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Emma Rodriguez-Maldonado5 and Nallely A. Heredia-Jara1

1Department of Cell and Tissue Biology, Faculty of Medicine, UNAM, Mexico City, Mexico,
2Oncological Diseases Research Unit (UIEO), Hospital Infantil de México Federico Gómez, Mexico
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Currently, immunotherapy based on PD-1/PD-L1 pathway blockade has

improved survival of non-small cell lung cancer (NSCLC) patients. However,

differential responses have been observed by sex, where men appear to respond

better than women. Additionally, adverse effects of immunotherapy are mainly

observed in women. Studies in some types of hormone-dependent cancer

have revealed a role of sex hormones in anti-tumor response, tumor

microenvironment and immune evasion. Estrogens mainly promote immune

tolerance regulating T-cell function and modifying tumor microenvironment,

while androgens attenuate anti-tumor immune responses. The precise

mechanism by which sex and sex hormones may modulate immune response

to tumor, modify PD-L1 expression in cancer cells and promote immune escape

in NSCLC is still unclear, but current data show how sexual differences affect

immune therapy response and prognosis. This review provides update

information regarding anti-PD-1/PD-L immunotherapeutic efficacy in NSCLC

by sex, analyzing potential roles for sex hormones on PD-L1 expression, and

discussing a plausible of sex and sex hormones as predictive response factors

to immunotherapy.
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1 Introduction

Lung cancer (LC) holds the highest cancer-related incidence and

mortality worldwide and is expected to reach 3.2 million deaths

globally in 2050 (1). The LC prognosis after diagnosis remains poor,

and the 5-year survival rate is less than 20% (2). LC is classified into

small (SCLC, 15%) and non-small types (NSCLC, 85%) (3–5). NSCLC

exhibits several differences by sex; since women are frequently non-

smoker, diagnosed at younger age, and present adenocarcinoma with

EGFR mutations. Women also respond better to chemotherapy and

men to immunotherapy, whereas outcomes and survival are

significantly better in women (4, 6–8). Furthermore, NSCLC is

influenced by sex hormones, mainly estrogens (4, 9).

Targeted and immune therapies have increased LC patients’

survival (10). Median overall survival (OS) for chemotherapy is less

than a year, while combined with immunotherapy, OS almost

doubles (11). PD-1/PD-L1 based immunotherapy improves NSCLC

survival, however sex-derived differences have been reported,

suggesting sex as a potential predictor for immunotherapy response

(12–14). Sex hormones regulate immune response modifying PD-L1

expression, however in LC this relation is still being explored. This

article focuses on PD-1/PD-L1 NSCLC immunotherapy, discussing

sex differences in response to PD-L1 blockade, as well as sex-related

effects and sex hormones impact on the PD-1/PD-L1 pathway and

therapeutic responses implications.

2 PD-1/PD-L1 pathway

PD-1 is a transmembrane protein from the CD28/CTLA-4

immunoglobulin family expressed on different immune cells. PD-1

controls immune responses and T-cell activation, proliferation, and

effector activity by binding PD-L1/2. Cancer cells inactivate T-cells

and accomplish immune evasion through PD-L1 expression (15, 16).

Intrinsic PD-L1 regulation includes genetic (transcriptional

regulation through KRAS, EGFR, ALK pathways) and epigenetic

factors (DNMT1, HDAC, miR-135). Conversely, cytokines (INF-g),
growth factors (EGF, VEGF), hypoxia, post-translational

modifications (phosphorylation, glycosylation, palmitoylation,

ubiquitination), and even treatments including chemotherapy,

radiotherapy, and tyrosine kinase inhibitors, extrinsically modify

PD-L1 expression (16, 17).

Among several immune evasion mechanisms, tumor PD-L1

expression alone induces immune escape, inactivating cytotoxic T-

cells (18). Therefore, this pathway is an important therapeutic target

for multiple cancers including NSCLC, since PD-1/PD-L1 blockade

restores immune response increasing patient survival. To date, six

PD-1/PD-L1 inhibitors have been approved including nivolumab,

pembrolizumab, cemiplimab (anti-PD-1), atezolizumab,

durvalumab, and avelumab (anti-PD-L1) (19).
3 LC treatment options and PD-1/PD-
L1 blockade immunotherapy

LC diagnosis and treatment has developed substantially over the

last decade, improving OS, progression-free survival (PFS), treatment
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response, and quality of life. NSCLC patients undergo EGFR, KRAS

and ALK genes mutation. Unfortunately, not all patients are targeted

therapies candidates, and may appear mutations resistance and

recurrence. In this context, immune PD-1/PD-L1 inhibitors, have

completely changed NSCLC management.

Baseline PD-L1 levels stratifies patients with a potentially better

response. A higher PD-L1 tumor proportion score (TPS) correlates

with improved outcomes. Among NSCLC patients with PD-L1 ≥

50% treated with pembrolizumab, those with 90-100% PD-L1 TPS

show better response (20).

For patients with elevated PD-L1 (≥50%), treatment includes

immunotherapy as monotherapy, chemoimmunotherapy, or dual

immunotherapy. Those with PD-L1 ≥ 50% without EGFR/ALK

mutations who received pembrolizumab had greater OS compared

with chemotherapy (30 vs 14.2 months) (21). Pembrolizumab also

resulted in longer OS compared to other PD1-/PD-L1 inhibitors

(26.3 vs. ≤14 months). Additionally, pembrolizumab improved OS

combined with chemotherapy and radiotherapy (22, 23). Dual

immunotherapy has exhibited durable benefits in OS and PFS

regardless of PD-L1 expression compared to chemotherapy (24,

25). Combined immunotherapy or dual immunotherapy might also

increase adverse effects (AE) (26).

Moreover, PD-L1 blockade has improved OS and PFS

regardless of PD-L1 levels. Low PD-L1 (1-49%) cases are treated

with immunotherapy + chemotherapy or dual immunotherapy (25,

27). More patients reached 12-months OS in pembrolizumab plus

chemotherapy compared to the placebo (69.2% vs. 49.9%)

irrespective of PD-L1 levels (28). Similarly, the IMpower 150

showed atezolizumab + chemotherapy increased OS and PFS

independently of PD-L1 levels (29).

Finally, patients with negative (<1%) PD-L1 are still candidates

for combined immunotherapy with chemotherapy or targeted

therapy and dual immunotherapy (25, 30, 31). PD-L1 blockade

has significantly improved clinical outcomes mainly in patients with

higher PD-L1 levels. However, PD-L1inhibitors are considered the

choice treatment even in those without PD-L1 expression, making

these agents the LC new gold standard therapy.
4 Sex-related differences in response
to PD-1/PD-L1 blockade in NSCLC

Although PD-1/PD-L1 blockade improved survival compared

to chemotherapy and targeted therapy, sex-related differences

have been reported (13, 14, 32). A systematic review (11,351

patients; 67% men and 37% women) showed different ICI

efficacy by sex in melanoma and NSCLC. The pooled OS hazard

ratio (HR) of ICI treatment was higher for women (12). Moreover,

4 NSCLC trials (1,672 patients; 73.2% men and 26.8 women)

evaluated pooled OS-HR of PD1/PD-L1 ICI vs chemotherapy,

resulting higher risk for females (13) Women also experience

more immunotherapy AE (33).This data suggests a significant

benefit of ICIs in males. Conversely, women with advanced

NSCLC responded better to chemotherapy+PD-1/PD-L1-

immunotherapy than men who benefited from PD-L1 blockade

monotherapy (14).
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A systematic review of trials and observational studies reported

improved survival for male patients after pembrolizumab/

nivolumab as monotherapy. Otherwise, women experienced

increased survival rates, in chemoimmunotherapy (34).

Additionally, the pooled HRs comparing ICIs vs chemotherapy

were 0.74 (95% CI0.67-0.81) for men and 0.83 (95% CI 0.73-0.95)

for women (35). Better PFS was also observed in advanced NSCLC

male patients treated with ICI (5 months vs 4). Nivolumab exhibited

significantly higher PFS in males vs. females also disease control rate

was higher in male (55.7 vs 45.7%) and their disease progression was

lower (44.3 vs 54.3%) (36). All above, supports the increased benefit

of ICIs monotherapy for males and ICIs+chemotherapy for

female patients.

Contradictory results have also emerged, showing no sex

differences in response to immunotherapy as monotherapy or

combined. A study involving advanced NSCLC patients treated

with ICI monotherapy and ICI+chemotherapy observed no

differences in PFS by sex, although differences in prognostic

factors were noticed (37). Additionally, no sex-related differences

were observed in squamous cell NSCLC patients treated with

chemotherapy+PD-L1-inhibitors, although different AE were

observed by sex (38).

A higher response to chemotherapy has been reported in

women than in men (39, 40). Differences in DNA repair capacity

between sexes (41) could explain women’s higher sensitivity to

chemotherapy (42). Additionally, chemotherapy might improve

immunotherapy by enhancing anti-tumor immune response,

recruit ing, and activating cytotoxic T-cel ls , inducing

immunogenic cell death, releasing tumor antigens and damage-

associated molecular patterns, activating dendritic cells, and

reducing T regulatory cells (Treg). But chemotherapy enhancing

effects to immunotherapy are produced when administered locally

since systemic chemotherapy produces high non-specific toxicity

(43, 44). These facts could explain the higher chemotherapy

response plus immunotherapy observed in women. Higher

sensitivity to immunotherapy as monotherapy in men could be

explained by disparities in PD-L1 expression.

Some confounding variables including previous treatments,

tumor mutational burden (TMB), and smoking habit could

explain the controversial response to ICI by sex. Since, there is a

sex bias in NSCLC features, it is critical to elucidate sex effects on

immunotherapy responses to improve future therapies.
5 Sex-driven distinct PD-L1 expression
in NSCLC

Sex determines diverse conditions, including lifestyle and

toxicant exposure, as well as genetic, and immune features that

modify cancer biomarker expression, promoting significant

differences in treatment response, including PD-L1 inhibitors. Ye

et al., found differences by sex in immune characteristics impacting

NSCLC immunotherapy (45).

Several studies show sex differences in PD-L1 levels, which

might explain LC immunotherapy response disparities (46–49). A
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high percentage of PD-L1 positive NSCLC tumors correspond to

men, who exhibit higher PD-L1 TPS than females (48–51). Fu et al.,

reported 18.3% of women with NSCLC vs 26% of men with PD-L1

TPS of 1-49%, and only 5.5% of women vs 17% of men with PD-L1

TPS ≥ 50% (49). Lin et al., reported 13.6% of men with high PD-

L1 TPS (≥50%) vs. only 3.8% in females NSCLC patients (52). These

findings have been supported by several studies summarized in

Table 1 (47–55). Conversely, no association between PD-L1

expression and sex has also been reported (56). Despite the

discrepancies, accumulating evidence discloses differences by sex

in PD-L1 status in NSCLC (40, 42, 44–49).

Some intrinsic and extrinsic sex factors might drive differences

in PD-L1 levels. Smoking status, generally associated with LC male

patients, has been related to PD-L1 expression. High PD-L1 TPS

was correlated with smoking history and better immunotherapy

response. Smoking patients presented higher and prolonged OS and

PFS in ICI vs. chemotherapy (57–62). KRAS mutation and

squamous histology associate with PD-L1 expression, and tobacco

smoking could partially explain differences in PD-L1 levels in

NSCLC patients by sex (63). Further studies are needed to

confirm sex differences in PD-L1 levels and factors affecting its

expression. More women must be integrated into studies, being

generally underrepresented. Also, TMB, histology, smoking status,

and hormonal factors should be considered.

Steroids sex hormones participate in several carcinogenic

pathways in LC and could probably play a role in sex PD-L1

disparities (64, 65). Although many LC patients exhibit low sex

hormone levels (mainly estrogen) due to age and menopause, lung

tumors produce sex hormones locally through aromatase (ARO)

overexpression (66–69). ARO and hormone receptors could modify

PD-L1 expression regardless of sex and hormonal status.
6 Role of steroid sex hormones in PD-
L1 expression

6.1 Estrogens in NSCLC

The estrogen pathway has taken relevance in NSCLC given its

role in lung carcinogenesis. Estrogen receptor (ER)-b, the most

common LC isoform and ARO expression, correlate with poor

prognosis and survival (68). ERb is overexpressed in 60-80% of

male and female NSCLC patients. Estrogen (E2), through its nuclear

receptors (ERa/ERb) and G-protein-coupled estrogen receptor

(GPER), promotes LC progression by cell proliferation, apoptosis

resistance, angiogenesis, epithelial mesenchymal transition (EMT),

cell migration and metastases (4, 9, 70, 71). Moreover, an important

role for estrogen related receptor alpha (ERRa) has been reported in

NSCLC, which stimulates proliferation and EMT (72, 73).

E2 also modifies tumor microenvironment through pro-

inflammatory cytokines and recruiting Tregs promoting immune

evasion (74). Additionally, E2 up-regulates chemokine receptor

CXCR4, contributing to immune evasion and metastases in

NSCLC (75, 76). Currently the role of E2 in immune evasion and

PD-L1 control in LC is being explored.
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6.1.1 PD-L1 regulation by estrogen
pathway in cancer

Estrogens downregulate PD-L1 expression in endometrial and

breast cancer (BC) and correlates with ER-negative status in BC (77,

78). In MCF-7 cells, E2 negatively regulated PD-L1 transcription

(79). Moreover, antiestrogens increased PD-L1 expression in ER+

BC (80). E2 probably decreases PD-L1 expression through IL-17

signaling (77). Also, E2/GPER pathway downregulated PD-L1

through COP9-signalosome subunit 5 degradation, as reported in

melanoma and pancreatic ductal adenocarcinoma (81, 82).

Paradoxically, PD-L1 expression correlated with ER+, PR+, and

Ki67+ in BC (83). E2/ERa increased PD-L1 but not PD-L2 expression in

endometrial and BC. PD-L1 expression may be controlled through the

PI3K/AKT pathway and post-transcriptional PD-L1-mRNA

stabilization in BC (84). In metastatic renal cell carcinoma nivolumab

increased E2 levels in male patients (85). Decreased PD-L1 levels by

nivolumab increase IL-6 in melanoma animal models, consequently,

increasing E2 synthesis and promoting immune evasion (85–87).

In melanoma and prostate cancer (PC), estrogen receptor

modulators (SERMs) have been suggested to improve immunotherapy

(88, 89). Besides, SERMs and degraders (SERDs) significantly improved

immunotherapy efficacy in BC, suggesting an E2 role in up-regulated

PD-L1 (90).
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Estrogen mechanisms modifying PD-L1 seem to be complex

and may depend on several factors such as cancer type, histology,

TMB, ER isoforms, ARO expression, estrogen levels, and

microenvironmental features (Figure 1). This relationship needs

to be explored since E2 pathway blocking could improve

immunotherapy in some cancers, including NSCLC.

6.1.2 PD-L1 and estrogen pathway in NSCLC
The E2 role in NSCLC immune evasion has been scarcely

investigated, and its PD-L1 relationship is emerging. For instance,

E2 reduced cytotoxic lymphocyte activity by inducing ERb1/5. Also,
E2 up-regulated PD-L1 by increasing ERb/SIRT1, Snail

transcriptional factor while reducing FOXO3a (91). ERb could be

a critical target to improve immunotherapy given its higher

expression in male and female NSCLC patients.

E2/ERa increased PD-L1 transcription was recently reported in

vitro. Additionally, in vivo, letrozole (ARO inhibitor) improved

pembrolizumab efficacy, while in NSCLC patients, ERa was a

predictive response factor to pembrolizumab, even stronger than

sex and PD-L1 levels (92). This could be explained by high ER

expression independently of sex in NSCLC (9). Thus, ER could

become a biomarker to predict to immunotherapy response

in NSCLC.
TABLE 1 Differences in PD-L1 expression by sex in NSCLC patients.

Sex PD-L1 TPS Reference

<1 (%) 1-49 (%) >50 (%)

Male 57 26 17 (49)

Female 76.2 18.3 5.5

Male 26 25 (51)

Female 34 15

Male 44.5 29.9 25.6 (53)

Female 54.9 30.9 14.2

Male 59.4 71.4 79.7 (48)

Female 40.5 28.5 20.3

Male 55.9 (50)

Female 44.1

Male 13.6 (52)

Female 3.8

Male >30 >10 (54)

Female < 20 < 5

Male 64.81 (46)

Female 35.19

Male 36 35 28 (47)

Female 37 31 32

Male 49.4 16.7 7.73 (55)

Female 17.9 5.5 20.6
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Decreased levels of the receptor for advanced glycation end

products (RAGE) associate with lung carcinogenesis and

metastasis regulating PI3K/AKT and KRAS-RAF1 signaling.

RAGE participates in redox regulation, and its polymorphisms

are linked to LC incidence and progression (93). Thus, RAGE is an

important axis in LC development. Recently it was reported that

HMGB-RAGE promotes PD-L1 expression in BC (94). Also, E2

treatment up-regulated RAGE in human microvascular

endothelial cells (94). The association between E2, RAGE and

PD-L1 in NSCLC has not been elucidated; however, it could

represent a key mechanism underlying carcinogenesis and

immune evasion.

Besides, estrogens could modify PD-L1 in NSCLC through the

EGFR pathway. EGFR/EGF activation increases E2 through ARO

up-regulation (9, 67, 95). Since EGF enhancing PD-L1 in NSCLC

(96), E2 could stimulates PD-L1 through the EGF/EGFR pathway;

however, this hypothesis needs to be tested.

Differences in serum PD-1 (sPD-1) by sex were reported in

NSCLC patients, where females exhibited higher sPD-1 and PD-1

on CD4+ T cells. Increased testosterone levels were also reported

(97) suggesting sex hormones could control PD-1.

All these data support E2 contribution to immune evasion up-

regulating PD-L1 through diverse mechanisms involving both ERa/
ERb in NSCLC (Figure 1). Antiestrogens could improve

immunotherapy even in low PD-L1 conditions due to high ER

expression in NSCLC. This is a new approach showing how

estrogen pathway promotes lung carcinogenesis and how

antiestrogens could improve immunotherapy as well as targeted

therapy. However further studies are warranted to explore these

mechanisms and their potential therapeutic impact.
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6.2 Androgens in NSCLC

LC androgen participation is still poorly explored and

contradictory. Androgen receptor (AR) is downregulated in

NSCLC tissues and cell lines, without differences by sex and

staining. Higher AR levels associate to better survival rates. miR-

224-5p is up-regulated in NSCLC promoting proliferation, decreased

apoptosis, migration, and metastasis by, downregulating AR (98).

Furthermore, AR+ status relate to favorable OS in NSCLC metastatic

disease (99), not in early stages (100).

On the other hand, AR was overexpressed mainly in NSCLC

male patients (101). AR was detected in 20% of LC patients; higher

levels were in advanced LC stages associated with progression and

metastasis (102). Moreover, targeting androgen pathway in NSCLC

patients resulted in better survival (103), and reduced risk to second

primary LC for PC patients (104). Androgen deprivation therapy

(ADT) for PC, improved survival in NSCLC after diagnosis,

particularly in Caucasians (105). In vitro, androgen up-regulated

gene expression involved in DNA repair, oxygen transport, apoptosis,

and hemoglobin synthesis while downregulated CYP1A1 (106). Also,

AR promotes proliferation through cyclin D1 regulation, stimulate

migration and invasion and regulates OCT-4 protein supporting

stemness (101, 107, 108). Finally, KRASmutational profiles are linked

to AR levels in NSCLC (109). Despite controversial data, androgen

pathway apparently plays an important role in lung carcinogenesis

highlighting its therapeutic potential.

6.2.1 Androgen pathway and PD-L1 regulation
Although men appear to respond better to immunotherapy in

NSCLC, androgen activity on immune response, evasion
A B

FIGURE 1

Mechanisms involved in PD-L1 control by estrogen and androgen in cancer and NSCLC. (A) Estrogen pathway downregulates PD-L1 by repressing
its transcription, promoting its proteosomal degradation and IL-17 downregulation. E2/ER also activates the PI3k/Akt pathway promoting RNA
stabilization and increasing PD-L1 protein as observed in breast cancer. E2/ER through EGFR/EGF pathway might stimulate PD-L1 increase in lung
cancer. Emerging mechanisms by E2 pathway might up-regulates PD-L1 in NSCLC are represented in gray. E2/ERa increases PD-L1 transcription.
Moreover, E2/ERb activates SIRT1 promoting FOXOa3 degradation and consequently PD-L1 increases (B) Androgen pathway downregulates PD-L1
transcriptionally, mainly by inhibiting NF-kB translocation and decreasing promoter activation. AR regulates PD-L1 expression post-transcriptionally
by modifying circRNAs.
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mechanisms and PD-L1 expression in LC has not been elucidated.

However, AR down-regulates PD-L1 across different malignances.

Inverse correlation between AR and PD-L1 levels has been

reported in muscle invasive or metastatic urothelial (110), thyroid

(111) and hepatocellular carcinomas (112), suggesting PD-L1

downregulation through the AR pathway. In thyroid cancer,

dihydrotestosterone reduced PD-L1 in a time- and dose-

dependent manner, while flutamide (AR antagonist) restored PD-

L1 expression. AR could decrease PD-L1 expression inhibiting NF-

kB nuclear translocation and reducing PD-L1 promoter activation

(111). In hepatocellular carcinoma AR downregulates PD-L1 acting

as PD-L1 transcriptional repressor (112). In contrast, in bladder

cancer targeting AR enhances NK activity decreasing PD-L1

expression; both anti-androgen treatment and knockdown

significantly reduced PD-L1 expression and stimulated NK cell-

mediated bladder cancer cell death by downregulating circRNA

circ_0001005 (113). Also, Tang and coworkers (114) demonstrated

how dihydrotestosterone/AR higher dose increased PD-L1

expression and suppressed NK cells immunotherapy efficacy in

castration- resistant PC cells (CRPC) (Figure 1). AR-blockade

improved sex-bias BRAF/MEK-targeted therapy response in

melanoma (115), and enhanced CD8/T-cells activity in CRPC

improving PD-1/PD-L1-inhibitors response (116), suggesting that

AR promote targeted and immunotherapy resistance, and shows

sex impact in treatment.

Although androgen immunosuppressive effects have been

documented, and ADT improves PC immunotherapy (117), its

relationship with PD-L1 in clinical and experimental conditions

remains contradictory. Future studies are necessary to clarify

androgen´s impact on PD-L1control in NSCLC, since PD-L1 is a

key target in immunotherapy, to which men appear to

respond better.
7 Conclusion and perspectives

NSCLC is a significantly different disease between women and

men, influenced by sex hormones. The estrogen and androgen roles

in NSCLC immune response is not completely understood.

Currently, data remain contradictory on differential response to

PD-L1-based immunotherapy sex-related. Nevertheless, several

studies show higher benefit in male NSCLC patients which could

be explained by higher PD-L1 levels. Sex could be a predictive

response factor to NSCLC immunotherapy; however, sex-derived

differences must be validated as well as consistency across different

populations, equilibrated groups by sex, histological subtypes,

mutational profiles, and smoking status. Additionally, women

should be stratified by hormonal status and serum hormonal

levels could be measured to clarify the sex and sex hormones

impact on PD-L1 control and immunotherapy responses.
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Some factors sex-associated as TMB and tobacco smoking

modify PD-L1 which partially explains immunotherapy

differential responses. Hormones, mainly estrogen also affect the

PD-L1 pathway in NSCLC. Although PD-L1 control by E2 remains

controversial in different cancers; in NSCLC emerging data shows

E2/ER up-regulates PD-L1 suggesting that SERDs might enhance

NSCLC immunotherapy response. Studies on sex and sex hormones

effects in immune evasion are critical, since antihormonal therapy

might be easily extrapolated to NSCLC treatment, but a wide gap

still exists in this field. Androgen effect on immune evasion

mechanisms through PD-1/PD-L1 in NSCLC remains to

be elucidated.

Finally, all this data shows the sex and sex hormones relevance

in LC progression and its impact on PD-L1 based immunotherapy

response. However, it is essential to strength research on sex-related

differences to understand LC behavior, identify biomarkers, predict

immunotherapy response, and establish better therapeutic

guidelines according to sex and hormonal status.
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