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The immune checkpoint inhibitor (ICI) is a promising strategy for treating cancer.

However, the efficiency of ICI monotherapy is limited, which could be mainly

attributed to the tumor microenvironment of the “cold” tumor. Prostate cancer, a

type of “cold” cancer, is the most common cancer affecting men’s health.

Radiotherapy is regarded as one of the most effective prostate cancer

treatments. In the era of immune therapy, the enhanced antigen presentation

and immune cell infiltration caused by radiotherapy might boost the therapeutic

efficacy of ICI. Here, the rationale of radiotherapy combined with ICI was

reviewed. Also, the scheme of radiotherapy combined with immune

checkpoint blockades was suggested as a potential option to improve the

outcome of patients with prostate cancer.
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Introduction

The immune checkpoint inhibitor (ICI) is believed to be promising for tumor patients

(1). It could restore the antitumor function of cytotoxic T cells by blocking immune

checkpoints, like PD-1 and CTLA-4 (2). However, ICI monotherapy is approved and useful

for some cancers (e.g., breast, lung, kidney, bladder) (3) but has a very limited role in other

cancers, with an ORR rate of around 3%–5% in prostate cancer (4), around 10%–13% in

pancreatic cancer (5, 6), etc. Several clinical trials have explored the use of single-agent

immune checkpoint inhibitors for the treatment of metastatic castration-resistant prostate

cancer (mCRPC). The benefit seems to be restricted to a subset of patients (7). In a

retrospective series of 11 patients with mCRPC characterized by MSI-H/dMMR who were

treated with anti–PD-1/PD-L1 inhibitors alone or in combination with another CPI, the

ORR was 50%; 54.5% of the patients demonstrated a PSA drop of higher than 50%, and

four of these patients had a PSA decline of more than 99% (8). In 2017, the FDA approved
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1210673/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1210673/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1210673/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1210673&domain=pdf&date_stamp=2023-07-21
mailto:beidaxiaobo@163.com
mailto:ljx1@sina.com
https://doi.org/10.3389/fonc.2023.1210673
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1210673
https://www.frontiersin.org/journals/oncology


Li et al. 10.3389/fonc.2023.1210673
pembrolizumab for the treatment of unresectable and metastatic

tumors with an MSI-high (MSI-H) status or dMMR after

progression on standard lines of treatment (9). Low incidence of

TMB is one of the most important factors for ICI therapy failure

(10). Behind this perspective, the true mechanism of ICI therapy is

based on the antitumor function of CD8+ cytotoxic T lymphocytes.

To fight against tumor, the human immune system must first

recognize tumor cells with neo-antigens; then, T cells need to

move to the tumor sight and contact with tumor cells to provide

their antitumor effect. However, in the meantime, tumors would

develop multiple mechanisms (mainly including T-cell priming

dysfunction and T-cell homing dysfunction) to escape the hunt

from tumor-reactive T cells (11). These tumors are called “Cold”

tumors, tumors with a specific tumor microenvironment which

causes the failure of ICI therapy (12).

“Cold” tumors have a limited infiltration of cytotoxic T

lymphocytes (CTLs), a high activity of suppressor immune cells,

and a poor response to ICI therapy. “Hot” tumors, on the opposite,

are tumors that respond better to ICI therapy due to high

infiltration of T cells and low activity of suppressor immune cells

(Figure 1). “Cold” tumors are also called infiltrated excluded, non-

inflamed, or non-immune reactive tumors (13). It is considered that

prostate cancer is one of the “Cold” tumors (14).

Prostate cancer is the second most common cancers among

men, after melanoma (15, 16). After definitive therapy, high-risk

prostate tumors may have a recurrence and metastatic rate of

around 30% (17). Although androgen deprivation therapy (ADT)

is a standard therapy for prostate cancer in advanced stages, the

tumor would still progress eventually. Around 70%–80% of prostate

cancer would metastasize into the bone, which worsens the

prognosis for prostate cancer patients (16). The immunologic

landscapes of prostate cancer allow limited infiltration of immune

cells into the tumor microenvironment (TME). The dysfunction of

the immune system prevents it from initiating an effective response

against tumors (18). Consequently, prostate cancer has a poor rate

of response to ICI therapy (19).
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Radiotherapy increases the levels of immune checkpoints (PD-1,

CTLA-4) locally in the tumor by enhancing the activation and

infiltration of immune cells into the TME and the level of PD-L1

expression on the surface of tumor cells (20). Moreover, immune

check inhibitors can restore the antitumor activity of T cells by

binding PD-1, CTLA, and PD-L1 and lower the immune escape of

tumor cells (21). Consequently, radiotherapy and immune

checkpoint inhibitor therapy are mechanistically complementary,

and their combination may provide favorable outcomes in “Cold”

tumor treatments. To improve the therapeutic effect of immune

checkpoint blockade in prostate cancer, in this paper, radiotherapy is

suggested as a preferable option for combined immune checkpoint

inhibitor therapy to achieve a better therapeutic effect in patients

with prostate cancer.
Mechanisms of the “cold” tumor
resisting ICI

The primary characteristic of a “cold” tumor is the absence of

T-cell infiltration, which leads to low response rates of ICI

therapy. Either defective T-cell priming or defective T-cell

homing to the tumor bed is the reason for the failure of T-

cell infiltration.
T-cell priming dysfunction

Lack of tumor antigens and defects in tumor antigen

presentation machinery are two main reasons for defective T-

cell priming.

Lack of tumor antigens is the most direct cause of T-cell

priming disorders. There are two categories of targeted tumor

antigens: non-mutated self-antigens and neoantigens (22). Self-

antigens, such as tumor-associated antigens (TAAs) and cancer/

testis antigens (CTAs), are overexpressed non-mutated proteins in
FIGURE 1

Tumor immune phenotypes.
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tumor cells. Neoantigens, also called tumor-specific antigens

(TSAs), are specific mutated proteins in tumor cells. The

recognition of tumor neoantigens by the immune system might

promote T-cell priming and infiltration to the tumor region, which

may result in antitumor responses (23).

This leads to tumor mutation burden (TMB), the total amount

of non-synonymous single-nucleotide mutations in a tumor, a

potential predictor for the response of ICI therapy. It is generally

believed that tumors with a higher TMB would carry a higher

neoantigen load that could be recognized by the immune system,

making greater T-cell infiltration (24). Multiomics network analysis

has further proved that higher mutation or neoantigen burden was

positively correlated with higher CTL infiltration in various solid

tumors, whereas lower mutational or neoantigen burden might be

correlated with the lack of CTL infiltration and the failure of ICI

therapy (25). However, kidney cancer presents with low TMB

incidence, which showed 40% of response rate to ICI therapy

(26). In gastric cancer, no difference in response rate was

observed between TMB-H (16.7%) and TMB-L (16.2%) tumors

treated with ICI (27). This evidence suggests that there are many

other factors determining ICI response or resistance.

Damage to the machinery responsible for processing and

presenting tumor antigens is another important cause of T-cell

priming or homing defects in the tumor bed (APM). Normally,

antigen-presenting cells (APCs) could express the tumor

neoantigen peptide–MHC class I complex on its surface after

recognition. However, impairs in the APM pathway, like

downregulation of MHC-I molecule expression, could lead to the

failure in presenting antigen peptide-MHC class I complexes even

though tumor-specific antigens were present. During antigen

processing and presentation, transporters associated with antigen

processing (TAP) transport cytosolic cleaved antigens to the

endoplasmic reticulum to bind with MHC molecules. Therefore,

the deletion of TAP could also cause antigen presentation process

failure, which further affects the priming of T cells (28). Beta-2-

microglobulin (B2M), the invariant chain of the MHC, is critical for

the successful folding and transport of MHC-I to the cell surface

(29). Knocking down the B2M gene in human carcinoma cell lines

led to the absence of MHC-I molecules expressed on their surface

and the failure of tumor-specific T-cell recognition and cytotoxicity

(30). These findings suggest that defects in the APM pathway would

interfere with T-cell priming and the effectiveness of ICI therapy

despite the presence of tumor antigens.

Dysfunction of dendritic cells (DCs) could also impair T-cell

priming. DC activation requires pattern recognition receptors

(PRRs), which are found on the surface of DCs and include

pathogen-associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) (31). This activation

enables DCs to present a tumor antigen peptide-MHC class I

complex to T cells when contracting with them. DCs could also

express secondary signaling necessary for T-cell activation, such as

B7 (32). Tumor cells could impair the function of DCs by trapping

“danger signals”. For example, stanniocalcin 1 (STC1) could trap

DAMPs, leading to the failure of DC activation and T-cell

activation. This eventually contributes to tumor immune escape
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(33). Furthermore, BATF3 DCs are the primary source of CXC-

chemokine ligand 9 and 10 (CXCL9 and CXCL10), two key

chemokines required for the recruitment of CD8+ T cells to

tumors. In the absence of BATF3 DCs, CD8+ T cells would not

migrate to the tumor region (34). However, a number of tumor

types, including prostate cancer, did not express CXCL9 and

CXCL10, which prevented CD8+ effector T cells from

activating (35).

Differentiation and recruitment of DCs require various factors

like Fms-like tyrosine kinase 3 ligand (FLT3L) and granulocyte-

macrophage colony-stimulating factor (GM-CSF) (36). Deficiency

of these factors could result in a reduced number of DCs in

secondary lymphoid organs and attenuated T-cell immune

responses (37). To sum up, impaired DC activation, a lack of

DCs, and the overexpression of co-suppressive signals could all

lead to T-cell activation failure as DC-T cell crosstalk plays a vital

role in naïve T-cell priming.
T-cell homing dysfunction

Recent evidence has shown that the activation of tumor cell

oncogenic pathways is associated with the immune-suppressive

TME of “cold tumor”, which causes the potential for ICI therapy

resistance. When the WNT pathway was activated, CCL4

expression is downregulated, resulting in decreased recruitment of

BATF3 DCs to the TME (38). Also, the WNT pathway activation

would cause decreased expression of CXCL9 and CXCL10, making

CTLs not being able to recruit to the tumor region. Furthermore,

Spranger et al. have found a negative correlation between CD8A

expression and activation of theWNT signaling pathway via human

metastatic carcinoma sample analysis (25). Direct injection of

BATF3 DCs into the tumor region restored CXCL9 and CXCL10

expression and T-cell infiltration in WNT signaling pathway-

positive tumors (39). Activation of the PI3K/AKT pathway could

decrease autophagic activity by reducing the lipidation of the

autophagosome protein LC3, which inhibits T-cell homing to the

cancer site (40). A TCGA dataset analysis also revealed that the

expression of T-cell effector molecules (like IFN-g, granzyme B) was

negatively correlated with the activation of the PI3K/AKT pathway

in various carcinomas (40). Oncogenic K-RAS mutations might also

contribute to tumor-promoting inflammation through the

production of inhibitory cytokines (IL-6, IL-8, etc.), the activation

of NLRP3 inflammasome, and the release of chemokines (CCL5,

CCL9, etc.) (41). In addition, oncogenic MYC signaling could

overexpress CD47 and PD-L1 on tumor cells. As a immune

checkpoint, CD47 can attach to signal regulatory proteins

a(SIRPa) on the surface of macrophages in the tumor

microenvironment and deliver “don’t eat me” messages in order

to evade immune surveillance (42, 43). Consequently, CD47

becomes an attractive target for immunotherapy. PD-L1 and

CD47 are both highly expressed in tumor cells and can be

simultaneously regulated by MYC. A high expression of MYC in

tumor cells can regulate the tumor microenvironment by acting on

innate immune cells and adaptive immune cells as well as cytokines,
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and activation of MYC can upregulate the expression of CD47 and

PD-L1 leading to immunosuppression and tumor proliferation

(MYC can directly act on the promoters of CD47 and PD-L1 and

then regulate their mRNA and protein expression levels) (44).

The immunosuppressive cells at tumor sites could also prevent T-

cell homing in “cold tumors”. For example, CXCL12, generated by

cancer-associated fibroblasts (CAF), could inhibit T-cell infiltration

in the tumor region (45). Moreover, CTLs could not reach the edge of

“cold” tumors because they could be trapped within the stroma of the

tumor or in the peri-tumoral tissue because of the unique

immunosuppressive structure built by immunosuppressive cells,

like tumor-associated macrophages (TAM), cancer-associated

fibroblasts (CAF), regulatory T cells (Tregs), and myeloid-derived

suppressor cells (MDSCs) (45) (Supplementary Figure S1).
Immune landscape of prostate cancer

Prostate cancer is considered to be a “cold” tumor as the tumor

mutation burden is low, causing a lower number of T-cell

infiltrations (46). Prostate cancer also presents a lot of hypoxic

zones, which seriously affect the antitumor function of T cells by a

variety of mechanisms including the depletion of essential nutrients,

abnormal angiogenesis, increased expression of adenosine, acidic

pH, immunosuppressive transforming growth factor b (TGF b),
and upregulation of PD-L1 (47, 48). Moreover, hypoxic zones could

attract immature myeloid cells into the tumor region and turn into

myeloid-derived suppressor cells (MDSCs) and tumor-associated

macrophages, making the TME of prostate cancer even more

immunosuppressed (47). In fact, the immune cells that are part of

the prostate tumor microenvironment are frequently characterized

by an anergic and immunosuppressive phenotype and include

regulatory T cells (Tregs), M2-polarized tumor-associated

macrophages (TAMs), and myeloid-derived suppressor cells

(MDSCs) (49).

Furthermore, the expression of major histocompatibility

complex (MHC) class I, a molecule presenting antigenic protein

fragments to cytotoxic T cells, is lost or diminished in prostate

cancer (50, 51). Also, PTEN, whose existence could improve the

immunosuppressive tumor microenvironment, is frequently

downregulated (52), leading to a decrease in the response to

immunotherapy in prostate cancer. Single-cell analysis revealed

that CD4+ FOXP3+ CD25+ T cells and CD8+ FOXP3+ CD25+ T

cells are the main T-cell types in prostate cancer. However, FOXP3+

T cells are immunosuppressive regulatory T cells that both inhibit

naive T-cell proliferation and produce inhibitory cytokines, like IL-

6 and IL-8 (53, 54).
Radiotherapy in prostate cancer

Radiotherapy is considered to be one of the most effective

therapies for prostate cancer. There are mainly two techniques

applied to deliver radiations to the prostate cancer area, namely,

brachytherapy (the use of seeds placed in the body) and external

beam (projecting energy through the skin) (55).
Frontiers in Oncology 04
Brachytherapy means the direct placement of radioactive

sources into the prostate gland under the guidance of transrectal

ultrasound. There are two dose rates, low dose rate and high dose

rate. The low dose rate refers to the permanent implantation of

seeds in the prostate tissue so that the seeds project radioactivity

gradually. This dose is mainly used in clinics (56). The high dose

rate refers to a radiation therapy whose dosage is high enough to

possibly lead to leakage to surrounding organs from the prostate

tissues. As a result, the high dose rates are rarely applied in the

clinic. The advantage of brachytherapy is that the whole process is

convenient for patients as it only takes a day or less and no further

intervention is needed (57). In addition, the erectile function would

not be affected due to brachytherapy (58).

External beam radiation therapy (EBRT) is a commonly used

local treatment of tumors in which strong X-ray would emit

specifically targeting the prostate tissues (59). Its radiation dose is

high (higher than brachytherapy), whereas its radiation would emit

less to the surrounding tissues. Radiotherapy could be used in not

only patients with localized prostate cancer but also patients with

bone metastasis or with metastatic castration-resistant disease (60).

Combination therapy of radiation therapy and androgen

deprivation therapy (ADT) is considered to be effective for

patients with prostate cancer (61). It is reported that this

combination has more advantages than surgical therapy. There

are lower risks, such as hemorrhage, myocardial infarction,

pulmonary embolism, urine incontinence, and erectile

dysfunction, when treating prostate cancer in its early stages (62).

This evidence also proved the concept that radiation therapy could

be used in company with other therapy in patients with

prostate cancer.
Radiotherapy could “heat”
prostate cancer

The conventional goal of radiation in the treatment of cancer is

to use high-energy particles to cause deadly DNA damage in tumor

cells, causing the cancer cells to eventually perish (63). Recently, the

ability of radiotherapy to cause an antitumor immune response has

drawn large attention as cancer immune therapy has achieved great

success in clinics (64). Studies have proved that radiotherapy could

cause immunogenic cell death and cellular stress, which could

increase the exposure of tumor-associated antigens and damage-

associated molecular patterns (DAMPs) (65). Elevated tumor-

associated antigens and DAMPs could activate DCs. Furthermore,

DCs could present tumor-associated antigens to CD8+ T cells and

help recruit CD8+ T cells into the TME to enhance the antitumor

responses (66).

Furthermore, the interferon genes (STING) pathway would be

activated in the presence of DAMPs. Production of interferon gene

pathways, including type I interferons (IFN-a and IFN-b), could
further activate antitumor immune responses (67). Both preclinical

and clinical studies validated that radiotherapy could increase

antitumor immune cells such as CD4+, CD8+ T, cytotoxic NK,

and CD8+CD56+ natural killer T (NKT) cells infiltrating into the
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TME (68, 69). All of these data imply that radiotherapy may

transform “cold” cancers with low immunogenicity and immune

cell infiltration into “hot” tumors with dense immune

cell infiltration.

Meanwhile, elevated interferon activity via radiotherapy could

upregulate exhaustion molecules such as PD-1 and PD-L1 (70, 71).

Therefore, the combination of radiotherapy plus immune checkpoint

inhibitor would be necessary to block the elevated exhaustion

molecules, thus avoiding cancer immune escape and enhancing the

therapeutic effect of radiotherapy (Supplementary Figure S2).
Clinical studies exploring radiotherapy
plus immune checkpoint blockade

There are several clinical trials exploring the therapeutic effect

of radiotherapy plus ICI in treating cancers.

A phase 1 study combined anti-PD-1/PD-L1 therapy with

stereotactic body radiotherapy (SBRT); finding the combination

could be well-tolerable by patients (72). There are five phase 1/2

studies that also showed that anti-PD-1/PD-L1 therapy plus

radiotherapy was tolerable for patients with advanced non-small

cell lung cancer (NSCLC), head and neck squamous cell carcinoma

(HNSCC), and small cell lung cancer (SCLC) (73–77). These

findings indicate that the combination of radiotherapy plus ICI is

feasible for cancer treatment.

As this field is in its preliminary stages, most studies have shown

encouraging efficiencies in patients treated with combination of

radiotherapy and ICI. Most combinations of radiotherapy and ICI

are based on stereotactic body radiotherapy (SBRT), which could

precisely deliver ablative doses of radiation in image-guided and

intensity-modulated manners (78). A phase 2 study in resectable

non-small-cell lung cancer showed that patients who received 24-

Gy SBRT before durvalumab (PD-1 antibody) treatment

demonstrated a higher objective response rate (ORR) (53.5%)

than patients who only received durvalumab or SBRT (6.7%)

(79); however, long-term prognoses (such as OS, PFS) were not

recorded in the study. A phase 3 study found that stage III NSCLC

patients undergoing radiotherapy and durvalumab acquired a

markedly improved progression-free survival (PFS) (17.2 vs. 5.6

months) and overall survival (OS) (The 12-month overall survival

rate was 83.1% in the durvalumab group, as compared with 75.3%

in the placebo group. The 24-month overall survival rate was 66.3%

in the durvalumab group, as compared with 55.6% in the placebo

group.) compared with those who only received radiotherapy (80).

Tai et al. showed that combination of Y-90-RE with nivolumab had

an optimistic ORR of 31% in patients with advanced hepatocellular

carcinoma (HCC) (81). Chiang et al. reported an astonishing 100%

ORR in five patients treated with SBRT followed by nivolumab for

large unresectable HCC; another case report showed complete

pathological response following Y-90-RE and nivolumab bridging

therapy prior to partial hepatectomy (82, 83). Another phase I trial

that evaluated liver/lung SBRT with ipilimumab reported that 23%
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of patients experienced clinical benefit which corresponded to an

increase in CD8+ T cells and CD8+/CD4+ ratios (84). Although

these findings are promising, these trials only recruited limited

patients in only one medical center.

There are also trials that have been carried out to investigate the

interaction of radiation and ICI therapy in prostate cancer. Slovin

et al. explored the combination of ipilimumab (anti-CTLA-4) and

radiotherapy in patients with metastatic castration-resistant

prostate cancer, finding that ipilimumab 10 mg/kg plus

radiotherapy suggested clinical antitumor activity with disease

control and manageable adverse events (85); in addition, the trial

suggested that treatment with ipilimumab improved progression-

free survival compared with placebo (median 4.0 vs. 3.1 months in

the placebo group; p < 0.0001). Two phase 3 studies have evaluated

the therapeutic effect of ipilimumab plus radiotherapy in patients

with metastatic castration-resistant prostate cancer (86, 87). In a

preplanned long-term analysis including 799 patients, ipilimumab

plus radiotherapy improved the overall survival of these patients

significantly. The OS rates at 3, 4, and 5 years were approximately

two to three times higher than that of patients receiving only

radiotherapy (87).

PD-L1 expression was observed in serial biopsy samples in a

phase 1 trial of nivolumab in combination with external beam

radiation therapy and brachytherapy in patients with grade 5

prostate cancer and increased immune infiltration. A strong

immune infiltrate was observed in the tissues, with an increase in

CD8+ and FOXP3+/CD4+ T cells in the tissues and CD4+ effector

T cells in the peripheral blood (88). Although a potentially T-cell-

mediated antitumor effect of ipilimumab was observed in 13%–23%

of men enrolled in the two trials, these data suggest that only a

minority of men with mCRPC derive a benefit from the single-

agent ipilimumab. Based on preclinical data showing that

radiotherapy could improve the tumor microenvironment and

the antitumor effect of CTLA-4, these studies used radiotherapy

as a boost for ipilimumab. The long-term analysis shows that OS is

improved with ipilimumab plus RT versus placebo plus RT in

patients with post-docetaxel mCRPC, and treatment was associated

with a fraction of patients with long-term survival. Although these

findings might suggest that the combination of radiotherapy plus

ICI would bring benefits to patients with advanced-stage prostate

cancer, no definitive phase 3 studies are testing this combination of

ICI plus radiotherapy in prostate cancer; more clinical trials should

be conducted to confirm its therapeutic effect and other details such

as dose, volume, fractionation, and sequence. The current research

studies are listed in Table 1, which can further prove the efficacy of

radiotherapy combined with ICI in prostate cancer. Those studies

might also point out patients with which a specific prostate cancer

stage could benefit most from using this combination.

Furthermore, these studies might also show the association

between radiotherapy plus ICI and conventional therapy such as

androgen deprivation therapy, answering questions such as

whether this strategy is better. Whether this strategy could be

used on patients undergoing androgen deprivation therapy and

so on.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1210673
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1210673
Perspective

To sum up, radiotherapy combined with immune checkpoint

blockade may be a more effective combination to enhance the

efficacy of ICI monotherapy in the treatment of prostate cancers,

since radiotherapy may boost tumor antigen presentation and CTL

infiltration into the cancer region. However, there are currently only

a few clinical trials focused on the combination of radiotherapy and

immune checkpoint blockade for the treatment of prostate cancer.

Further clinical trials are expected in the future to validate its

efficiency in treating prostate cancer.
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TABLE 1 Trials of radiotherapy with ICI in prostate cancer.

Trials

Treatment plan

Status Main outcome Reference
Experimental group A Experimental

group B
Experimental

group C

Karim
F et al

Radiotherapy + ipilimumab Ipilimumab – Finished
Radiotherapy with ICB improved OS in patients

with post-docetaxel mCRPC
(84)

SRT + pembrolizumab Pembrolizumab – Recruiting Not published NCT04931979

SRT + ipilimumab/nivolumab
Ipilimumab/
nivolumab

– Recruiting Not published NCT05655715

Nivolumab+ brachytherapy +
external beam radiation

therapy+ ADT
– – Recruiting

Nivolumab with brachytherapy is associated with
evidence of increased immune infiltration and

antitumor activity
NCT03543189

SRT + REGN2810
SRT +

ipilimumab
SRT + REGN2810
+ ipilimumab

Recruiting Not published NCT03477864

SRT + nivolumab CDX-301 +
poly-ICLC

Nivolumab +
CDX-301 + INO-

5151
– Finished Not published NCT03835533

Pembrolizumab + SRT +
ADT

– – Recruiting Not published NCT04569461
ICI, immune checkpoint inhibitor; OS, overall survival; SRT, stereotactic body radiation therapy; ADT, androgen deprivation therapy; REGN2810, anti-PD-1 monoclonal antibody; CDX-301, the
dendritic cell growth factor fms-like tyrosine kinase 3 (FLT3) ligand, a dendritic cell mobilizer; Poly-ICLC, a TLR3 agonist; INO-5151, a combination of DNA plasmids encoding interleukin-12 (INO-
9012 formulation) and prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) (INO-5150 formulation) to activate a cytotoxic T-lymphocyte for an antitumor response.
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