance

of metabolic balance and facilitating chemoresistance (27). The

tumor suppressor p53 mediates ROS clearance, cell-cycle arrest,

apoptosis, and mitochondrial metabolism (27, 28). PGC1a binds to

p53 and regulates p53 transactivation of cell-cycle arrest and

metabolic genes (28). PGC1a can be present inside mitochondria,

and this mitochondrial counterpart may mediate the cross-talk

between cellular metabolism and mitochondrial biogenesis (29).

Although it is known that IF1 mediates metabolic phenotypes

and cell fate, how does IF1 fulfill its physiological functions is not fully

understood. Nuclear transcription factors can reside in mitochondria

and regulate mitochondrial function through interaction with

mitochondrial proteins (30–34). c-Myc and PGC1a are critical for

metabolic reprogramming and cell fate decision. The balance of c-
Abbreviations: OXPHOS, oxidative phosphorylation; AMPK, AMP-activated

protein kinase; ROS, reactive oxygen species; PGC1a, the peroxisome

proliferator-activated receptor gamma coactivator 1-alpha; sgRNA, single guide

RNA; 2-DG, 2-deoxyglucose; OCR, the oxygen consumption rate; ECAR, the

extracellular acidification rate; PEI, polyethylenimine; IP, immunoprecipitation;

BSA, bovine serum albumin; HBSS, Hanks’ balanced salt solution; PTP, the

permeability transition pore.
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Myc and PGC1a determines the metabolic plasticity of pancreatic

cancer stem cells (35). However, whether c-Myc and PGC1a could

localize to mitochondria and interact with IF1 to regulate metabolic

reprogramming remains to be investigated. This work showed that

IF1 bound to c-Myc and Thr-58 phosphorylated c-Myc as well as

PGC1a in mitochondria. These bindings may promote degradation

of c-Myc and destabilize PGC1a in mitochondria, which mediates

metabolic reprogramming.
Results

Ablation of IF1 promotes metabolic
reprogramming to OXPHOS

IF1 plays a role in mediating metabolic reprogramming and is

upregulated in many cancers contributing to Warburg phenotype

(11). IF1 expression varies in different tissues and cell types (6)

(Figure 1A). The phosphorylation level of c-Myc on the Thr-58 site

appeared to be positively correlated with the expression level of IF1

(Figure 1A). In addition, the expression levels of SIRT3 and OSCP

were both upregulated in some cell lines including HCT116 and

MIA PaCa-2 cells (Figure 1A), which contributed to cell adaption to

mitochondrial stress. The CRISPR/Cas9 technique was used to

disrupt ATPIF1 gene in HCT116 cells (Figure 1B). The ablation

of IF1 led to the declined expressions of c-Myc and PGC1a
(Figure 1C), indicating that IF1 might mediate metabolic

reprogramming through interplay with these transcription factors.

The influence of ATPIF1 inactivation on metabolic phenotype was

detected by Seahorse XF Analyzer. The ablation of IF1 led to a

significant rise in both basal and maximal oxidative respiration

(Figures 1D, E), as well as oligomycin-sensitive mitochondrial

respiration (Figure 1F). The basal glycolytic metabolism was

inhibited by ablation of IF1 (Figures 1G, H), suggesting that

disruption of ATPIF1 gene favors metabolic switch to OXPHOS

from glycolysis (Figure 1I). Interestingly, the ablation of IF1 caused

significantly increased glycolytic capacity and glycolytic reserve

(Figures 1G, H), indicating that IF1 plays a role in mediating

glycolytic metabolism.
IF1 participates in enhanced glycolysis
driven by c-Myc

c-Myc drives metabolic reprogramming, which favors

tumorigenesis and cancer cell survival (36). c-Myc enhances

glycolytic gene expression and activation of c-Myc drives aerobic

glycolysis, thus contributing to oncogenic metabolic state (36, 37).

Phosphorylation sites Thr-58 and Ser-62 control c-Myc-dependent

transactivation of gene expression and regulate c-Myc protein

stability (38–40). Decreased Thr-58 and increased Ser-62

phosphorylation stabilize c-Myc protein, and ratios of Thr-58 and

Ser-62 phosphorylation are altered in human cancer (39).

Immunoprecipitation assay revealed that IF1 strongly bound to c-

Myc (Figure 2A) and Thr-58 phosphorylated c-Myc (Figures 2A, B).

To further investigate whether this binding could occur in
frontiersin.org

https://doi.org/10.3389/fonc.2023.1207603
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Guo and Gu 10.3389/fonc.2023.1207603
mitochondria, mitochondria were purified for immunoprecipitation

assay. IF1 bound to both c-Myc and Thr-58 phosphorylated c-Myc in

mitochondria (Figure 2C). Overexpression of c-Myc accompanied by

enhanced phosphorylation of c-Myc on the Thr-58 site (Figure 2D)

did not affect oxidative metabolism (Figures 2E–G) but promoted

glycolysis (Figures 2H–J). The ablation of IF1 abolished the

stimulating effect of c-Myc on glycolytic activity (Figures 2K–M).

The observations suggested that IF1 bound to c-Myc in mitochondria

and then mediated the phosphorylation and activity of c-Myc.
Frontiers in Oncology 03
High glucose promotes cellular
metabolism involving stimulation of c-Myc
localization to mitochondria and its
interactions with IF1

Cancer cells are highly dependent on glucose to fuel their energy

demand and proliferate, and c-Myc plays a key role in aerobic

glycolysis. The effects of high glucose on cellular metabolism and

the interaction between IF1 and c-Myc were then investigated.
A B

D E F

G IH

C

FIGURE 1

Ablation of IF1 promotes metabolic reprogramming to OXPHOS. (A) Representative blots of protein extracts of indicated cell lines analyzed by
Western blotting (WB). (B) Expression of IF1 in HCT116 clonal cells after disruption of ATPIF1 gene with sgRNA-1 using the CRISPR/Cas9 technique.
Colony 2 (number in bold) was selected for the following experiments. (C) Cellular protein extracts were analyzed by WB. OXPHOS (D–I) and
glycolysis (G–I) activities were evaluated by Agilent Seahorse XFe24 Analyzer before and after additions of oligomycin (Oligo, 2 µM), FCCP (0.25 µM),
rotenone plus antimycin A (Rot/AA, 1 µM), and 2-DG (50 mM). OCR values (pmol/min) were normalized for protein (µg). (D) Representative traces of
OCR values (pmol/min/µg) in wild-type (WT, black trace) and IF1 KO (DATPIF1, red trace). (E) OCR values (pmol/min/µg) in WT (black column) and
DATPIF1 (red column). In groups of Basal, Oligo, and FCCP, the OCR values were subtracted for Rot/AA. Data are expressed as mean ± SD. ***p <
0.001 vs. WT, two-way ANOVA with Bonferroni post-hoc test. (F) Oligomycin-sensitive respiration was expressed as mean ± SD. ***p < 0.001 vs.
WT, one-way ANOVA with Bonferroni post-hoc test. (G, H) ECAR values (mpH/min) were normalized for protein (µg). (G) Representative traces of
ECAR values (mpH/min/µg) in wild-type (WT, black trace) and IF1 KO (DATPIF1, red trace). (H) ECAR values (mpH/min/µg) were subtracted for 2-DG
and expressed as mean ± SD. **p < 0.01 vs. WT, ***p < 0.001 vs. WT, two-way ANOVA with Bonferroni post-hoc test. (I) Ratio of basal OCR value
and basal ECAR value. ***p < 0.001 vs. WT, one-way ANOVA with Bonferroni post-hoc test.
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FIGURE 2

IF1 participates in enhanced glycolysis driven by c-Myc. (A, C) HEK293T cells were transfected with empty vector (EV) or plasmids carrying ATPIF1
and incubated for 24 h. In (A), cells were lysed for coIP and WB. In panel C, isolated mitochondria (mito) were lysed for coIP and WB.
(B) HEK293T cells were lysed for coIP and WB. In negative control (NC), only Protein A/G Plus Agarose Beads and ATPIF1 antibody were incubated
with coIP buffer at 4°C overnight. In IF1, Protein A/G Plus Agarose Beads and ATPIF1 antibody were incubated with cell lysate at 4°C overnight. PonS
indicated the ponceau S staining of transferred membraned. (D–J) WT HeLa cells were transfected with EV or plasmids carrying c-Myc and
incubated for 24 h. (D) Cells were collected from XF24 Cell Culture Microplates after Seahorse experiment and lysed for WB. OXPHOS (E–J) and
glycolysis (H–J) activities were evaluated by Agilent Seahorse XFe24 Analyzer before and after the addition of oligomycin (Oligo, 2 µM), FCCP (0.25
µM), rotenone plus antimycin A (Rot/AA, 1 µM), and 2-DG (50 mM). OCR values (pmol/min) were normalized for protein (µg). (E) Representative
traces of OCR values (pmol/min/µg) in HeLa cells transfected with EV (black trace) and plasmids carrying c-Myc (purple trace). (F) OCR values (pmol/
min/µg) were subtracted for Rot/AA and expressed as mean ± SD. (G) Oligomycin-sensitive respiration was expressed as mean ± SD. (H, I) ECAR
values (mpH/min) were normalized for protein (µg). (H) Representative traces of ECAR values (mpH/min/µg) in WT HeLa cells transfected with EV
(black trace) and plasmids carrying c-Myc (purple trace). (I) ECAR values (mpH/min/µg) were subtracted for 2-DG and expressed as mean ± SD. *p <
0.05 vs. EV, ***p < 0.001 vs. EV, two-way ANOVA with Bonferroni post-hoc test. (J) Ratio of basal OCR value and basal ECAR value in WT HeLa cells.
***p < 0.001 vs. EV, one-way ANOVA with Bonferroni post-hoc test. (K–M) Glycolysis activities of DATPIF1 HeLa cells. (K, L) ECAR values (mpH/min)
were normalized for protein (µg). (K) Representative traces of ECAR values (mpH/min/µg) in DATPIF1 HeLa cells transfected with EV (red trace) and
plasmids carrying c-Myc (violet trace). (L) ECAR values (mpH/min/µg) were subtracted for 2-DG and expressed as mean ± SD. (M) Ratio of basal
OCR value and basal ECAR value in DATPIF1 HeLa cells.
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Exposure to high glucose promoted both oxidative and glycolytic

activities (Figures 3A–E), while oxidative respiration was more

influenced with a significant increase of basal OCR/basal ECAR

ratio (Figure 3F). The maximal oxygen consumption rate induced

by injection of FCCP and oligomycin sensitive respiration were

almost identical in the absence or presence of glucose (Figures 3A–

C), indicating that mitochondrial integrity and function were not

affected by the pre-exposure to high glucose. The glycolytic capacity

and reserve were significantly enhanced by high glucose

(Figures 3D, E). High glucose enhanced the expressions of c-Myc

and Thr-58 phosphorylated c-Myc, and their translocations to

mitochondria (Figure 3G). Consistent with the observation of

Western blotting analysis, immunofluorescence staining revealed

that a fraction of c-Myc was localized to mitochondria upon high

glucose stimulation (Figure 3H), which was required for the

interaction with IF1 and Thr-58 phosphorylation of c-Myc

(Figure 3I). These observations suggest that the localization of c-

Myc to mitochondria and its interaction with IF1 might promote

cellular metabolism and metabolic reprogramming.
IF1 binds to PGC1a and inhibits
mitochondrial oxidative respiration

Activation of PGC1a promotes mitochondrial oxidative

respiration (25), and the c-Myc/PGC1a ratio is a main controller of

metabolic phenotypes and plasticity in pancreatic cancer stem cells

(27). IF1 is a mitochondrial specific protein (33). Immunofluorescence

analysis showed that PGC1a could localize to both nucleus and

mitochondria (Figure 4A). Immunoprecipitation revealed that IF1

could bind to PGC1a (Figures 4B, C). In the absence of IF1, c-Myc

exhibited more significant enhancement on mitochondrial oxidative

respiration and glycolytic metabolism than PGC1a (Figures 4D–H).

However, the effect of c-Myc on glycolytic metabolism was more

significant than that on oxidative metabolism, resulting in a significant

decrease of OCR/ECAR ratio compared to the effect of PGC1a
(Figure 4I). The presence of IF1 led to a dramatic decline of

oxidative metabolism but did not influence the glycolytic metabolism

(Figures 4D–I). IF1 might interact with PGC1a and destabilize

PGC1a, resulting in a significant decrease of mitochondrial oxidative

phosphorylation. The stability of c-Myc and PGC1a inhibited by IF1

may contribute to metabolic reprogramming.
The presence of IF1 is required for c-Myc
and PGC1a imported into mitochondria
under mitochondrial stress

The role of IF1 in c-Myc and PGC1a imported into

mitochondria was further investigated. Inhibition of mitochondrial

respiration or induction of mitochondrial dysfunction slightly

reduced the expression levels of c-Myc and PGC1a (Figure 5A).

The longer-term exposure to mitochondrial inhibitors induced a

dramatic decrease in mitochondrial mass, which could be caused by

mitophagy, resulting in a striking decline of c-Myc and PGC1a
expressions (Figure 5A). Of note, mitochondrial stress induced by
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inhibitors of mitochondrial respiration, CoCl2, or uncoupler FCCP

promoted c-Myc and PGC1a import into mitochondria (Figures 5B,

D, F). The ablation of IF1 prevented the mitochondrial import of c-

Myc and PGC1a under mitochondrial stress, for instance, after

antimycin A treatment (Figures 5C, E, G). These observations

indicated that IF1 was required for the mitochondrial import of c-

Myc and PGC1a under mitochondrial stress condition.
IF1 is required for the protective
effect of hypoxia on c-Myc/PGC1a-
induced cell death

The combination with c-Myc stimulation of abnormal

mitochondria and hypoxic microenvironment in tumors

synergistically stimulates mitochondrial ROS production through

the ineffective function of respiratory complex III under limiting

oxygen conditions (19, 41). Chemical incubation cells with CoCl2
induce cellular hypoxia, which triggers dephosphorylation of IF1

and inhibits both the synthetic and hydrolytic activities of F-ATP

synthase (5). Hypoxic microenvironment and glucose deprivation

facilitate proteolytic degradation of c-Myc and attenuate its

function (36, 42). Hypoxia stimulates the expression of PGC1a
and mitochondrial biogenesis in cardiac myocytes (43). Mild ROS

intensity triggers nuclear reprogramming, which is involved in the

metabolic adaption and activation of cellular survival (7).

Overexpression of IF1, c-Myc, or PGC1a induced cell death,

which was prevented by CoCl2 (Figures 6A, F). The ablation of IF1

(Figure 6B) abolished the protective function of CoCl2 in IF1/c-

Myc/PGC1a overexpression-induced cell death (Figures 6C, F).

Knockout of IF1 had no effect on IF1/c-Myc/PGC1a
overexpression-induced cell death, unless CoCl2 was added

(Figures 6D–F). These results suggested that IF1 was necessary

for the protective role of hypoxia in c-Myc/PGC1a-induced cell

death. Treatment of CoCl2 dephosphorylated IF1 (5), which might

favor the binding of IF1 to c-Myc/PGC1a and prevented their

inducing effects on cell death. Overexpression of IF1 appeared to

blunt the production of mitochondrial ROS (Figure 6G), which may

be due to decreased OXPHOS activity and enhanced activity of the

permeability transition pore (PTP) (33). Suppression of OXPHOS

activity by IF1 overexpression may involve its interactions with c-

Myc/PGC1a.
Discussion

IF1 is a well-known intrinsic inhibitor of F-ATP synthase and plays

a role in regulating metabolic phenotypes (1, 6, 9, 10). This study

presents another potential mechanism though which IF1 mediates

metabolic reprogramming. C-Myc stimulates gene transcription

including many metabolic genes, contributing to metabolic

reprogramming (17). Thr-58 is a major phosphorylation site in c-

Myc, which is mediated by glycogen synthase kinase-3 (GSK-3) (44).

Phosphorylation of c-Myc on the Thr-58 site facilitates c-Myc

degradation by the ubiquitin pathway (40, 44). IF1 upregulation

tended to be accompanied with upregulation of Thr-58
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FIGURE 3

High glucose promotes cellular metabolism involving stimulation of c-Myc localization to mitochondria and its interactions with IF1. (A–F) OXPHOS (A–
C, F) and glycolysis (D–F) activities were evaluated by Agilent Seahorse XFe24 Analyzer before and after additions of oligomycin (Oligo, 2 µM), FCCP (0.2
µM), rotenone plus antimycin A (Rot/AA, 1 µM), and 2-DG (50 mM). MIA PaCa-2 cells were suspended in DMEM (no sodium pyruvate, no glucose, Gibco
#11966025) supplemented with 10% FBS and seeded in XF24 microplates at 1.6×104 cells/well, then incubated at 37°C in a 5% CO2 humidified incubator
24 h later, and cells were treated with indicated concentrations of glucose for 48 h. OCR values (pmol/min) and ECAR values (mpH/min) were
normalized for protein (µg). (A) Representative traces of OCR values (pmol/min/µg) of MIA PaCa-2 cells cultured in DMEM medium without glucose
(black trace) and in DMEM medium with 100 mM glucose (red trace). (B) OCR values (pmol/min) were normalized for protein (µg) and expressed as OCR
(pmol/min/µg). In groups of Basal, Oligo, and FCCP, the OCR values were subtracted for Rot/AA. Data are expressed as mean ± SD. **p < 0.01 vs. 0 mM,
***p < 0.001 vs. 0 mM, two-way ANOVA with Bonferroni post-hoc test. (C) oligomycin-sensitive respiration was expressed as mean ± SD. (D–F) ECAR
values (mpH/min) were normalized for protein (µg). (D) Representative traces of ECAR values (mpH/min/µg) of MIA PaCa-2 cells cultured in DMEM
medium without glucose (black trace) and in DMEM medium with 100 mM glucose (red trace). (E) ECAR values (mpH/min/µg) were subtracted for 2-DG
and expressed as mean ± SD. **p < 0.01 vs. 0 mM, ***p < 0.001 vs. 0 mM, two-way ANOVA with Bonferroni post-hoc test. (F) Ratio of basal OCR value
and basal ECAR value. ***p < 0.001 vs. 0 mM, one-way ANOVA with Bonferroni post-hoc test. (G–I) MIA PaCa-2 cells were cultured in DMEM (no
sodium pyruvate, no glucose, Gibco #11966025) supplemented with 10% FBS. (G) Representative blots of protein extracts of isolated mitochondria
(mito) and cytosolic fraction (cyto) from MIA PaCa-2 cells treated by indicated concentrations of glucose for 48 h. (H) Representative
immunofluorescence images (scale bar: 36.8 µm) of MIA PaCa-2 cells treated without (CTL) or with 200 mM glucose for 48 h. Cells were stained with
anti-TOM20 (red) and anti-c-Myc (green). (I) MIA PaCa-2 cells were treated by indicated concentrations of glucose for 48 h and transfected with EV or
plasmids carrying ATPIF1 for 24 h. Cells were collected and lysed for coIP and WB. The blots are representative of three independent experiments.
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phosphorylated c-Myc (Figure 1A). Ablation of IF1 reprogrammed

glycolysis to OXPHOS but increased glycolytic capacity and glycolytic

reserve (Figures 1B–H). IF1 bound to c-Myc and Thr-58

phosphorylated c-Myc in mitochondria (Figures 2A–C).

Overexpression of c-Myc enhanced cellular glycolytic capacity and
Frontiers in Oncology 07
suppressed maximal mitochondrial respiration in an IF1-dependent

manner (Figures 2E–M; Figure S1). These observations suggested that

IF1 bound to c-Myc and thus promoted the degradation of c-Myc in

mitochondria, resulting in the inhibition of mitochondrial gene

transcription and mitochondrial biogenesis.
A B

D E F

G IH

C

FIGURE 4

IF1 binds to PGC1a and inhibits mitochondrial oxidative respiration. (A) Representative immunofluorescence images (scale bar: 10 µm) of HEK293T
cells stained with anti-IF1 (red) and anti-PGC1a (green), and co-labeled with DAPI (blue). (B) HEK293T cells were transfected with EV or plasmids
carrying ATPIF1 and incubated for 24 h. Cells were lysed for coIP and WB. (C) HEK293T cells were lysed for coIP and WB. In NC, only Protein A/G
Plus Agarose Beads and ATPIF1 antibody were incubated with coIP buffer at 4°C overnight. In IF1, Protein A/G Plus Agarose Beads and ATPIF1
antibody were incubated with cell lysate at 4°C overnight. PonS indicated the ponceau S staining of transferred membranes. (D–I) DATPIF1 HCT116
cells were transfected with plasmids carrying c-Myc (DATPIF1+c-Myc) or PPARGC1A (encoding PGC1a) (DATPIF1+PGC1a), and WT HCT116 cells
were transfected with plasmid carrying PPARGC1A (WT+PGC1a), then co-cultured for 24 h. OXPHOS (D–I) and glycolysis (G–I) activities were
evaluated by Agilent Seahorse XFe24 Analyzer before and after the addition of oligomycin (Oligo, 2 µM), FCCP (0.25 µM), rotenone plus antimycin A
(Rot/AA, 1 µM), and 2-DG (50 mM). OCR values (pmol/min) were normalized for protein (µg). (D) Representative traces of OCR values (pmol/min/µg)
in DATPIF1+c-Myc (purple trace), DATPIF1+PGC1a (blue trace), and WT+PGC1a (gray trace). (E) OCR values (pmol/min/µg) were subtracted for Rot/
AA and expressed as mean ± SD. ***p < 0.001 vs. DATPIF1+PGC1a, two-way ANOVA with Bonferroni post-hoc test. (F) oligomycin-sensitive
respiration was expressed as mean ± SD. ***p < 0.001 vs. DATPIF1+PGC1a, one-way ANOVA with Bonferroni post-hoc test. (G, H) ECAR values
(mpH/min) were normalized for protein (µg). (G) Representative traces of ECAR values (mpH/min/µg) in DATPIF1+c-Myc (purple trace), DATPIF1
+PGC1a (blue trace), and WT+PGC1a (gray trace). (H) ECAR values (mpH/min/µg) were subtracted for 2-DG and expressed as mean ± SD. ***p <
0.001 vs. DATPIF1+PGC1a, two-way ANOVA with Bonferroni post-hoc test. (I) Ratio of basal OCR value and basal ECAR value. **p < 0.01 vs. DATPIF1
+PGC1a, ***p < 0.001 vs. DATPIF1+PGC1a, one-way ANOVA with Bonferroni post-hoc test.
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PGC1a synchronizes the mitochondrial and nuclear genomes

and thus coordinates mitochondrial biogenesis (23, 24). Activation

of PGC1a stimulates mitochondrial biogenesis (25). PGC1a
functions as a critical adaptor for maintenance of metabolic

balance, and the ratio of c-Myc/PGC1a acts as a main controller

of metabolic phenotypes (27). The binding of IF1 to PGC1a caused

a dramatic decrease in mitochondrial oxidative phosphorylation

(Figure 4). c-Myc and PGC1a were localized to mitochondria under
Frontiers in Oncology 08
mitochondria stress condition, and IF1 was required for this process

(Figure 5). This phenomenon may be shared with many nuclear

proteins including prohibitin and p53 (45). We further performed

the cross-linking by DTBP in isolated mitochondria fromHEK293T

cells, which could be reversibly cleaved by DTT (46), but no

interactions were detected, indicating that c-Myc and PGC1a

appeared to interact indirectly with IF1. The direct interactions

should not be essential for the functional role of c-Myc and PGC1a
A B

D E

F G

C

FIGURE 5

The presence of IF1 is required for c-Myc and PGC1a imported into mitochondria under mitochondrial stress. (A) Representative blots of protein
extracts of HEK293T cells treated by equivalent DMSO (Control), 10 µM rotenone (Rot), 10 µM antimycin A (AA), 10 µM oligomycin (Oligo), 0.2 mM
CoCl2, and 10 µM FCCP for 6 h or 24 h. The blots are representative of three independent experiments. (B) Representative blots of protein extracts
of isolated mitochondria (mito) and cytosolic fraction (cyto) from HEK293T cells treated by Control, Rot, AA, Oligo, CoCl2, and FCCP for 6 h. The
blots are representative of four independent experiments. (C) Representative blots of protein extracts of isolated mitochondria from WT and DATPIF1
HeLa cells treated by Control, Rot, AA, Oligo, CoCl2, and FCCP for 6 h. The blots are representative of five independent experiments. (D–G)
Representative immunofluorescence images (scale bar: 10 µm) of WT (D, F) and DATPIF1 (E, G) HeLa cells treated by DMSO or AA for 6 h. Cells were
stained with anti-TOM20 (red) and anti-c-Myc (green) or anti-PGC1a (green).
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bound to IF1. Somehow similar, G protein–coupled receptor 35

(GPR35) appeared to interact indirectly with IF1 and was activated

in an IF1-depedent manner, which then induced ATP synthase

dimerization, which prevented ATP loss upon ischemia (47).

Overwhelming lines of evidence suggest that F-ATP synthase

contributes to the regulation and formation of PTP (48–55). The

very recent work demonstrates that IF1 plays a role in regulation of

the PTP through the interaction with the p53–CypD complex (33).

The PTP plays an important role in maintenance of cellular ROS/

Ca2+ homeostasis. More studies await to investigate that IF1

regulates metabolic rewiring and cell fate through the PTP

involving transcription factors and ROS/Ca2+ (9, 33, 56).
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A sensor of cellular energetic status, is activated by increased

ADP/ATP and AMP/ATP ratios (18). The activation of AMPK

stabilizes phosphorylation of tumor suppressor protein p53 at Ser-

15, resulting in mitochondrial accumulation of p53 (18).

Mitochondrial p53 mediates oligomerization of Bak and cell

apoptosis (18). The OSCP subunit of F-ATP synthase is identified

to be a new partner of mitochondrial matrix p53 (57). Oxidative

stress induces the formation of the p53–CypD complex and triggers

PTP opening (58). Ablation of IF1 prevents oxidative stress-

induced cell death (33). SIRT3 binds to the OSCP subunit of F-

ATP synthase in a stress- and pH-dependent manner, which is

fundamental in maintaining mitochondrial membrane potential
A B D

E

F G

C

FIGURE 6

IF1 is required for the protective effect of hypoxia on c-Myc/PGC1a-induced cell death. (A, C–E) The effects of IF1/c-Myc/PGC1a overexpression
and CoCl2-induced hypoxic environment on cell viability in WT and DATPIF1 HeLa cells revealed by MTT assay. Viable (%) was expressed as mean ±
SD. *p < 0.05, **p < 0.01, ***p < 0.001 vs. EV or WT, two-way ANOVA with Bonferroni post-hoc test. (F) The images of WT and DATPIF1 HeLa cells
with overexpression of IF1/c-Myc/PGC1a and CoCl2 treatment for 24 h. The figures are representative of at least three independent experiments.
(B) Expression of IF1 in HeLa clonal cells after disruption of ATPIF1 gene with sgRNA-2 using the CRISPR/Cas9 technique. Colony 3 (number in bold)
was used for MTT assay as shown in (A, C–F). (G) HCT116 WT and IF1 KO cells were transfected with EV or plasmids carrying ATPIF1 for IF1
overexpression (IF1 OE), then incubated for 24 h, followed by MitoSOX staining.
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homeostasis in response to mitochondrial stress (59). The

upregulated expression levels of both SIRT3 and OSCP may

contribute to cell adaption to mitochondrial stress. Ablation of

IF1 prevented the protective role of CoCl2 in IF1/c-Myc/PGC1a
overexpression-induced cell death and also promoted hypoxia-

induced cell death (Figure 6). These data indicated that bindings

of IF1 to c-Myc/PGC1a in regulation of metabolic rewiring were

important for cell survival under hypoxic environment. IF1 has

been demonstrated to be involved in the development of carcinoma,

and attenuates cancer cell sensitivity to chemotherapy (60). In

addition to its variabilities in different phenotypes of cancer, IF1

is augmented in many other pathologies including inflammatory

myopathies especially dermatomyositis in accordance with

metabolic rewiring prone to carcinogenesis (61). Thus, IF1 acts as

a novel clinical biomarker of dermatomyositis and a potential

metabolic driver of cancer incidence (61). Novel pharmacological

inhibitors of IF1 are developed to counteract pathologies (62).

Materials and methods

Cell lines and antibodies

HEK293T, HCT116, HeLa, andMIA PaCa-2 cells were supplied

by Cell Bank, Chinese Academy of Sciences. Cells were cultured in

DMEM medium (high glucose, pyruvate, Gibco, C11995500BT)

supplemented with 10% fetal bovine serum (FBS). The primary

antibodies are as follows: ATPIF1 polyclonal antibody (12067-1-

AP, Proteintech); PGC1a monoclonal antibody (66369-1-Ig,

Proteintech); HDAC1 polyclonal antibody (10197-1-AP),

ATP5A1 polyclonal antibody (14676-1-AP, Proteintech); ATPB

polyclonal antibody (17247-1-AP, Proteintech); ATP5O

polyclonal antibody (10994-1-AP, Proteintech); SirT3 (C73E3)

rabbit mAb (#2627, Cell Signaling Technology); p-c-Myc (Thr 58)

rabbit polyclonal antibody (sc-135647, Santa Cruz Biotechnology);

Myc/c-Myc mouse monoclonal antibody (sc-40, Santa Cruz

Biotechnology); and Anti-TOMM20 antibody (db50, diagbio).

Generation of ATPIF1 knockout cell line

The ATPIF1 knockout cell line was generated using the CRISPR/

Cas9 technique (63). Briefly, the specific single guide RNA (sgRNA) was

constructed into the lentiviral expression vector for Cas9 and sgRNA.

The lentiCRISPR vector was linearized by the BsmBI restriction enzyme

(New England Biolabs). The sequences of sgRNA are as follows: ATPIF1

sgRNA-1: 5′-CACCGCAGTGACGGCGTTGGCGGCG-3′ (forward),

3′-AAACCGCCGCCAACGCCGTCACTGC-5′ (reverse); ATPIF1

sgRNA-2: 5′-CACCGTCCAGCAGCAATGGCAGTGA-3′ (forward),

3′-AAACTCACTGCCATTGCTGCTGGAC-5′ (reverse); ATPIF1

sgRNA-3: 5′-CACCGGGCTTGGCGTGTGGGGCGTG-3′ (forward),

3′-AAACCACGCCCCACACGCCAAGCCC-5′ (reverse).
Immunoblot analysis

Cells were collected by centrifugation at 600 × g for 5 min at

4°C, and lysed in RIPA buffer supplemented with protease
Frontiers in Oncology 10
inhibitors on ice for 30 min. Supernatant was harvested after

centrifugation at 12,000 × g for 30 min. Protein concentration

was determined by BCA assay. The protein solution was

supplemented with SDS sample loading buffer followed by SDS-

PAGE gel electrophoreses. Proteins were transferred to

nitrocellulose membranes followed by membrane blocking with

5% (w/v) nonfat dry milk. The blotted membranes were incubated

with primary antibodies overnight at 4°C. The bands were

visualized with enhanced chemiluminescence.
Seahorse analysis of OXPHOS
and glycolysis

OXPHOS and glycolysis activities were detected with an Agilent

Seahorse XFe24 Analyzer. HCT116 and HeLa cells were seeded in

XF24 microplates at 2×104 cells/well in DMEM medium

supplemented with 10% FBS. Cells were incubated at 37°C in a

5% CO2 humidified incubator for 48 h, or 24 h later, cells were

transfected with plasmids and then incubated for 24 h. The culture

medium was replaced with Seahorse XF Base Medium (without

Phenol Red) supplement with 1 mM pyruvate, 2 mM glutamine,

and 10 mM glucose. Cells were incubated at 37°C for 45 min to

allow temperature and pH equilibration. Following the baseline

measurement, 2 µM oligomycin, 0.25 µM FCCP, 1 µM rotenone

plus antimycin A, and 50 mM 2-deoxyglucose (2-DG) were

sequentially added to each well. The oxygen consumption rate

(OCR) values were subtracted for the rotenone and antimycin-

insensitive respiration. The extracellular acidification rate (ECAR)

values were subtracted for the 2-DG insensitive glycolysis. The

values of OCR and ECAR where indicated were normalized for µg

of protein determined by BCA assay.
Isolated mitochondria from human
cultured cells

HEK293T or HeLa cells were collected by centrifugation at 600

× g for 5 min and washed once with prechilled PBS buffer. Cell pellet

was resuspended in isolation buffer containing 250 mM sucrose, 10

mM Tris-HCl, and 0.1 mM EGTA, pH 7.4, and homogenized with a

Potter homogenizer. The supernatant was collected after

centrifugation at 600 × g for 5 min. The mitochondrial pellet was

harvested and washed once with isolation buffer by centrifugation at

8,000 × g for 15 min. BCA assay was used to determine

mitochondrial protein concentration.
Expression vectors

cDNA clones of ATPIF1, c-Myc containing XhoI and EcoRI

restriction sites were obtained by a PCR-based method using the

whole cDNA of HEK293T as template. The primers used for

PCR are as follows: for ATPIF1: 5′-ATGCGAATTCATGGCAGT
GACGGCGTTGGC-3′ (forward), 3′-ATGCCTCGAGATCAT
CATGTTTTAGCATTT-5 ′ ( r e v e r s e ) ; f o r c -Myc : 5 ′ -
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CAGTGTGCTGGAATTCTGGATTTTTTTCGGGTAGTGGA-

3′ (forward), 3′-CGTAGGGGTACTCGACGCACAAGAGT

TCCGTAGC-5 ′ (reverse) . The C terminus HA-tagged

pCDNA3.1 vector was l inearized by XhoI and EcoRI

restriction enzymes (New England Biolabs). The PCR products

were cloned into the linearized vector using a ligation high kit

(Toyobo). The inserted genes were verified by DNA sequencing.
Transient transfection

Cells were seeded in a 6-well plate and cultured overnight. Plasmid

DNA transfection was achieved by a polyethylenimine (PEI)-mediated

transfectionmethod. For one well, a mixture of 2 µg of plasmids, 6 µl of

PEI, and 200 µl of free DMEM medium was incubated at room

temperature for 15 min, and added to the six-well plate. After 24 h,

proteins were extracted for immunoprecipitation or immunoblotting.
Immunoprecipitation

Cells were solubilized in CoIP lysis buffer containing 50 mM Tris-

HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40, 10%

glycerophosphate, and a cocktail of proteinase inhibitors. The

supernatant was collected after a centrifugation at 12,000 × g for

20 min at 4°C. Cell lysate was incubated with anti-HA Agarose Beads

(Abmart), or incubated with Protein A/G Plus Agarose Beads (Santa

Cruz) supplemented with ATPIF1 antibody at 4°C overnight. The beads

were washed three times with PBS buffer supplemented with 0.1% NP-

40, and boiled in 2× loading buffer for 10min. Immunoblot analysis was

then performed to detect the proteins that were pulled down.
Immunofluorescence

Cells were seeded in a 12-well dish on sterile 18-mm glass

coverslips, cultured overnight, and rinsed three times with PBS for

5 min each. The fixation step was initiated with the addition of 4%

paraformaldehyde and incubated at room temperature for 15 min.

Aspirated fixative and rinsed three times with PBS for 5 min each. Cells

were permeabilized with 0.1% Triton X-100, incubated at room

temperature for 10 min, aspirated with Triton X-100, and rinsed

three times with PBS for 5 min each. Cells were blocked with 5%

bovine serum albumin (BSA) for 1 h at room temperature; aspirated

with blocking solution; incubated with 1:100 dilution primary

antibodies against IF1 (Proteintech, 12067-1-AP), PGC1a
(Proteintech, 66369-1-Ig), c-Myc (Santa Cruz Biotechnology, sc-40),

and TOM20 (Proteintech, 11802-1-AP) at 4°C overnight; rinsed three

times with PBST buffer (PBS with 0.1% Tween 20) for 5 min each;

incubated with DAPI and 1:200 dilution of secondary antibodies (goat

anti-mouse IgG Alexa Fluor 488 and goat anti-rabbit IgG Alexa Fluor

647) in 5% BSA at room temperature for 1 h; and rinsed three times

with PBST buffer for 5 min each. Fluorescence images were acquired

with confocal microscopy (Leica STELLARIS 5).
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Mitochondrial ROS detection

Cells were seeded in a 96-well plate at 1×104 cells/well in

DMEM medium supplemented with 10% FBS, and incubated at

37°C in a 5% CO2 humidified incubator overnight. Cells were then

transfected with empty C terminus HA-tagged pCDNA3.1 vector or

ATPIF1 expressing vector. Cells were cultured for another 24 h to

allow the expression of inserted gene. The culture medium was

replaced with 5 µM MitoSOX working solution in Hanks’ Balanced

Salt Solution (HBSS), incubated at 37°C for 10 min, and rinsed three

times with HBSS. Fluorescence images were acquired with a Th4

200 inverted fluorescence microscope (Olympus).
Cell viability assay

Cells were seeded in 96-well plates at 5×103 cells/well in DMEM

medium supplemented with 10% FBS and incubated at 37°C in a 5%

CO2 humidified incubator overnight. Cells were treated with 0.2

mM CoCl2, and transfected with empty C terminus HA-tagged

pCDNA3.1 vector or ATPIF1 expressing vector. Cells were

maintained at 37°C in a 5% CO2 humidified incubator for 24 h.

One hundred microliters of freshly prepared MTT solution (5 mg/

ml) was added to each well and incubated at 37°C for 4 h. Then, 100

µl of 10% SDS was added to each well, and OD value at 570 nm was

measured with an Infinite 200 PRO plate reader (Tecan).
Statistical analysis

All the data were presented as mean ± SD of at least three

independent experiments, or as representative blots and images. p-

values indicated in the figures are calculated with GraphPad. One-

way ANOVA was used to analyze the difference between more than

two groups. Two-way ANOVA was used to determine the

interaction between two independent variables. *p < 0.05 was

considered statistically significant.
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5. Garcıá-Bermúdez J, Sánchez-Aragó M, Soldevilla B, del Arco A, Nuevo-Tapioles
C, Cuezva JM. PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its
capacity to bind and inhibit the mitochondrial h+-ATP synthase. Cell Rep (2015)
12:2143–55. doi: 10.1016/j.celrep.2015.08.052

6. Campanella M, Casswell E, Chong S, Farah Z, Wieckowski MR, Abramov AY,
et al. Regulation of mitochondrial structure and function by the F1Fo-ATPase inhibitor
protein, IF1. Cell Metab (2008) 8:13–25. doi: 10.1016/j.cmet.2008.06.001
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