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Introduction: The latest GLOBOCAN 2021 reports that colorectal cancer (CRC)

is the second leading cause of cancer-related death worldwide. Most CRC cases

are sporadic and associated with several risk factors, including lifestyle habits, gut

dysbiosis, chronic inflammation, and oxidative stress.

Aim: To summarize the biology of CRC and discuss current therapeutic

interventions designed to counteract CRC development and to overcome

chemoresistance.

Methods: Literature searches were conducted using PubMed and focusing the

attention on the keywords such as “Current treatment of CRC” or

“chemoresistance and CRC” or “oxidative stress and CRC” or “novel drug

delivery approaches in cancer” or “immunotherapy in CRC” or “gut microbiota

in CRC” or “systematic review and meta-analysis of randomized controlled trials”

or “CSCs and CRC”. The citations included in the search ranged from September

1988 to December 2022. An additional search was carried out using the clinical

trial database.

Results: Rounds of adjuvant therapies, including radiotherapy, chemotherapy,

and immunotherapy are commonly planned to reduce cancer recurrence after

surgery (stage II and stage III CRC patients) and to improve overall survival (stage

IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic

drugs, is the mainstay to treat CRC. However, the onset of the inherent or

acquired resistance and the presence of chemoresistant cancer stem cells

drastically reduce the efficacy. On the other hand, the genetic-molecular

heterogeneity of CRC often precludes also the efficacy of new therapeutic

approaches such as immunotherapies. Therefore, the CRC complexity made

of natural or acquired multidrug resistance has made it necessary the search for

new druggable targets and new delivery systems.

Conclusion: Further knowledge of the underlying CRC mechanisms and a

comprehensive overview of current therapeutic opportunities can provide the

basis for identifying pharmacological and biological barriers that render therapies

ineffective and for identifying new potential biomarkers and therapeutic targets

for advanced and aggressive CRC.
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1 Introduction

Colorectal cancer (CRC) is the third most diagnosed cancer and

the second leading cause of death worldwide regardless of gender

(1). Approximately 90% of CRCs are adenocarcinoma originating

from epithelial cells of the colorectal mucosa, whilst the remaining

10% are represented by rare CRC types (i.e., squamous cell

carcinoma, adenosquamous carcinoma, spindle cell carcinoma,

and undifferentiated carcinoma) (2).

Most CRC cases are sporadically and associated with non-

hereditary spontaneous mutations and epigenetic aberrations

arising from several risk factors, including dysregulation of the

gut microbiome, obesity, sedentary lifestyle, excess intake of meats,

fats, starches, and sugars, folate deficiency, alcohol, cigarette

smoking, and so on (3). However, a lower percentage of cases

(about 30%) is represented by familial cases, of which

approximately 5% present specific genetic signatures, penetrance,

and transmission due to germline variants in CRC predisposing

genes, e.g., adenomatous polyposis coli (APC), mismatch repair

(MMR) genes, epithelial cell adhesion molecule (EPCAM),

SMAD4/BMPR1A, and MUTYH (4–7).

Data report that the highest CRC incidence rates are recorded in

developed countries and the incidence of early-onset CRC in

individuals younger than 50 continues to rise (2, 4). Therefore, to

facilitate diagnosis of CRC cancer in earlier stages, the

recommended screening age was recently lowered to 45.

Early-stage colon cancer may be asymptomatic and often

become symptomatic late in the disease. Indeed, about >25% of

patients are diagnosed with advanced disease, i.e., extensive or

metastatic colorectal cancer (mCRC), at the time of diagnosis,

while more than 50% of patients with the initially localized

disease develop metastases during or after therapies (8, 9). As

known, metastasis poses a huge clinical challenge because only

20% of mCRC patients survive (10).

When neoadjuvant therapy is not included in the treatment

plan, surgical resection is performed as the first curative intent in

patients with localized and locoregional CRC (stages I, II, and III),

as well as for those with resectable distant metastases (5, 11–13).

However, the National Comprehensive Cancer Network (NCCN)

guidel ines recommend neoadjuvant oxal iplat in-based

chemotherapy for patients with “bulky nodal disease or clinical

T4b” colon cancer to decrease the size of the tumor before surgery

(14). To reduce the risk of cancer recurrence and improve patient

outcomes, an adjuvant postoperative chemotherapy regimen is

routinely employed in stage III patients (i.e., localized tumor with

lymph node invasion) and, in some cases, in stage II patients (i.e.,

localized tumor w/o lymph node invasion) (15, 16). Moreover,

chemotherapy is the first-line therapy also for mCRC treatment.

The genetic variability of CRC makes necessary to identify the

tumor subtypes (e.g., mismatch repair or microsatellite instability

status, mutations in KRAS, NRAS, BRAF) to set the most suitable

adjuvant therapy (i.e., systemic chemotherapy alone or with other

FDA-approved drugs).

The CRC prognosis depends essentially on comorbid

conditions, the frailty of patients, and drug resistance promoted

by cancer stem cells and/or genetic mutations in key driver genes
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(e.g., KRAS, p53, BRAF) (17, 18). Therefore, this present review

aims to summarize the mechanisms that characterize the stepwise

nature of CRC, its genetic landscape, and the current and future

approaches for CRC management.
2 Methods

The data in this present systematic review were collected using

two different searches: PubMed (https://pubmed.ncbi.nlm.nih.gov/)

and an online bioinformatic database (http://clinicaltrials.gov). The

search of the references using PubMed identified a total of 144 hits

from 1988 to 2022 relatively to keywords such as “Current

treatment of CRC” or “immunotherapy in CRC” or “gut

microbiota in CRC” or “chemoresistance and CRC” or “oxidative

stress and CRC” or “novel drug delivery approaches in cancer” or

“CSCs and CRC” or “systematic review and meta-analysis of

randomized controlled trials”. Thus, the combined information

obtained from the two data sources has represented the basis for

writing the review.
3 Results

3.1 Mechanisms of CRC initiation
and progression

The stepwise nature of sporadic CRC is still poorly understood,

even though several mechanisms have been described to be involved

in its initiation and progression. Epidemiological studies have found

a relationship between CRC and chronic exposure to environmental

risk factors (see above section) with strong pro-inflammatory

potential. Moreover, increasing evidence suggests that intestinal

microbiota and its products (e.g., butyrate and bacterial toxins) play

a pivotal role in all CRC steps (initiation, progression, and

metastasis) (19–21) (Figure 1). CRC patients display a reduced

bacterial diversity and richness compared to healthy individuals,

reflecting a distinctive intestinal microbial dysbiosis (22). Dysbiosis

causes alteration in gut mucosa integrity and permeability, due to

alteration of intercellular tight junctions. This condition, enhancing

the colocyte susceptibility to mutagenic/carcinogenic factors and

pathogenic bacteria, also promotes the activation of Mucosal

Associated Lymphatic Tissue. Moreover, Th2-derived cytokines

induced by pathogens or autoantigens may result in myeloid cell

recruitment (neutrophils and macrophages) and, consequently in

Reactive Oxygen Species (ROS) production.

As known, inflammation and oxidative stress are tightly

coupled; in fact, a chronic activation of inflammatory cells and

production of pro-inflammatory mediators (e.g., cyclooxygenase 2,

prostaglandin E2, tumor necrosis factor a, and transforming

growth factor b) enhance ROS generation and dysregulate the

activity of signal transduction pathways, including Transducer

and Activator of Transcription 3, Nuclear Factor-kappa B (NF-

kB), hypoxia-inducible factor-1a (HIF1a), NF-E2 related factor-2

(NRF2) (23–25). In addition, it has been reported that ROS

overproduction may result in genetic/epigenetic changes, such as
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single-strand cleavage, point mutations, miscoding, abnormal

amplification, oncogene activation, and immune suppression,

leading to possible precancerous lesions (i.e., adenomatous

polyps) (26, 27).

Mutations providing a selective growth advantage to the cells

within their microenvironment can potentially drive cancer

development. Generally, two mutated gene drivers can lead to a

net cell gain and detectable benign lesions, but over three gene

mutations promote the invasion through the basement membrane,

thereby leading to malignancy. In CRC, the first mutations usually

concern the APC gene resulting in a proliferative advantage of

epithelial cells promoting benign lesions (small adenomas)

(Figure 2). APC mutated small adenomas have a slow growth

rate, but further mutations of the KRAS gene can increase their

proliferation. However, the mutational status may be worsen by

sequential mutations of genes such as PIK3CA, SMAD4, and TP53

that promote the onset of malignant tumors capable of infiltrating

surrounding tissue and metastasizing distant organs (Figure 2) (28).

In addition, both colorectal adenomas and CRC are linked to

epigenetic alterations such as aberrant DNA methylation in key
Frontiers in Oncology 03
tumor-suppressor and oncogenes and dysregulation of miRNA

expression (29, 30).

Well-known examples of the carcinogenic role of ROS in CRC

are missense mutations at p53 suppressor gene, activation of

canonical Wnt signaling pathway (Wnt/b-catenin), which is

involved in cancer stem cell renewal process, and PI3K/Akt

signaling pathway, which regulates cell proliferation (31, 32).

Moreover, the most frequent ROS-dependent pre-mutagenic

DNA lesion is represented by 8-oxoguanine (8-oxoG) (33).

Notably, oxidative stress, due to either ROS overproduction or a

reduced activity of the enzymatic and non-enzymatic antioxidant

systems, is often involved in development and progression of

several cancers via activation of redox-responsive signaling

pathways leading to uncontrolled cell growth and oxidation of

lipids, carbohydrates, and proteins (i.e., cancer initiation,

promotion, and progression stages). Accordingly, oxidative stress

is one of the main cancer research topics given its involvement in

both genetic and metabolic cell damage (34–36). Increasing

evidence showed that oxidative stress control biogenesis of

cancer-associated microRNA (miRNA) via targeting various
FIGURE 1

Mechanisms of CRC initiation and progression. Environmental and genetic risk factors promoting Reactive Oxygen Species production, dysbiosis,
and inflammation.
FIGURE 2

Stepwise molecular/genetic events that underlie the initiation and progression of CRC.
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transcription and epigenetic factors. Recently, CRC-associated

miRNAs (e.g., miR-106b-5p, miR-335-5p, miR-193a-5p, miR-

378a-3p and miR-423-5p) are becoming attractive biomarkers as

they are expressed from the early stage of tumor development (37).

Moreover, either up-regulation or down-regulation of miRNAs

also known as “onco-miRNAs” are involved in CRC progression

and metastasis contributing to dysregulate several signaling

pathways, including mitogen-activated protein kinases (e.g., miR-

422a, miR-195), Wnt (e.g., miR-135a, miR-135b, miR-155, miR-17–

5p, miR-224), transforming growth factor-b (e.g., miR-224, miR-

20a-5p) and epithelial-to-mesenchymal transition (EMT) (e.g.,

miRNA-155, miR-34) (38–40).

Oncogene, oncosuppressor and metabolic gene mutations

contribute to the profound metabolic alterations found in cancer

cells, i.e., impaired respiration, increased fermentation and

anabolism (41). In most cases, the metabolism of cancer cells

favors aerobic glycolysis (the Warburg effect) rather than

oxidative metabolism to fulfill their biosynthetic and bioenergetic

demands of rapid and sustained proliferation. Mitochondrial

Oxidative Phosphorylation System (OXPHOS) is not necessarily

defective in tumorigenic cells, and it can take place proportionally

to the oxygen supply. Indeed, it has been shown that cancer stem

cells are able to revert glycolysis to TCA cycle to better satisfy their

metabolic needs and overproduce ROS (42). The Warburg

phenotype has been demonstrated to be driven by overexpression

of oncogenes such as c-Myc and HIF-1a (43). The inhibition of

pyruvate dehydrogenase activity and the increase of lactate

dehydrogenase activity lead to the conversion of pyruvate to

lactate following the mass action law (44). Moreover, lactate is

also generated from catabolism of glutamine and it is considered a

metabolite eliciting a broad spectrum of effects useful to sustain

cancer progression and metastasis (45). Cancer cells are capable of

adapting to metabolic-derived acidosis via monocarboxylate

transporters (MCTs), which export lactate and favor intracellular

alkalinization. Thus, the lactate exported by tumor cells can be

imported by cells of tumor microenvironmental where it acts as

important intracellular signaling for angiogenesis (46, 47).

Notably, cancer cells well adapt to ROS by triggering a powerful

antioxidant response mainly driven by glutathione (GSH) and

antioxidant enzymes, such as superoxide dismutase, catalase,

peroxiredoxins, GSH peroxidases, and thioredoxins (48). Thus,

the maintenance of the oxidative balance enables cancer cells to

perform their biological functions such as proliferation,

differentiation, and migration (49–51).

3.1.1 Genetic- molecular heterogeneity of CRC
CRC from a genetic-molecular standpoint is extremely

diversified. In fact, there are four main mechanisms of gene

alteration: (i) microsatellite instability (MSI), (ii) chromosomal

instability (CIN), (iii) CpG island methylator phenotype (CIMP),

(iv) and BRAF or KRAS mutations (52). Another aspect concerning

the molecular and phenotypic differences is the tumor localization

(i.e., the right or left side), which leads to different gene expression

and mutation profiles. Right-sided CRC occurs mainly in patients

with genetic predisposition and is characterized by hypermethylation,

higher frequency of BRAF mutation, and, in some cases, MSI (53).
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Instead, left-sided CRC is characterized by CIN and the activation of

the EGFR pathway (54). Moreover, differences in tumor

microenvironment components (e.g., tumor epithelial cells,

immune cells, and cancer-associated fibroblasts) play a critical role

in defining CRC with a positive or poor prognosis and in maintaining

immune surveillance (through the increase in tumor T-lymphocyte

subset density) or in promoting immune escape (55). For example, a

high density of specific tumor-infiltrating lymphocytes (i.e. cytotoxic

and memory T-cells) in MSI-high CRC can be considered a favorable

prognostic marker, because it counteracts the establishment of the

“immunoediting” process and reduces the tumor spread (56–58).

Furthermore, Canna et al. (59), found a relationship between

systemic inflammatory response and local inflammatory response

in patients undergoing resection for CRC, demonstrating that a high

concentration of C-reactive protein and low tumor-infiltrating CD4+

are predictive of poor cancer-specific survival.

The analysis of genetic profiles cannot be used for clinical

purposes due to a discrepancy in results (e.g., sample preparation

methods, use of different data processing and algorithms among

different patient cohorts, gene expression platforms, and so on).

However, the consensus molecular subtypes (CMS), which

represent a transcriptome-based classification of CRC, include

some superficial similarities useful for predictable CRC prognosis

(60, 61). The first called CMS1 (MSI immune) is characterized by

hypermutation, frequent BRAF mutation, MSI, and strong immune

activation, the CMS2 (canonical) by CIN and marked WNT and

MYC signaling, and the CM3 (metabolic) by evident metabolic

dysregulation and KRAS-mutated tumors. Lastly, the CM4

(mesenchymal), includes tumors characterized by prominent

TGFb activation, epithelial-mesenchymal transition gene up-

regulation, angiogenesis, and matrix remodeling.
3.2 Adjuvant treatments of CRC

Chemotherapy agents are usually used after a surgical excision as

the treatment of choice to eradicate Minimal Residual Disease (MRD)

in high-risk stage II and stage III patients and to increase the overall

survival rate in stage IV patients (62–65). However, the only use of

chemotherapy as standard-of-care (Table 1) can represent a limit due

to the high systemic toxicity, unsatisfactory response rate, the onset of

drug resistance, and the low tumor-specific selectivity. Therefore,

massive investments have been earmarked to develop new

approaches to improve patient outcomes. The identification of
TABLE 1 The main therapeutic approaches in the CRC treatment.

Cytotoxic drug regimen • Fluoropyrimidines;
• FOLFOX (5-FU/LV/Oxaliplatin);
• FOLFIRI (5-FU/LV/Irinotecan).

Targeted and immune-therapies • EGFR inhibitors;
• Anti-angiogenesis therapies;
• BRAF inhibitors;
• Kinase inhibitor;
• Immunotherapeutics
• HER2 inhibitors;
• KRAS inhibitors.
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point mutations in specific oncogenes (KRAS, NRAS, and BRAF),

amplification of human epidermal growth factor receptor 2 (HER2),

the MSI status, the DNA mismatch repair status (deficiency or

proficiency), has provided a framework for finding additional

approaches, as well as new prognostic perspective (66). Up to today

it is possible to hit the cancer more effectively, by administering the

most suitable biological agents with the standard chemotherapy

taking into account the genetic setting of patients (67, 68). In this

regard, targeted therapies (i.e., antibodies and small molecules) and

immunotherapies, which actively or passively target the patient’s

immune system, are widely used in combination with FOLFOX or

FOLFIRI as a first-/second-line setting or alone as a third-line setting

to improve the overall survival (OS) and progression-free survival

(PFS) of advanced/metastatic cancer patients (69, 70). Moreover,

antitumor immunity exerted by vaccines, specialized dendritic cells or

new generation of cytotoxic T cells are currently under investigation

in clinical trials (71, 72) (Table 2).

In patients with left-sided KRAS wild-type tumors, for instance,

the administration of anti-EGFR (i.e., cetuximab or panitumumab)

in combination with standard-of-care chemotherapy as a first-line

setting shows improvement in both OS and progression-free

survival (PFS) (73–75). Additionally, anti-EGFR can be used

alone in chemo-refractory patients with advanced CRC (76).

Recently, in patients with BRAF-mutated mCRC, the use of

anti-EGFR in combination with a selective inhibitor of BRAF kinase

(encorafenib) and a reversible inhibitor of the kinase activity of

mitogen-activated extracellular signal-regulated kinase 1 (MEK1)

and MEK2 (binimetinib) has been proposed as the third line

treatment to improve the prognosis (77, 78).
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Among the first- and second line interventions for mCRC, also

the VEGF inhibitors (i.e., Bevacizumab, Aflibercept) in

combination with standard-of-care chemotherapy contribute to

improve OS and PFS in patients (79, 80).

Another targeted therapy to treat advanced/metastatic CRC

refractory to all standard treatments is represented by the

diphenylurea-based multikinase inhibitor (i.e., Regorafenib). This

anti-tumoral drug targeting multiple protein kinases regulating

angiogenesis, proliferation, immunity, and metastases, increases

OS of heavily pre-treated patients (79, 81–83).

KRAS-targeted drugs, such as sotorasib and adagrasib, are

emerging for their anti-cancer activity in heavily pre-treated

patients harboring the KRASG12C mutation. These drugs are

small molecules that keep KRAS in its inactive state, allowing

apoptosis. However, their use in CRC treatment is still under

investigation (84).

3.2.1 5- fluorouracil
5-FU is a fluorinated analogue of uracil that belongs to

fluoropyrimidines. It was developed in 1957 and still today, it

represents the mainstay of systemic combination chemotherapy

for the treatment of CRC (85, 86). Although several 5-FU

administration schedules were used (e.g., bolus intravenous, bolus

plus intermittent intravenous infusion), today the standard of care is

represented by continuous or intermittent intravenous infusion

(87). Moreover, for around twenty years, also oral 5-FU prodrugs

(e.g., Capecitabine, Tegafur, 5′-deoxy-5-fluorouridine) are

commonly used as part of combination regimens or as

monotherapy (88, 89).
TABLE 2 Current clinical trials based on immunotherapy.

Clinical trials N° CRC stage Treatment Stage of trials Status of trials

NCT01890213 III CEA (6D) VRP vaccine I Completed

NCT02466906 III RhGD-CSF II Unknown

NCT02912559 III Chemotherapy and Atezolizumab III Active

NCT02280278 Post-therapy III Cytokine-induced Killer cell Immunotherapy III Unknown

NCT03507699 Metastatic Nivolumab, Ipilimumab CMP-001 and radiosurgery I Completed

NCT04044430 Metastatic Encorafenib, Binimetinib and Nivolumab I Completed

NCT05130060 Metastatic Vaccine (PolyPEPI1018) and TAS-102 I Active

NCT03310008 Metastatic NKR-2 + Folfox I Unknown

NCT02834052 Metastatic Pembrolizumab and Poly-ICLC I/II Completed

NCT03377361 Metastatic Nivolumab, Trametinib with or without Ipilimumab I/II Active

NCT03436563 Metastatic Anti-PD-L1/TGFbII fusion protein M7824 I/II Active

NCT03711058 Metastatic Copanlisib and Anti-PD1 Nivolumab I/II Active

NCT04599140 Metastatic CXCR1/2 inhibitor (SX-682) and Nivolumab I/II Recruiting

NCT03993626 Metastatic CXD101 and Nivolumab I/II Unknown

NCT02981524 Metastatic GVAX (with CY) colon vaccine and Pembrolizumab II Completed

NCT04109924 Pre-treated metastatic TAS-102 Irinotecan and Bevacizumab II Active

NCT04362839 Chemoresistant metastatic Regorafenib, Ipilimumab and Nivolumab I Active
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5-FU is easily incorporated into DNA and RNA where it acts as

an antimetabolite because shares a common structure with

pyrimidines (90). After administration, 5-FU is converted via

anabolic pathways into fluorodeoxyuridine monophosphate

(FdUMP), fluorodeoxyuridine triphosphate (FdUTP), and

fluorouridine triphosphate (FUTP) (91). Stable complex between

FdUMP and thymidylate synthase (TS) inhibits deoxythymidine

mono-phosphate production, which consequently results in severe

disruption of DNA synthesis and repair. Leucovorin (LV, Folinic

acid), and Methotrexate (MTX, Folate analogue) are preferably used

in combination with 5-FU to improve its antitumor activity (92, 93).

Moreover, metabolites of 5-FU produce also alterations in the

cellular membrane (89).

Approximately 80% of the total 5-FU dose is metabolized

primarily in the liver by dihydropyrimidine dehydrogenase

(DPD) (94), an enzyme that catalyzes the rate-limiting step in

its metabolism.

Severe 5-FU-associated toxicity (e.g., leukopenia, neutropenia,

thrombocytopenia, anemia, neuropathy, skin rash, hand-foot

syndrome, and so on) is mainly due to a partial or complete DPD

deficiency (95–99). In particular, different rare variants in the gene

encoding DPD (DPYD) have been identified as validated risk

variants for drug toxicity (86). Therefore, FDA-approved drug

label prevents the use of 5-FU in individuals with absent DPD

activity (88), while the Clinical Pharmacogenetics Implementation

Consortium and the Dutch Pharmacogenetics Working Groups

report dosing recommendations for 5-FU-based chemotherapy,

based on DPYD genotype (88, 100, 101).

Although 5-FU-based chemotherapy combining with

oxaliplatin or irinotecan has improved the response rate in

pa t i en t s w i th advanced CRC, pr imary or acqu i r ed

chemoresistance is the leading cause of unsatisfactory outcomes

in over 90% of patients with metastatic disease (93, 102). Indeed,

intratumoral heterogeneity due to genetic mutations, tumor

microenvironment (TME), and the presence of cancer stem cells,

and the molecular complexity of CRC as well, making it necessary

to develop other novel therapeutic strategies to overcome drug

resistance and improve drug response rates.
3.3 The presence of cancer stem cells
limits therapy efficacy against CRC

The main limiting factor for cancer patients is the onset of

multi-drug resistance (MDR), which makes cancer cells tolerant to

anti-cancer drugs. In fact, the combined chemotherapy and the

development of different administration schedules are not always

sufficient to avoid these issues due to the biological complexity of

the tumor (103).

Tumor MDR is a highly-complex phenomenon that

encompasses a plethora of molecular mechanisms involving not

only cancer cells, but also infiltrating cells (e.g., endothelial,

hematopoietic, and stromal cells) and the resulting tumor

microenvironment (104). The constant interactions between

tumor cells and their surrounding stroma result in alterations of

many different cellular processes. Moreover, the presence of a sub
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clonal variation among cancer cells allows greater adaptability of the

tumor to therapy, promoting its evolution.

Multiple molecular mechanisms have been identified as

contributing factors to MDR development. Among these, the

interplay between pre-existing and drug-induced mechanisms,

including defects in the apoptotic machinery, mitochondrial

dysfunction, altered autophagy activity, aberrant cell signaling,

reduction in drug concentration and genetic and epigenetic

changes, plays a significant role (105–108).

Moreover, the major cause of primary therapy resistance is

represented by unresponsive subpopulations, such as cancer stem

cells (CSCs) that can increase by up to 30% following long-term

drug treatment (109).

Stochastically CSCs are distributed within tumors, but

preferably they reside in specific niches, characterized by hypoxia,

low pH, and fewer nutrients, which in addition to conferring them

stemness features, allow the generation of differentiated progenies

(110, 111).

CSCs are frequently quiescent and poorly differentiated cell

populations with a lower level of intracellular ROS that share with

normal stem cells both properties (i.e., self-renewal, self-sufficiency,

and differentiation), and stemness signaling pathways (e.g., Notch,

Sonic hedgehog, WNT/b-Catenin, JAK/STAT, and NF-kB). Their

origin is still debated but it has been suggested that, at the moment

of tumor initiation, the acquisition of CSC phenotype from either

transformed differentiated cells (stochastic model) or transformed

tissue-resident stem cells (hierarchical model) is promoted by the

overexpression of oncogenes and the inhibition of tumor

suppressor genes (e.g., APC, TP53, TGFBR2, SMAD4, PTEN, and

RAS). Instead, following chemotherapy or radiotherapy regimen,

new CSCs derive from either non-CSC subpopulations or therapy-

induced senescent tumor cells (112).

Standard chemotherapy is not a valid therapeutic option for

CSCs because they can effectively counteract the chemotherapy-

induced oxidative stress through their free radical scavenging

systems, such as GSH, and overexpression of the anti-apoptotic

protein B-cell lymphoma 2 (Bcl2) (113–115). Moreover, the

enhancement of ATP-binding cassette (ABC) transporters and

aldehyde dehydrogenase (ALDH) expression, the increased

resistance to apoptosis, and the activation of DNA damage sensor

and repair machinery contribute to give to CSCs a survival

advantage against anti-cancer therapy (116). Additionally, CSCs

can transiently and reversibly switch between epithelial and

mesenchymal states and vice versa (i.e., epithelial-mesenchymal

plasticity) via Wnt/b-catenin signaling (117, 118). Such versatility,

consequently, results in metabolic reprogramming in cellular

bioenergetics, where energy supply can alternatively depend on

aerobic glycolysis or mitochondrial OXPHOS.

It has been shown that metformin potentially offers

therapeutic advantages by inhibiting the mitochondrial

respiration, forces CSCs to a metabolic shift from OXPHOS to

glycolysis (119, 120). The temporary OXPHOS suppression

renders CSCs more prone to apoptosis. However, tumor relapse

under metformin treatment cannot be excluded since CSCs can

acquire resistance mainly due to MYC overexpression, promoting

a Warburg-like glycolytic phenotype (120). Also, progressive
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increase in glycolysis-derived lactate may promote the activation

of proteases, leading to ECM degradation, and resistance to

chemotherapy (121).

The release of IL-4 from colorectal CSCs promotes their

survival and hampers the CD8+T cell-mediated antitumor

immune response, while the presence of inflammatory cytokines,

including IL-1, IL-4, IL-6, IL-8, IL-10, and TGF-b, fuels an

inflammatory loop, via Stat3/NF-kB pathways, for stimulating the

self-renewal of CSCs (118, 122). Moreover, the tumorigenic and

self-renewal capacity of CSCs also depend on the hyperactivation of

b-catenin, Notch, and Hedgehog signaling pathways (123, 124).

Although several CSC biomarkers have been identified for CRC,

their preclinical application is still unavailable due to the intrinsic

features of CSCs, i.e., phenotypic heterogeneity, and the influence of

the TME or CSC behavior. In this regard, previous studies have

focused the attention on both the CSC-related signature and

immune cell infiltration as important prognostic factors. The

correlation between infiltrating portion of immune cells, i.e.,

tumor immune microenvironment (TIME), and hallmark gene

sets may represent a possible starting point for developing CSC-

targeted therapeutic strategies (122, 125).
3.4 New drug delivery approaches and
latest strategies implemented in the
treatment of CRC

Increasing evidence suggests that the use of nanoscale

nanoparticles (NPs) as drug delivery systems (DDS), including

liposomes, nanoemulsions, hydrogels, multifunctional inorganic
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materials (e.g., carbon nanotubes, gold nanoparticles, quantum

dots), and peptides, could provide a novel therapeutic approach

useful in overcoming MDR and improving the pharmacokinetics

and biodistribution of anticancer compounds, resulting in reduced

side effects (126). These NPs refers to nanometer scale systems (10-

1000 nm) capable of protecting encapsuled molecules from

degradation and passively or actively delivering drugs, small

molecules, proteins, peptides, DNA and RNA into specific targets.

However, their bio-distribution and clearance in the body depend

not only by the NP chemical, physical and biological properties

(e.g., size, stability, surface charge, solubility, and so on) but also by

factors, such as the administration route (e.g., intravenous, oral,

pulmonary and dermal administration) and host environment (e.g.,

pre-existing inflammation) (127).

Recently, it has been reported that NPs can accumulate in

tumor tissues by passive or active delivery. Passive delivery of drug-

loaded nanoparticles (i.e., the Enhanced Permeability and

Retention, EPR, effect) is mainly due to fenestrated and immature

new tumor vessels (128–131) while, the active delivery is due to a

ligand-binding mechanism (e.g., nanoparticles targeting EpCAM,

the folate receptor, EGFR and CD44) (132–134) (Figure 3).

However, regardless of NP delivery, nanoparticle-protein

complex, namely protein corona (PC), can permanently change

the NP fate. The protein profile of the corona complex does not

have a standard composition, because it varies not only among NPs

of different chemical designs but even across the NPs of the same

type. This latter is explained by the so-called Vroman effect, in

which protein turnover depends not only by the high-affinity

binding of proteins, but also on their exchange kinetics (135). In

general, on the basis of the binding affinity between plasma proteins
FIGURE 3

Evolution of nanoparticles as innovative drug delivery systems. pH-sensitive pegylated nano drug delivery systems (HA-mPEG-Cis NPs) are able to
target CD44+ cells; Gold nanoparticles (AuNPs) find application in photodynamic therapy (PDT); Lipid-based NPs; Nanoemulsions (NEs) are a system
to deliver hydrophobic drugs and hydrophilic or hydrophobic compounds.
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and NP surfaces a “hard corona” and a “soft corona” are

distinguished, respectively (136). Moreover, proteins participating

in the complex influence the cell recognition pathway by the

reticuloendothelial system (RES) and promote biological

processes against NPs, including aggregation, opsonization, and

phagocytosis. Therefore, either second-generation NPs or

PEGylation technique enhance the effect of cancer therapy by

ensuring drug delivery within the tumor and evading

phagocytosis (137). In this regard, emerging self-assembly pH-

sensitive pegylated nano drug delivery systems, namely HA-

mPEG-Cis NPs, are able to target CD44-CRC-positive cells and

dissolve the hydrated PEG in the acidic tumor environment. These

drug delivery systems improve drug circulation time and tumor

targeting while reducing the side effects of the loaded drug

(138) (Figure 3).

Inorganic nanocarrier, of controlled size and shape, such as gold

NPs (AuNPs), show a certain versatility of use, including chemical

sensing, imaging, and drug delivery due to their favourable optical

and physical properties coupled with a reasonable biocompatibility

with regard to biological environment (139). Interestingly,

AuNPs, including gold nanorods, nanocages, nanostars,

nanocubes, and nanospheres, find application in photodynamic

therapy (PDT) for their specific physical features (i.e., optical and

Surface Plasmon Resonance properties, proton-capture cross-

section) (140) (Figure 3).

Lipid-based NPs are already FDA-approved for various

therapeutic purposes, including cancer treatment (e.g., Doxil®,

DaunoXome®, Myocet®, DepoCyt®, Marqibo® and Onivyde®),

severe infections or immunocompromised conditions (e.g.

AmBisome®) and RNAi therapeutic (Onpattro®) (127,

141) (Figure 3).

Liposomes are small-size vesicles consisting of an outer lipid

bilayer, synthetic or natural, and an aqueous core, widely used to

encapsulate/entrap drugs or nucleic acids (i.e. gene therapy) (142).

Currently, the manipulation of liposome lipid membrane

components (e.g., neutral and/or negatively charged lipids plus

cholesterol, sphingomyelin plus cholesterol, hydrogenated soy

phosphatidylcholine plus cholesterol) as well as specific key

parameters (e.g., size and shape) has improved their biological

performance, in term of enhanced delivery efficiency, maximizing

so-called nano-bio interactions (143).

Nanoemulsions (NEs) are another system to deliver

hydrophobic drugs and hydrophilic or hydrophobic

compounds through different routes of administration (e.g.,

aerosols, ingestion, and injections). NEs are made as single

(i.e., oil-in-water [o/w], water-in-oil [w/o]) or dual (w/o/w, o/

w/o) emulsions with biocompatible and FDA-approved

biodegradable oils (143). Previous in vitro studies have shown

that natural active compounds encapsulated within NEs, acting

synergistically with chemotherapy, can improve the therapeutic

value of treatment despite the use of a lower dosage of drug

(144, 145). Also, the entrapment of active or cytotoxic drugs

within nanoemulsions can be useful to sensitize CSCs to

apoptosis (146) (Figure 3).

Over the past decade, nanotechnology has been widely explored

to develop cytotoxic drug carriers. Although further improvements
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are needed, different types of NPs are already considered reliable

systems for drug delivery due to their ability in targeting the tumor

before releasing the drug.
4 Conclusion

Considering the critical nature of this review, and the variety of

the included studies, it highlights that the sporadic CRC is a multi-

stage and multi-step process in which the early mutational events

seem to be driven by dysbiosis, chronic inflammation, and ROS.

Moreover, treatments with standard cytotoxic agents, such as

FOLFOX and FOLFIRI regimens, also contribute to the variation

in the molecular profile of CRC in the advanced stage. Furthermore,

this review also highlights that the limitation in treatment

approaches for advanced CRC patients is mainly represented by

both extrinsic (chemotherapy) and intrinsic mutation burden in

cancer subpopulations (CSCs) developing MDR phenotype. In this

regard, many strategies have been studied to overcome this issue,

including the inhibition of crucial signaling involved in the self-

renewal and metabolism of CSCs, as well as the redox-targeting

approach. Moreover, using anti-vasculature therapies (e.g.,

bevacizumab and cetuximab) to modulate the tumor

microenvironment represents a valid approach for enhancing

cytotoxic drug uptake. Lastly, the development of novel DDS and

promoter drugs can improve the delivery and the effectiveness of

anti-cancer agents, opening up to personalized treatment protocols

for CRC.
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