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Background: Tumor microenvironment (TME) status is closely related to breast

cancer (BC) prognosis and systemic therapeutic effects. However, to date studies

have not considered the interactions of immune and stromal cells at the gene

expression level in BC as a whole. Herein, we constructed a predictive model, for

adjuvant decision-making, by mining TME molecular expression information

related to BC patient prognosis and drug treatment sensitivity.

Methods: Clinical information and gene expression profiles were extracted from

The Cancer Genome Atlas (TCGA), with patients divided into high- and low-

score groups according to immune/stromal scores. TME-related prognostic

genes were identified using Kaplan-Meier analysis, functional enrichment

analysis, and protein-protein interaction (PPI) networks, and validated in the

Gene Expression Omnibus (GEO) database. Least absolute shrinkage and

selection operator (LASSO) Cox regression analysis was used to construct and

verify a prognostic model based on TME-related genes. In addition, the patients’

response to chemotherapy and immunotherapy was assessed by survival

outcome and immunohistochemistry (IPS). Immunohistochemistry (IHC)

staining laid a solid foundation for exploring the value of novel therapeutic

target genes.

Results: By dividing patients into low- and high-risk groups, a significant

distinction in overall survival was found (p < 0.05). The risk model was

independent of multiple clinicopathological parameters and accurately

predicted prognosis in BC patients (p < 0.05). The nomogram-integrated risk

score had high prediction accuracy and applicability, when compared with

simple clinicopathological features. As predicted by the risk model, regardless

of the chemotherapy regimen, the survival advantage of the low-risk group was

evident in those patients receiving chemotherapy (p < 0.05). However, in patients
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receiving anthracycline (A) therapy, outcomes were not significantly different

when compared with those receiving no-A therapy (p = 0.24), suggesting these

patients may omit from A-containing adjuvant chemotherapy. Our risk model

also effectively predicted tumor mutation burden (TMB) and immunotherapy

efficacy in BC patients (p < 0.05).

Conclusion: The prognostic score model based on TME-related genes effectively

predicted prognosis and chemotherapy effects in BC patients. Themodel provides

a theoretical basis for novel driver-gene discover in BC and guides the decision-

making for the adjuvant treatment of early breast cancer (eBC).
KEYWORDS
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1 Introduction

Breast cancer (BC) is the most common malignancy in women.

According to cancer burden data from the International Agency for

Research on Cancer (World Health Organization, 2020), up to 2.26

million new BC cases were recorded globally, and together with

lung and colorectal cancer, accounts for more than half of new

female cancers (1). Long-term survival in BC patients varies with

the stage status at the time of initial diagnosis. The overall 5-year BC

survival rate is 98% for stage I, 92% for stage II, 75% for stage III,

and a sudden drop to 27% for stage IV (2). Currently, the main BC

treatments include surgery, radiotherapy, and systemic therapy

(chemotherapy, endocrine therapy, and targeted medication) (3–

6). However, 40% of BC patients are resistant to current available

chemotherapy or targeted therapies (7). With the high

heterogeneity of BC, the traditional immunohistochemical

staining quadruple type is no longer able to provide more

accurate personalized treatment for early BC (eBC) patients,

especially considering the impact of new targets and targeted

drugs. Multigene panels, such as PAM50 intrinsic BC subtypes,

21 Gene Recurrence Score and 70-gene Prognostic Signature have

quietly stepped on to the historical stage, were incorporated into the

TNM staging system by the American Joint Committee on Cancer

(8th edition) (8). Unequivocally, for prognosis predictions,

multivariable indicators are more accurate and objective when

compared with single biomarkers (9). Hence, to identify more

biomarkers and guide precise personalized eBC treatment, more

risk models based on gene expression profiles, are required.

Tumor progression is a complex process with interactions

occurring among tumor cells, the tumor microenvironment

(TME), and the immune system (10–12). The TME reflects the

cellular environment of the tumor (13, 14), including cell

components other than tumor cells, e.g., immune and stromal

cells, extracellular matrix molecules, and cytokines (15, 16).

Previous studies indicated that stromal cells have important roles

in tumor growth, disease development (17, 18), and drug resistance

(19). Immune cells exert regulatory and destructive effects toward

tumor cells and may have dual promotional and antagonistic
02
functions (20–22). Through crosstalk, they participate in tumor

processes and development, are involved in mechanisms

underpinning the TME, and contribute to tumor diagnostic and

prognostic evaluation (23–26). Increasingly, the TME is considered

a therapy target (27, 28); the prediction and prognostic value of

tumor-infiltrating lymphocytes (TILs) in BC is gradually being

recognized (29, 30). For example, ECOG2197 and ECOG1199

clinical studies identified an approximate 15% reduction in

relapse and mortality rates for every 10% increase in TIL levels

(30). The KEYNOTE-086 study indicated that higher TIL levels

were associated with significant improvements in objective response

rates for pembrolizumab (31). However, few studies have reported

on how the TME may be used as a prognostic and predictive

biomarker in assessing tumor immunity and treatment efficiency in

BC patients. In our study, we show that TME may be used to

accurately predict the prognosis in BC patients, independent of

multiple clinicopathological factors, and predict the efficacy of

chemotherapy and immunotherapy in these patients. Critically,

low-risk patients in our prediction model may be exempted from

the A-adjuvant chemotherapy regimens, thus providing guidance

for patients with de-escalated individual treatment.

Yoshihara et al. developed the ESTIMATE algorithm where gene

expression profiles were used to predict infiltrating stromal and

immune cell levels in the TME (23). Previous studies reported the

algorithm was effective in predicting TME status, with immune and

stromal scores predicting tumor-associated normal cells penetration.

However, studies focused exclusively on immune cells (32, 33) rather

than stromal cells, and largely ignored their role in tumorigenesis and

development. Secondly, due to complex reticular regulatory

mechanisms in the TME, a single pathway or single cell

subpopulation cannot fully identify mechanisms between the TME

and tumors (34). Therefore, a comprehensive understanding of tumor-

associated normal cells in tumor tissues may provide important

insights into BC biology. In our study, we comprehensively

evaluated molecular expression networks in stromal and immune

cells to (1) understand the significance of TME-related genes and (2)

provide a more accurate and comprehensive assessment of the TME

during BC development and treatment.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1209707
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1209707
We used several bioinformatics approaches to explore the TME

during BC occurrence and progression. Based on TME-related

genes expression, we constructed a new prognostic risk model to

evaluate the prognostic value of the TME. Differences between the

immune microenvironment in BC patients were comprehensively

analyzed. Additionally, underlying signal pathways were

preliminarily elucidated. This work provides new insights into the

molecular mechanisms underpinning BC tumor occurrence and

development, and may help predict prognosis in BC patients and

assess therapeutic efficacy.
2 Methods

2.1 Clinical specimens

Two BC tissue specimens were obtained from patients at the

Second Hospital of Dalian Medical University. Invasive breast cancer

was pathologically confirmed in all patients not on chemotherapy or

radiotherapy before tissue collection. Written informed consent was

obtained from patients, and the study was approved by the Ethics and

Human Subject Committee of the Second Hospital of Dalian Medical

University (NO.2023191). Procedures were performed according to

hospital guidelines and regulations.
2.2 Data sources

Gene expression matrices of enrolled patients were obtained from

The Cancer Genome Atlas (TCGA) and the Gene Expression

Omnibus (GEO) databases. We included 1,069 BC samples from

TCGA as the training cohort. The gene-expression profiles of TCGA-

BRCA in the Fragments Per Kilobase per Million (FPKM) format

were obtained from the TCGA portal (http://cancergenome.nih.gov),

and then the ID conversion was carried out through the operation of

ENSG ID to GeneSymbol, and finally the data standardization was

carried out, and the standardization method is log2 (X+1). In

addition, the BC patients’ clinical data (gender, age, histological

type, and survival) were downloaded from TCGA. After searching

the datasets with more than 150 human breast cancer samples with

complete expression profile data, we selected the GSE42568,

GSE88770, GSE48390, and GSE162228 dataset from the GEO as

the validation cohort. These datasets were verified using the GPL570

platform. To ensure the scientificity and accuracy of the research, we

successfully removed batch effect with COMBAT when combining

GEO multi-data sets (Supplementary Figure S1). Additionally,

clinical survival and outcome data of BC patients were also

downloaded from this database.
2.3 Identifying differentially expressed
genes (DEGs)

Data analysis was performed using the “limma” R package. Fold

change > 1.5, p < 0.05, and false discovery rate (FDR) < 0.05 were set

as the cutoffs to screen for DEGs.
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2.4 DEG enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were performed to enrich the DEGs

into associated pathways using the “clusterProfiler” R package

(version 3.14.3). p < 0.05 and FDR < 0.05 were considered significant.
2.5 Constructing and validating a risk
model based on TME-related genes

Least absolute shrinkage and selection operator (LASSO) Cox

regression analysis identified genes most correlated with OS, and 10-

round cross-validation was performed to prevent overfitting. The risk

score for each patient was then calculated based on the expression

levels of genes. Risk score: -0.0419970982477039 * NPY1R -

0.162055812415471 * CELSR2 - 0.043004672153174 * STC2 -

0.0716026845406244 * SCUBE2 + 0.2810654696502 * GIMAP2 +

0.0773881988402307 * HLA-DPB1 - 0.0232515777318596 * CXCL14 -

0.721867840891611 * KLRB1 - 0.253187064109637 * BIRC3 -

0.0587584464454724 * IL18 - 0.242105852075788 * PSMB8 +

0.198881881356143 * CD1C + 0.0814403392760682 * TNFAIP8 +

0.076656198308623 * IRF1. According to the median risk score,

BC patients were divided into high- and low-risk groups. Kaplan–

Meier analysis was employed to estimate the difference in OS

between the categorized patients via the R package “survival.” The

prognostic capability of the risk model was validated using time-

dependent receiver operating characteristic (ROC) analysis with the

R package “pROC”.
2.6 Evaluation of risk model independence

Univariate and multivariable Cox regression analyses were

performed to estimate whether the risk score was an independent

predictor of BC prognosis. A subgroup analysis was conducted to

confirm the independence of the risk model. The patients with BC

in the training cohort were regrouped into new subgroups based on

different clinical characteristics, and the patients in each subgroup

were stratified into high- and low-risk groups, based on the median

risk score.
2.7 Immunohistochemistry (IHC)

Patient tissue specimens were fixed in 10% neutral formalin,

embedded in paraffin, and sectioned into 4 µm sections before

staining. Sections were deparaffinized, rehydrated, and blocked for

endogenous peroxidase activity. Next, antigen retrieval was

performed in citrate buffer (pH 6.0) and sections autoclaved for

90 s at 121°C. After washing in phosphate buffered saline (3 min ×

3), sections were blocked in goat serum at room temperature for 30

min and incubated with primary antibodies (PSMB8, (1:200),

Proteintech Group, IL, USA; cIAP2, (1:200), Proteintech Group,

IL, USA) overnight at 4° C. The next day, sections were incubated
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with secondary antibodies (Maxin Biotechnologies, China) and

treated with diaminobenzidine hydrochloride to visualize

immunoreactivity. The immunohistochemical scoring was

performed independently by two experienced pathologists, who

had no knowledge of the clinicopathological information.
2.8 Nomogram construction

Nomograms are user-friendly clinical tools used to predict

disease prognosis. The risk score and clinical parameters were

subjected to univariate Cox regression analysis, and features with

P values < 0.05 were subjected to multivariable COX regression

analysis. Features with p values < 0.05 after multivariate analysis

were incorporated into nomograms that were constructed to predict

the 3- and 5-year OS rates. The nomogram was based on three

independent prognostic factors: age, tumor stage, and the risk score.

Factors corresponded to a specific point by drawing a line straight

up to the point axis. The sum of the three factor points indicated the

total points. By drawing a perpendicular line from the total point

axis to the two-outcome axes, estimated 3- and 5-year OS

probabilities were obtained. Observed 3- and 5-year OS rates

were compared with predicted rates to further verify predictive

performance. We assessed nomogram goodness-of-fit using

calibration plots.
2.9 Immune analysis

The estimation of stromal and immune cells in malignant

tumor tissues using expression data (ESTIMATE) method was

applied to calculate the immune score, stromal score, and

ESTIMATE score of the patients, via the R package “estimate”.

Tumor immune estimation resource (TIMER) analysis was

conducted to evaluate the abundance of six types of immune cells

(neutrophils, CD4 T cells, macrophages, CD8 T cells, dendritic cells

(DCs), and B cells). The MCPcounter (microenvironment cell

populations-counter) algorithm was also used to assess T cell,

CD8 T cell, cytotoxic lymphocyte, B cell lineage, natural killer

(NK) cell, monocytic cell lineage, myeloid DC, neutrophil,

endothelial cell, and fibroblast abundance.
2.10 Immune infiltration analysis of
hub genes

TIMER was used to analyze correlations between hub gene

expression and the degree of lymphocyte infiltration. TISIDB was

also used to analyze correlations between hub gene expression

and immune molecule expression in BC. We used the GSCA

Lite (A Web Server for Gene Set Cancer Analysis: http://

bioinfo.life.hust.edu.cn/web/GSCALite) online tool to analyze the

correlation between hub genes expression and sensitivity to current

chemotherapeutic or targeted drugs for BC.
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2.11 Statistical analysis

Statistical analyses were completed using R (version 3.6.3).

Discontinuous data were presented as number (percentage), and

continuous data were displayed as mean± standard deviation. The

Wilcoxon rank sum test was utilized to compare two groups and the

Kruskal-Wallis test to compare multiple groups. In addition,

the survfit function of “survival” package in R was used to

analyze the prognostic differences between the two groups, and

the log-rank test was used to further evaluate the significance of

prognostic differences between the two groups. Statistical

significance was defined as p < 0.05.
3 Results

3.1 Immune scores and stromal scores are
significantly associated with BC subtypes,
hormone receptor status, and overall
survival (OS)

We downloaded the gene expression profiles and clinical

information of 1,069 BC patients from The Cancer Genome Atlas

(TCGA). Based on gene expression, BC can be mainly classified into

Luminal A, Luminal B, HER2-enriched, Basal-like, and Normal-like

(35, 36). The ESTIMATE algorithm showed that the highest mean

immune score of Normal-like subtype was highest among all five

subtypes, followed by Basal-like subtype, HER2-enriched subtype,

and Luminal A subtype. The Luminal B subtype cases had the

lowest immune scores (Supplementary Figure S2A, p < 0.0001).

However, stromal scores, from high to low, were Normal-like,

Luminal A, HER2-enriched, Luminal B, and Basal-like

(Supplementary Figure S2B, p < 0.0001). The mammary gland is

a hormone-responsive organ- the endocrine system is closely

related to its development and disease occurrence, therefore we

performed correlation analyses between immune and stromal

scores and hormone receptor status. As shown in Supplementary

Figure S2C, patients with progesterone receptor positive (PR+) had

lower immune scores when compared with progesterone receptor

negative (PR-) patients (p < 0.01), while estrogen receptor positive

(ER+) patients had lower scores when compared with estrogen

receptor negative (ER-) patients (p < 0.0001). In contrast, PR+/ER+

patients had higher scores when compared with PR-/ER- patients,

and ER+ patients had higher when compared with ER- patients in

the stromal scores (Supplementary Figure S2D, p < 0.0001). Thus,

stromal and immune scores were significantly associated with BC

subtypes and hormone receptor status.

To identify potential OS correlations with immune scores and/

or stromal scores, we divided our cohort into top and bottom halves

(high vs. low score groups) based on their scores. Kaplan-Meier

survival curves showed that median OS in the low score group was

longer when compared with the high score group when based on

immune scores (Supplementary Figure S2E, p = 0.01). Consistently,

patients with lower stromal scores had longer median OS when
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compared with patients with higher stromal scores (Supplementary

Figure S2F, p = 0.85), although statistical significance was

not observed.
3.2 Differentially expressed genes (DEGs) in
BC and correlations with OS

To determine global gene expression profile correlations

with immune scores and/or stromal scores, we compared

Affymetrix microarray data in 1,069 BC patients. Heatmaps in

Figure 1 showed distinct gene expression profiles of cases belong to

immune scores/stromal scores groups. Based on immune scores,

943 genes were upregulated, and 71 genes downregulated in the

high score group than the low score group (Figure 1A, fold change >

1.5, p < 0.05). Similarly, 1,011 genes were upregulated, and 50 genes

were downregulated in the high score group (Figure 1B, fold change

> 1.5, p < 0.05). Moreover, Venn diagrams (Figures 1C, D) showed

that 498 genes were upregulated in the high-score group, while two

genes were downregulated. We performed subsequent analyses by

focusing on all DEGs obtained based on comparisons of immune

and stromal scores. To determine potential DEGs functions, we

performed functional enrichment analysis on 1,574 DEGs. Top

Gene Ontology (GO) terms included immune system process,

immune response, extracellular matrix, signalling receptor

binding, and integrin binding (Figures 1E–G).

To explore individual DEG correlations with OS, we performed

Kaplan-Meier survival curve analysis. In total, 421 DEGs out of

1,574 significantly predicted OS in the log-rank test (p < 0.05,

selected genes are shown in Supplementary Figure S3).
3.3 Protein-protein interaction (PPI) of
genes of prognostic value

To better understand interactions between prognostic value

DEGs, we examined protein-protein interaction (PPI) networks in

STRING. The network consisted of eight modules, which included 218

nodes and 704 edges. We selected the top three important modules for

further analysis (Supplementary Figure S4). For descriptive

convenience, we termed these modules MCODE1, MCODE2, and

MCODE3modules, respectively. InMCODE1 (Supplementary Figure

S4A), ACKR3, CXCR3, and CCR5 had higher degree values. In

MCODE2 (Supplementary Figure S4B), several immune response

key genes occupied the module center and included HLA-DRB5,

HLA-DRB1, CD247, and LCK. In MCODE3 (Supplementary Figure

S4C), IL2RG, CD8B, and CD8A were significant nodes, as they had

the most connections with other module members.
3.4 Functional enrichment analysis of
genes of prognostic value

Consistent with PPI network analysis, functional enrichment

analysis of these genes also identified strong associations with
Frontiers in Oncology 05
immune responses. Top GO terms included extracellular region

and extracellular space (Supplementary Figure S5A), immune

response (Supplementary Figure S5B), and antigen binding and

signalling receptor binding (Supplementary Figure S5C).

Additionally, all pathways from Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis (Supplementary Figure S5D) were

associated with immune responses.
3.5 Gene Expression Omnibus (GEO)
database validation

To determine if genes identified by TCGA had prognostic

significance in other BC patients, we downloaded and analyzed

gene expression data from 435 BC patients (GSE42568, GSE88770,

GSE48390, and GSE162228) from the GEO database. Interestingly,

15 genes were significantly and prognostically related to the

validation set (Supplementary Figure S6, p < 0.05); NPY1R,

CELSR2, STC2, SCUBE2, GIMAP2, HLA-DPB1, TFF1, CXCL14,

KLRB1, BIRC3, IL18, PSMB8, CD1C, TNFAIP8, and IRF1.
3.6 Constructing a prognostic risk model
based on TME-related genes

Subsequently, we performed least absolute shrinkage and

selection operator (LASSO) Cox regression analysis to select

highly relevant genes from these 15 genes. Finally, 14 were

identified as related to the TME in BC, and optimal values of

the penalty parameter were determined by 10-fold cross-

validation (Figures 2A, B). We then constructed a prognostic

model based on these genes, with the risk score of each sample

from the training cohort calculated according to this model.

Based on median risk score, BC samples from the training

cohort were divided into high- and low-risk groups. To assess

the OS in these groups, Kaplan-Meier curves were generated and

showed that OS in the high-risk group was worse than that in the

low-risk group, indicating the validity of the risk score prediction

(Figure 2C, p < 0.0001). Additionally, the expression of the TME-

related genes, survival status, and survival time distribution for

patients according to risk scores are shown in Figure 2D. In terms

of model diagnosis, the AUC of the time-dependent receiver

operating characteristic (ROC) curves were 0.69 for 1-year

survival, 0.74 for 3-year survival, and 0.74 for 5-year survival,

respectively, suggesting acceptable stability of the risk model

(Figure 2E). In addition, to explore if BC subtypes affect

survival, we grouped patients according to subtypes and

subsequently performed survival analyses. Clearly, no

differences in survival due to subtypes were observed,

suggesting that the BC subtype did not affect survival

(Supplementary Figure S7, p = 0.26). Together, our risk model,

constructed from TME-related genes, appeared to accurately

predict prognosis in BC patients.

Next, to identify hub genes, we identified interactions between

genes in the TME model by constructing a PPI network in STRING.
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The network included 13 nodes and six edges. PSMB8 and BIRC3

had the maximum neighboring genes and were identified as hub

genes. The Kaplan-Meier analysis showed both were the prognostic

indicators, and its high expression favored the prognosis

(Supplementary Figure S2, p < 0.05). To verify this phenomenon

still exists in the human body, we used immunohistochemistry to

compare hub protein expression and identified high PSMB8 and

BIRC3 expression trends in BC epithelial cells when compared with

paracancerous cells (Figure 3).
Frontiers in Oncology 06
3.7 The risk model is an independent BC
prognosis indicator

Univariate Cox regression analysis showed that risk score

could predict the prognosis of BC patients (Figure 4A, p <

0.0001). In the multivariable Cox regression analysis, risk score

remained statistically significant (Figure 4B, p < 0.0001),

indicating our risk model was an independent prognostic factor

for BC. Additionally, BC patients in the training cohort were
B

C D E

F G

A

FIGURE 1

Differentially expressed genes (DEGs) in BC and their correlations with overall survival (OS). (A) Heatmap of the DEGs of immune scores. (B) Heatmap
of the DEGs of stromal scores. (C, D) Venn diagrams showing the number of commonly upregulated (C) or downregulated (D) DEGs in stromal and
immune score groups. (E–G) Gene Ontology analysis (GO) analysis.
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regrouped into subgroups based on age (< 50 and ≥ 50 years old),

and TNM stage (stage I, stage II, stage III, and stage IV).

Regardless of subgroups, low-risk group patients still showed

significantly longer survival (Figures 4C, D, p < 0.05), which

indicated excellent risk model independence.
Frontiers in Oncology 07
3.8 Establishing a nomogram

To create a quantitative method to predict OS, we integrated the

risk score and independent clinicopathological prognostic factors,

including age and TNM stage, to construct a nomogram (Figure 5A).
B

C

D

E

A

FIGURE 2

Construction of a prognostic model in the training cohort. (A) The Least absolute shrinkage and selection operator (LASSO) Cox regression analysis
identified 14 genes most correlated with prognostics. (B) The optimal values of the penalty parameter were determined by 10-round cross-
validation. (C) Patients in the high-risk group (blue) exhibited worse overall survival (OS) than those in the low-risk group (red). (D) Distribution of risk
scores, survival profiles, and heat maps showing characteristic expressions of the low and high risky groups. (E) Time-dependent receiver-operating
characteristic (ROC) curve.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1209707
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1209707
To evaluate its prognostic value, we compared the concordance

index (C-index) of the nomogram with TNM stage, and as shown in

Table 1, the nomogram improved the prediction accuracy for BC.

We compared predicted 3- and 5-year survival probabilities with

actual probabilities and observed the calibration curve showed good

concordance between these probabilities, thereby reflecting high

nomogram accuracy and dependability (Figure 5B). Taken together,

the nomogram, which integrated risk score, showed good

performance and applicability, and has potential as a clinical tool

to predict prognosis in BC patients.
3.9 Correlations between the risk model
and clinicopathological features

Relationships between prognostic risk score and clinical

characteristics were further investigated in the training cohort.

Age, T category, M category and TNM stage were significantly

related to risk score, whereas gender and N category were not

(Figure 6A, p < 0.05). As observed Figure 6B, patients with HER2-

enriched had the highest risk score, followed by Basal-like, Luminal

B, and Luminal A subtypes, while Normal-like patients had the

lowest scores (p < 0.0001). Association analysis with hormone

receptor status showed that patients with PR+/ER+ had lower

risk score when compared with PR-/ER- patients, and ER+

patients had lower risk score when compared with ER- patients

(Figure 6C, p < 0.0001).

To better visualize the clinicopathological features in individual

patients and assess correlations with survival, we used an alluvial
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diagram which showed that risk categories in the prediction model

accurately predicted patient survival (Figure 6D).
3.10 Correlation between the risk model
and immune infiltration

Association between the risk model and immune cell infiltration

was assessed using several immune infiltration approaches.

ESTIMATE algorithm data showed that immune, stromal, and

ESTIMATE scores in the high-risk BC patient group were lower

when compared with BC patients in the low-risk group (Figure 7A,

p < 0.0001). The TIMER algorithm showed that B cell, neutrophil,

CD4 T cell, dendritic cell (DC), and CD8 T cell abundance, but not

macrophage, was statistically higher in the low-risk group when

compared with the high-risk group (Figure 7B, p < 0.0001).

Moreover, MCPcounter algorithm results showed that T cells,

CD8 T cells, cytotoxic lymphocytes, B lineage cells, natural killer

(NK) cells, monocytic lineage cells, myeloid DCs, neutrophils,

endothelial cells, and fibroblasts were highly infiltrated in the low-

risk group (Figure 7C, p < 0.01). Thus, our risk model correlated

well with different immune microenvironment components.

Given the significant correlation of our risk model with the BC

immune microenvironment, we next examined relationships

between the risk model and immune cell subtype infiltration

using Pearson’s algorithm. As shown in Figure 7D, correlation

values for B cells, CD4 T cells, CD8 T cells, DCs, and neutrophils

with risk scores were −0.35, −0.48, −0.49, −0.43, and −0.39,

respectively. As expected, immune cell infiltration levels were
B

A

FIGURE 3

PSMB8 and BIRC3 expression. (A) Representative immunohistochemical image showing high and low PSMB8 expression. (B) Representative
immunohistochemical image showing high and low BIRC3 expression. The red area indicates paracarcinoma epithelial cells and the black area
indicates breast cancer epithelial cells.
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significantly and positively correlated with prognosis (Figure 7D, p

< 0.0001).
3.11 Practical analysis of the risk model

To further confirm model practicability and reliability, it was

verified using a validation cohort. Risk scores, survival status, and

gene expression are shown in Figure 8A. As expected, significant

differences in OS were identified between groups, with longer OS in

the low-risk group (Figure 8B, p < 0.0001). Furthermore, relationships

between risk score and the BC immune microenvironment were

confirmed in the validation cohort. From ESTIMATE, TIMER, and
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MCPcounter analysis, the low-risk group was significantly associated

with high immune cell infiltration levels From ESTIMATE analysis, the

low-risk group was significantly associated with high stromal, immune,

and ESTIMATE scores (Figure 8C, p < 0.0001). In TIMER analysis, the

abundance of the five aforementioned immune cell types, except

macrophages, was statistically different between groups (Figure 8D, p

< 0.0001), and immune cell abundance (all types) was significantly

higher in the low-risk group than the high-risk group. TheMCPcounter

algorithm showed that T cells, cytotoxic lymphocytes, B lineage,

monocytic lineage cells, myeloid DCs, endothelial cells, neutrophils,

and fibroblasts were in a high infiltration state in the low-risk group

(Figure 8E, p < 0.05). Therefore, our TME-related gene risk model was

associated with BC prognosis and the immune microenvironment.
B

C

D

A

FIGURE 4

Prognostic model independence. (A) Results of Univariate Cox regression analysis. (B) Results of multivariable Cox regression analysis. (C, D) Subgroup
analyses suggesting the independence of the prognostic model regarding age, and TNM stage.
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3.12 The risk model predicts
chemotherapy efficacy

As neoadjuvant and adjuvant chemotherapies are reportedly

related to immune infiltration (37), we evaluated if chemotherapy
Frontiers in Oncology 10
influenced BC prognosis. According to the NCCN Guidelines in

Oncology, anthracycline + cyclophosphamide (AC), AC followed

by taxane (AC-T), and taxane + cyclophosphamide (TC) are major

chemotherapy regimens. The OS advantage was observed in the

low-risk group, regardless of whether they received chemotherapy

or not. And whether in high-risk group or low-risk group, patients

who received chemotherapy had a better prognosis (Figure 9A, p <

0.0001). In the low-risk group, the OS advantage was evident in

patients who received TC and AC-T chemotherapy regimens when

compared with those who received no chemotherapy (Figure 9B,

p < 0.05). In contrast, the chemotherapy benefits in the high-risk

group were observed for AC, TC, and AC-T chemotherapy
B

A

FIGURE 5

Nomogram construction. (A) Nomogram predicting 3-, and 5-year OS for BC patients in the training cohort based on risk score and other
clinicopathological parameters (age and TNM stage). (B) The calibration curves of nomograms between predicted and observed 3- and 5-year OS in
the training cohort. The gray line of 45° represents the perfect prediction of the nomogram.
TABLE 1 The concordance indexes of tumor-node-metastasis (TNM)
stage and nomogram system.

C-index 95% Confidence Interval

Nomogram 0.800 0.76-0.84

TNM stage 0.763 0.72-0.81
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regimens (Figure 9C, p < 0.05). More importantly, subgroup

interaction evaluations suggested that better chemotherapy

outcomes were achieved in low-risk patients regardless of the

chemotherapy regimen (Figure 9D, p < 0.05).

We also explored if the A-regimen was an indispensable

chemotherapy agent in the low-risk group. As shown in

Figure 9E, no significant differences in prognosis outcomes for
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patients treated with the A-regimen were identified, regardless of

low- or high-risk (p > 0.05). Further subgroup analysis showed no

significant differences in prognosis outcomes in low-risk patients

who received the A-regimen when compared with those who did

not (Figure 9F, p > 0.05). These observations suggested that the low-

risk group selected by this prediction model has the opportunity to

exempt the A-containing adjuvant chemotherapy regimen.
B

C

D

A

FIGURE 6

Stratified analysis of clinical characteristics for risk score in the prognostic model. (A) Correlation analysis of the risk score and the clinical
characteristics. (B) Correlation analysis of the risk score and the BC subtypes. (C) Correlation analyses of the risk score and the status of PR/ER.
(D) Alluvial diagram.
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FIGURE 7

Correlation between the risk model and the immune microenvironment. (A) The ESTIMATE algorithm. (B) The TIMER algorithm. (C) The MCPcounter
algorithm. (D) Correlations between the risk score and the infiltration of immune cell subtypes.
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FIGURE 8

Validation of the prognostic risk model in the validation cohort. (A) Distribution of risk scores, survival profiles, and heat maps showing characteristic
expressions of the low- and high-risk groups. (B) Patients in the high-risk group (blue) exhibited worse overall survival (OS) than those in the low-risk
group (red). (C) The ESTIMATE algorithm. (D) The TIMER algorithm. (E) The MCPcounter algorithm.
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3.13 The risk model predicts gene
expression in immune responses, immune
checkpoints, inflammation, and epithelial-
mesenchymal transition

Immune checkpoint blockade with immunotherapies, including

CTLA-4, CD28, and CD274 are promising treatment approaches for

several malignancies (38). However, the bottleneck problem of

immune checkpoint inhibitors (ICI) in the treatment of eBC is the

lack of precise biomarkers identifying populations who may benefit

from these therapeutics. In our study, we determined the expression

levels of several key immune checkpoint regulators and inflammatory

mediators to provide reference biomarker candidates for precision

immunotherapy in early drug-resistant patients. As presented in

Figure 10A, CD274, CD28, and CTLA-4 expression levels were

significantly higher in the low-risk group (p < 0.0001). The Pearson

algorithm was used to analyze correlations between immune

checkpoints and our risk model. Correlation values of CTLA-4,

CD28, CD274 and risk score were -0.37, -0.43 and -0.33,

respectively (Figure 10B, p < 0.0001). Additionally, other

immunomodulators or inflammatory mediators were increased in

the low-risk group (Figure 10C, p < 0.0001). A previous study

reported that HLA affected ICI efficacy (39), therefore we analyzed

correlations between HLA family expression and our model, and

showed this expression was significantly higher in the low-risk group

when compared with the high-risk group (Figure 10D, p < 0.0001).

We next explored ICI therapy responses, represented by the CTLA-4/
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PD1 inhibitors, by using the immunophenotype score (IPS), and

showed that the IPS was slightly higher than that of the low-risk

group in the patients treated with CTLA-4 and PD1 inhibitors

(Figure 10E, p < 0.05). Overall, these results suggested that our

model predicted the immunotherapy benefits for patients and may be

a more effective biomarker to predict the efficacy of immunotherapy.

We further analyzed DEGs between low- and high-risk groups in

TCGA. In total, 396 DEGs (7 upregulated and 389 downregulated

genes, FDR p-value < 0.05) were identified in the high-risk group when

compared with the low-risk group. Of these, SLC7A5, PRAME,

CRABP1, CBX2, CA9, CALML5, and CD24 were significantly

overexpressed in the high-risk group (Supplementary Figures S8A, B,

FDR p-value < 0.05, fold change > 1.5). Furthermore, KEGG analysis

showed that genes in the high-risk group were mainly involved in

environmental information processing, human diseases, and

organismal systems (Supplementary Figure S8C). From GO

enrichment analysis, these genes in the high-risk group were mainly

involved in extracellular matrix, vesicle, immune response, and antigen

binding (Supplementary Figures S8D–F).
3.14 Risk model correlation with tumor
mutation burden (TMB)

As shown in Figure 11A, BC patients in the high-risk group had a

higher TMB than those in the low-risk group (p < 0.05). As suggested

from previous studies, a high TMB leads to a poor prognosis in many
B
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A

FIGURE 9

The prognostic model predicts chemotherapy efficacy. (A) Subgroup analysis of adjuvant chemotherapy (ACT) benefit for overall survival (OS) of
low-and high-risk patients in the TCGA database. (B) OS analysis in patients with different chemotherapy regimens in the low-risk group. (C) OS
analysis in patients with different chemotherapy regimens in the high-risk group. (D) OS analysis of treated patients in high- and low-risk groups.
(E) OS analysis of patients receiving the anthracycline (A) regimens in high- and low-risk groups. (F) OS analysis of patients receiving A, no-A, and
no treatment in the low-risk group.
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cancers (40), consistent with our data. In correlation analysis between

risk score and TMB, we identified a significant positive correlation

(Figure 11B, p < 0.05). Further survival analysis indicated that the

low-TMB group showed a significant survival benefit (Figure 11C, p <

0.05). Given the synergistic effect of TMB and the risk score, their

effect on prognostic stratification was evaluated. As indicated from

the results, TMB status did not interference the predictive ability of

the risk score. Survival difference of the risk score subtypes was

significant in both high- and low-TMB groups, and the subgroup

with low risk-score and low TMB showed a better survival benefit,

while the high-risk score and high TMB subgroup had a lower

survival probability (Figure 11D, p < 0.001). Combined, risk score

may act as a prognostic BC indicator, which is independent of TMB

and can effectively predict TMB and treatment sensitivity.
3.15 Relationships among hub genes
expression levels, tumor-infiltrating
immune cells, immune molecules, and
sensitivity to BC-targeting and
chemotherapeutic drugs

We used the TIMER database to explore the relationships between

hub genes expression (PSMB8 and BIRC3) and the level of infiltrating
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lymphocytes. Upregulated PSMB8/BIRC3 expression was associated

with increased B cell, CD8+ T cell, macrophage, neutrophil, DC, and

other infiltrating lymphocyte infiltration (Figures 12A, B, p < 0.05).

Next, using the TISIDB database, we found that upregulated PSMB8/

BIRC3 (Figures 12C, D) expression was associated with increased

expression of immunostimulatory molecules, immunosuppressive

molecules, MHC molecules, chemokines, and chemokine receptors,

which provides important information for predicting potential

therapeutic targets. Finally, we used GSCA Lite online tool to analyze

the relationship between the expression of the hub genes and sensitivity

to current immune or targeted therapies for BC (Figure 12E). PSMB8

expression levels were negatively correlated with sensitivity to many

BC-targeting or chemotherapeutic drugs, including clofarabine and

gemcitabine, and were positively correlated with abiraterone. BIRC3

expression levels were positively correlated with axitinib sensitivity and

negatively correlated with dasatinib sensitivity. Thus, hub genes could

function as new targets for predicting drug sensitivity and developing

multi-targeted combined therapy for BC.
4 Discussion

We developed a 14-TME-related gene prognostic model based

on statistical associations between eBC prognosis and drug
B

C

D

E

A

FIGURE 10

Bioinformatics analysis of the characteristics and signaling pathways among patients in different risk groups. (A) CD274, CD28, and CTLA4 mRNA
expression between the low- and high-risk groups in the cohort from TCGA. (B) Correlation between the risk score and CD274, CD28, and CTLA4
mRNA expression. (C) LAG3, IL12A, IL12B, IL6, IFNG, IDO1, GZMB, and CD47 mRNA expression between the low- and high-risk groups in the cohort
from TCGA. (D) The HLA family mRNA expression between the low- and high-risk groups in the cohort from TCGA. (E) Correlation of the risk score
and the IPS.
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resistance. (1) Our model exhibited strong predictive prognosis

power in BC patients; (2) Enrichment analyses showed that

immune-related pathways mediated the role of TME-related

genes in BC; (3) we constructed a nomogram system, which was

shown when compared with simple clinicopathological features,

nomogram-integrated risk score had high prediction accuracy and

applicability; (4) Our model provided predictive power for eBC

patients to select the best treatments possible and avoid unnecessary

chemotherapy agents; and (5) We found 2 novel therapeutic target

genes, which provides a new direction for the development of BC

precision medicine.

With the wide application of high-throughput technology and

the continuous maturity of data sharing mechanism, unprecedented

large-scale multi-omics cancer data have been accumulated in the

international public databases, and cancer research has entered the

era of “big data”. The focus of precision genomic medicine is to

identify accurate specific survival prognostic factors from large

medical datasets with clinical outcomes (41). Therefore, in recent

years, some studies have aimed to explore microenvironment-

related prognostic factors using bioinformatics analysis. However,

the use of genomics, transcriptomic, and proteomic analysis of

clinical tumor tissue is affected by the proportion of tumor cells

present, and the method of evaluating the nontumor part of tumor

samples (ESTIMATE) can provide an important context for

genomic data analysis, a huge improvement in other capacity-

limited methods (42). Additionally, many studies have not
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comprehensively explored the role of the genes related to stromal

cells and immune cells in the BC TME and focused only on immune

cell-related genes. In this study, we investigated infiltrating immune

and stromal cell levels in tumor tissue in the ESTIMATE algorithm,

and provided new perspectives for the comprehensive

understanding on tumor-related normal cells in tumor tissue.

In our study, we used the ESTIMATE algorithm to assess the

levels of infiltrating immune and stromal cell levels in tumor tissues.

And we showed that the Basal-like subtype had a high immune

score, consistent with previous findings showing that high levels of

TILs were common in both the Basal-like type and the HER2-

enriched types (43). The effect of tumor-infiltrating immune cells

on the biological and clinical course of BC is well established in

previous research (44). In accordance with the previous studies, we

observed that BC patients with higher immune scores had the better

prognosis, while no significant association of stromal scores with

prognosis was observed. For another, LASSO regression was applied

to construct risk models for 14 key TME prognostic genes, as used

in previous studies (45, 46). The prognostic value of our risk model

was also confirmed in the training and validation sets. The OS

curves of the high-risk scoring group and low-risk scoring group

were obviously separated, and patients with low-risk scores

comprised a clear survival advantage, which vindicated our study

design. The fly in the ointment was that we observed similar

survival rates with the high- and low-risk groups in the validation

set at late time points. Studies have shown that the survival curves
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FIGURE 11

Correlations between risk score and tumor mutation burden (TMB). (A) The TMB was higher in the high-risk group than in the low-risk group.
(B) The scatterplots depicted the positive correlation between the risk score and TMB. (C) Kaplan–Meier curves of overall survival (OS) in
different TMB subgroups. (D) Kaplan–Meier curves of overall survival (OS) stratified by both TMB and the risk score.
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crossing happens, when a relative few subject still being followed at

late time points. When the sample reduce, there will also be a lot of

uncertainty in the true position of the survival curves (47).

Consistent with this, our data and results shown that the samples

in the later stage of this survival curve have been reduced a lot

compared to those at the start (Supplementary Figure S9). In

addition, insufficient samples, differences in patient treatment

regimens, and age deviation may also contribute to this

phenomenon. Furthermore, model diagnosis using ROC analysis

indicated that our risk model was a reliable indicator for predicting

prognosis. Subgroup analysis further showed that risk score

remained independent prognostic factor even when patients were

regrouped based on clinical parameters. Finally, a nomogram,

which may be used in clinical practice, was constructed and a

calibration curve used to explore the predictive efficacy of our

model for survival. Overall, our risk model of TME-related genes
Frontiers in Oncology 16
may be a mature reference for predicting prognosis in patients with

BC that is feasible in clinical practice.

In this study, we selected 14 TME-related genes, including

BIRC3, CELSR2, CXCL14, IL18, KLRB1, NPY1R, PSMB8,

SCUBE2, STC2, CD1C, HLA-DPB1, GIMAP2, IRF1 and

TNFAIP8, all of which were implicated in tumor progression and

prognosis outcomes. BIRC3 is a member of the apoptosis inhibitor

(IAP) family, with pro-survival and antiapoptotic effects in cancer

cells (48). BIRC3 is associated with treatment resistance in BC; IL-1

upregulates BIRC3 and generates doxorubicin resistance in BC cells

(49), thus BIRC3 appears to have important roles in the TME.

PSMB8 is the catalytic subunit of the immunoproteasome and is

implicated in glioblastoma, mucinous ovarian cancer, cutaneous

squamous cell carcinoma, papillary thyroid carcinoma, and prostate

cancer development and progression (50–52), consistent with our

findings showing that PSMB8 was associated with high immune
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FIGURE 12

Relationships between hub gene expression and tumor-infiltrating immune cells, immune molecules, and sensitivity to BC-targeting and
chemotherapeutic drugs. (A) Upregulation of PSMB8 expression is associated with increased infiltration of B cells, CD8+ T cells, macrophages,
neutrophils, dendritic cells (DCs), and other infiltrating lymphocytes. (B) Upregulation of BIRC3 expression is associated with increased infiltration of
B cells, CD8+ T cells, macrophages, neutrophils, dendritic cells (DCs), and other infiltrating lymphocytes. (C) The correlation between PSMB8
expression and lymphocytes, immunostimulatory molecules, immunosuppressive molecules, MHC molecule, chemokines, and chemokine receptors
in BC. (D) The correlation between BIRC3 expression and lymphocytes, immunostimulatory molecules, immunosuppressive molecules, MHC
molecule, chemokines, and chemokine receptors in BC. (E) The expression levels of PSMB8and BIRC3 are correlated with sensitivity to many BC-
targeting and chemotherapeutic drugs.
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infiltration and was a predictive protective gene. CELSR2 is part of

the cadherin superfamily and was associated with poor prognosis

(53). However, we confirmed CELSR2 was a protective gene and

involved in changing the TME. These contradictory results

highlight the need for more experimental studies on CELSR2.

Furthermore, we found the first prognostic value of CD1C and

GIMAP2 genes, which may provide new directions for further

BC research.

In recent years, tumor immunity has attracted considerable

research interest, while prognostic features related to the TME have

great applications in identifying novel biomarkers. As described, BC

growth and invasiveness are influenced by different cells in the

TME. Many studies have reported that the degree of immune

infiltration in the TME correlates with BC prognosis (30, 54). GO

and KEGG analysis indicated that the DEGs between the high-risk

and low-risk groups were mainly enriched in immune-related

pathways. Specifically, ESTIMATE, TIMER and MCPCounter

analysis showed that patients in the low-risk group had a

relatively high immune infiltration status. When combined with

the patient survival results, we showed that a good prognosis is

associated with a high immune infiltration status, consistent with

previous studies (30, 54). In the TME, tumor cells interact with

different immune cell types by activating the immune checkpoint

pathway (55, 56). We identified several immune checkpoint genes

(e.g., CTLA-4, PDL1, LAG3, and CD28) which were highly

expressed in the low-risk group, suggesting these patients may

benefit from immunotherapy. The genomic instability may

produce an immune response phenotype that affects the immune

response and immunotherapy (57). We comprehensively analyzed

correlation between the TMB and risk score and identified

significant positive associations. Furthermore, the stratified

prognostic analysis showed that the prognostic value of the risk

score in the BC was independent of the TMB. Taken together, our

results provide potential therapeutic targets and provide novel

clinical applications for immunotherapies.

Chemotherapy is an important adjuvant treatment for eBC but

has long been regarded as an immunosuppressive treatment

modality. However, recent studies reported that chemotherapy

has immune modulation effects (58, 59). The induced stress and

apoptosis generated by chemotherapy produces new tumor

immune antigens on cell surfaces and in the TME, which

stimulate antitumor immune responses (60). Our results

suggested that receiving chemotherapy was better than not

receiving it, regardless of the immune microenvironment in low-

or high-risk groups. A-based chemotherapeutic agents are

represented by topoisomerase 2 inhibitors and have pivotal roles

in eBC chemotherapy. However, it also exerts dose-dependent toxic

side effects such as myelosuppression, cardiotoxicity, and

gastrointestinal responses (61). Based on a pooled analysis of

PlanB and SUCCESS C randomized clinical trials, six TC cycles

provided similar efficacy to the A-regimen in most patients with

HER2-eBC, and a significantly lower incidence of overall grade 3/4

toxicity was observed (62). The randomized neoadjuvant

multicenter phase II trial, WGS-ADAPT-TN, found that

additional A-containing chemotherapy was not associated with a

significant invasive disease-free survival advantage in pathological
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complete response patients (63). Therefore, A-regimen removal is

the trend, but how to accurately screen the population of

chemotherapy is not unclear. We observed that A-use in the

high-risk group may potentially promote immune cell infiltration

and enhance antitumor immune responses. Interestingly, no

prognosis differences were identified between A-use in low- and

high-risk groups, and even an absence of A-regimen in the low-risk

group did not affect long-term survival. This suggested that the no-

A chemotherapy regimen seems feasible in low-risk patients despite

chemotherapy benefit. Thus, we provide clinicians with an accurate

tool that provides an opportunity for patients to choose the best

treatment and avoid unnecessary chemotherapy.

Our study had some limitations. Firstly, our conclusions were

based on open datasets and not sequencing data. Despite this

weakness, the concordance between our TME-related gene risk

model and survival in TCGA and GEO cohorts identified

prognostic signatures in BC, but which still need to be further

validated with sufficient sample data. Secondly, our data, which

originated from databases, lacked experimental validation. In future

studies, we will focus on these novel molecules using in vitro and in

vivo analyses.
5 Conclusions

We comprehensively explored the role of the TME in BC

patients using statistical analyses of public database data. First,

the risk model we constructed based on TME-associated genes and

successfully predicted the OS in BC patients. In addition, our model

was inversely associated with BC immune cell infiltration and may

be used as an independent prognostic marker to predict the efficacy

of immunotherapy in BC patients. Importantly, we showed that

outcomes in patients receiving the A-regimen in the low-risk group

were not significantly different to those receiving the no-A regimen,

suggesting this patient cohort may be exempted from A-containing

adjuvant chemotherapy. The hub genes (BIRC3 and PSMB8) can be

used as effective biomarkers to predict BC prognosis and used as

novel targets to predict drug sensitivity.

Our work provides innovative perspectives for future BC

research and the development of targeted therapeutic strategies

for BC patients. Further studies are required to validate the clinical

prognostic value of our risk model and explore underlying

mechanisms associated with eBC.
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