
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Mizuho Nishio,
Kyoto University, Japan

REVIEWED BY

Wookjin Choi,
Thomas Jefferson University, United States
Hidetoshi Matsuo,
Kobe University, Japan

*CORRESPONDENCE

Feiyun Wu

wfy_njmu@163.com

Hai Xu

xuhai507@126.com

†These authors have contributed equally to
this work

RECEIVED 26 April 2023

ACCEPTED 10 July 2023
PUBLISHED 04 August 2023

CITATION

Yang B, Gao Y, Lu J, Wang Y, Wu R, Shen J,
Ren J, Wu F and Xu H (2023) Quantitative
analysis of chest MRI images for benign
malignant diagnosis of pulmonary
solid nodules.
Front. Oncol. 13:1212608.
doi: 10.3389/fonc.2023.1212608

COPYRIGHT

© 2023 Yang, Gao, Lu, Wang, Wu, Shen,
Ren, Wu and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 04 August 2023

DOI 10.3389/fonc.2023.1212608
Quantitative analysis of chest
MRI images for benign
malignant diagnosis of
pulmonary solid nodules

Bin Yang1†, Yeqi Gao1†, Jie Lu1†, Yefu Wang1†, Ren Wu2,
Jie Shen1, Jialiang Ren3, Feiyun Wu1* and Hai Xu1*

1Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,
2Department of Medical Imaging, Jinling Hospital, Nanjing Medical University, Nanjing, China,
3Department of Pharmaceuticals Diagnostics, GE Healthcare, Beijing, China
Background: In this study, we developed and validated machine learning (ML)

models by combining radiomic features extracted from magnetic resonance

imaging (MRI) with clinicopathological factors to assess pulmonary nodule

classification for benign malignant diagnosis.

Methods: A total of 333 consecutive patients with pulmonary nodules (233 in the

training cohort and 100 in the validation cohort) were enrolled. A total of 2,824

radiomic features were extracted from the MRI images (CE T1w and T2w).

Logistic regression (LR), Naïve Bayes (NB), support vector machine (SVM),

random forest (RF), and extreme gradient boosting (XGBoost) classifiers were

used to build the predictive models, and a radiomics score (Rad-score) was

obtained for each patient after applying the best prediction model. Clinical

factors and Rad-scores were used jointly to build a nomogram model based

on multivariate logistic regression analysis, and the diagnostic performance of

the five prediction models was evaluated using the area under the receiver

operating characteristic curve (AUC).

Results: A total of 161 women (48.35%) and 172 men (51.65%) with pulmonary

nodules were enrolled. Six important features were selected from the 2,145

radiomic features extracted fromCE T1w and T2w images. The XGBoost classifier

model achieved the highest discrimination performance with AUCs of 0.901,

0.906, and 0.851 in the training, validation, and test cohorts, respectively. The

nomogram model improved the performance with AUC values of 0.918, 0.912,

and 0.877 in the training, validation, and test cohorts, respectively.

Conclusion: MRI radiomic ML models demonstrated good nodule classification

performance with XGBoost, which was superior to that of the other four models.

The nomogrammodel achieved higher performance with the addition of clinical

information.
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Background

Lung cancer is one of the most common malignant neoplastic

diseases worldwide, and its mortality rate is the highest in the world,

with incidences second only to breast cancer (1). According to the

latest national cancer statistics data released by the National Cancer

Center in 2022, in China, the incidence and mortality rate of lung

cancer are the highest among neoplastic diseases, which seriously

threaten the health of the Chinese population (2). The 5-year

survival rate for lung cancer remains less than 18% due to the

lack of symptoms in the early stage, late stage when a diagnosis is

made, and heterogeneity of the tumor, which influences the efficacy

of treatment (3, 4). The 5-year survival rate of patients with stage 0–

IA lung cancer (small lung cancer) less than 2 cm in diameter is

approximately 100%. Therefore, early diagnosis, accurate staging,

and appropriate treatment are important to improve the survival

rate of patients with lung cancer. With the wide application of low-

dose computed tomography (LDCT) in the screening of pulmonary

nodules and the enhancement of people’s health consciousness, the

detection rate of early lung cancer has greatly increased, and lung

cancer-related mortality has been reduced by approximately 20%

(5, 6). High-resolution computed tomography (HRCT) has a

sensitivity and specificity of >90% for the diagnosis of benign and

malignant lesions in pure ground-glass nodules with a diameter of

>6 mm, as well as in some solid nodules (7). However, HRCT

diagnosis of solid pulmonary nodules less than 2 cm in diameter

only depends on the shape, density, and blood supply; in particular,

inflammatory lung cancer and inflammatory granuloma are two

diseases that often lead to clinical misdiagnosis and incorrect

treatment. PET/CT, a common differential diagnostic method for

pulmonary nodules, is widely used in clinical practice. The

sensitivity and specificity of PET/CT are 92%–95% and 72%–83%,

respectively, because most of the lesions are benign (approximately

60%–70%), such as tuberculosis, fungal infections, and vascular and

congenital malformations, with strong glucose metabolism,

resulting in high false-positive rates (8). In addition, transthoracic

CT-guided needle biopsy of pulmonary nodules is an additional

means of obtaining a benign or malignant diagnosis, with a

sensitivity of approximately 81%–97% for the diagnosis of lung

cancer, but it is invasive, with a high incidence of pneumothorax

complications of up to 15% (9).Therefore, it has the ability to

differentiate between benign and malignant solid nodules less than

2 cm in diameter, avoid unnecessary invasive examinations and

surgical trauma, and prevent tumor progression due to follow-up.

At present, it is a hot point for doctors in the imaging, thoracic

surgery, and respiratory departments to treat these types of lung

cancer patients in a timely and effective manner.

With the rapid development of magnetic resonance imaging

(MRI) hardware and software, the imaging speed and signal-to-

noise ratio of images have improved, and there is no harm caused by
Abbreviations: ML, machine learning; MRI, magnetic resonance imaging;

NSCLC, non-small cell lung cancer; rad-score, radiomic score; LR, logistic

regression; NB, Naïve Bayes; SVM, support vector machine; RF, random forest;

XGBoost, extreme gradient boosting; Clinical, clinical model; COMB,

combined model.
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ionizing radiation. MRI-DWI can be used to obtain diffusion-

weighted imaging (DWI), apparent diffusion coefficient (ADC)

images, and ADC values of quantitative indices. Quantitative

indices of tissue and lesion diffusion can be obtained, providing a

new examination method for the differential diagnosis of benign

and malignant pulmonary lesions. It is helpful to accurately

diagnose necrosis, hemorrhage, fat, hilar and mediastinal lymph

node metastasis in pulmonary nodules, the deficiency of CT

examination was made up. With the development of DWI and

dynamic contrast-enhanced imaging (DCE) based on traditional

MRI techniques (10, 11), various metabolic and pathological

changes in living tissues can be observed noninvasively in the

early stages, which endows the functional imaging capability of

pulmonary nodules and plays a key role in differentiating benign

from malignant pulmonary nodules. Studies have shown that (12–

14) using the b-value and ADC of DWI techniques has a sensitivity

of 70%–89% and a specificity of 61%–97% for the diagnosis of

benign and malignant pulmonary nodules. Perfusion dynamics

based on the DCE technique plays a central role in distinguishing

benign from malignant solid nodules. The DCE technique can

obtain a large amount of parameter information through time-

signal intensity curves, and the main curve of malignant nodules is

characterized by an early peak followed by a rapid decline (15).

Studies have shown that the DCE technique has a sensitivity of

52%–100%, specificity of 52%–96%, and diagnostic accuracy of

75%–94% for differentiating benign from malignant solid nodules

(16–18). In addition, it has been found that DWI and DCE, two key

techniques in high-resolution MRI of the lung, have synergistic

effects in the diagnosis of solid pulmonary nodules less than 2 cm in

diameter; however, there are few relevant studies, and the

limitations of MRI in the diagnosis of benign and malignant

pulmonary nodules are that the sample size is generally small, the

diagnostic efficacy, sensitivity, specificity, and accuracy are not high,

and its stability is lacking (12, 19, 20).

Artificial Intelligence (AI) technology has shown incomparable

advantages in mining medical image information. It is expected that

the key imaging markers and dominant features of solid small

pulmonary nodules (<2 cm) can be extracted from multisequence

MRI images for early diagnosis, treatment decisions, and prognosis

evaluation of lung cancer. Recently, radiomics has become a new

technology in the field of medical imaging. It can extract large amounts

of high-throughput quantitative information, combine clinical data,

and build prediction models using machine learning. Ultimately, it is

used to guide clinical decision-making. It has been widely used in lesion

detection, disease diagnosis, classification, treatment planning, and

prognostic scenarios for various diseases, with extremely high

application value (21). However, most radiomics methods used for

the identification of benign andmalignant solid pulmonary nodules are

based on CT and PET/CT, and MRI-based radiomics has been used to

identify benign and malignant solid lung nodules with a small sample

size, poor diagnostic efficacy, and a lack of external and prospective

verification (22, 23).

Therefore, this study aimed to construct a predictive model

based on the imaging label of MRI and clinicopathologic features to

achieve early, sensitive, and accurate diagnosis of pulmonary

nodules, improve the accuracy of diagnosis and the survival rate
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of lung cancer patients, and provide technical support for the

accurate treatment of pulmonary nodules.
Methods

Patients and clinicopathological data

This study was conducted at the First AffiliatedHospital of Nanjing

Medical University and approved by the Institutional Review Board in

accordance with the ethical standards of the 1964 Helsinki Declaration

and its subsequent amendments. Informed consent was not required,

as protected health information (PHI) was not disclosed. This

retrospective study reviewed the medical records of patients between

August 2019 andMay 2021, focusing on 342 patients with lung nodules

(<2 cm) confirmed through histopathological analysis and follow-up.

Additionally, 26 patients were prospectively enrolled. To ensure patient

privacy, personal information was anonymized prior to data analysis.

The study protocol was approved by the Institutional Review Board at

the First Affiliated Hospital of Nanjing Medical University (2022-NT-

11, Nanjing, China).Patients with the following characteristics were

included in the study: (a) patients undergoingMRI examination within

1 month before surgery or biopsy, (b) patients who did not receive

antitumor treatment before MRI examination, and (c) patients with

histologically confirmed non-small cell lung cancer (NSCLC) through

surgery or biopsy. However, patients with the following characteristics

were excluded: (a) partial loss of MRI images (n = 9), (b) diseases not

related to NSCLC (n = 0), and (c) unclear tumor boundaries that could
Frontiers in Oncology 03
not be accurately delineated (n = 0). The final cohort included 333

patients (Figure 1). A total of 92 cases of malignant nodules were

identified, with 69 cases confirmed by surgical pathology and 23 cases

confirmed by CT-guided puncture biopsy pathology. Among 92 cases

of malignant nodules, the pathological subtypes were 61

adenocarcinoma and four squamous cell carcinomas, not otherwise

specified (NOS) 27, respectively (Table S1). Additionally, 241 cases of

benign nodules were observed, with 57 confirmed by surgical

pathology, and 27 confirmed by CT-guided puncture biopsy

pathology. In addition, the lesions did not increase after a follow-up

interval of 3–6 months. One hundred fifty-seven cases underwent anti-

inflammatory treatment, and follow-up examinations revealed that the

lesions had become smaller or disappeared, confirming that they were

benign nodules. We randomly divided the patients into a training

cohort (n = 233) and a validation cohort (n = 100) in a 2:1 ratio, and 26

patients were prospectively enrolled as the validation cohort. Data on

age, sex, smoking history, and family history were also collected

(Table 1).
MRI image acquisition and analysis

All MRI scans were performed using a 3.0 T MR scanner (Verio

Tim; Siemens Medical System, Erlangen, Germany) with a 16-

channel torso coil. Conventional imaging protocols included

unenhanced axial T1-weighted imaging with repetition time [TR]/

echo time [TE] of 140/2.5 ms and axial free-breathing BLADE T2-

weighted imaging (TR/TE, 1,200/93 ms). Axial DCE-MRI was
FIGURE 1

The patient stowage flowchart was divided into training and validation sets in a ratio of 2:1.
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performed using a T1-weighed volumetric interpolated breath-hold

examination (VIBE) with a radial acquisition trajectory (StarVIBE).

Gadodiamide (GE HealthCare, Shanghai, China) was intravenously

bolus injected via a power injector at a rate of 4.0 mL/s at a dose of

0.1 mmol/kg, followed by a 20-mL bolus of saline administered at

the same injection rate. The acquisition consisted of four baselines

and 31 contrast-enhanced images. The temporal resolution was 8.8

s, and the total acquisition time was 5 min and 33 s. The other

detailed imaging parameters were as follows: TR ms/TE ms, 3.19/

1.13 ms; slice thickness, 3 mm; FOV, 400 mm2; matrix, 160 × 224;

and flip angle, 15°. Another contrast-enhanced T1-weighted image

was obtained after the completion of DCE MR.
Tumor segmentation and radiomics
feature extraction

This study adhered to the Image Biomarker Standardization

Initiative (IBSI) guidelines, and the radiomics prototype software

program (Radiomics, Frontier, Siemens) was IBSI-compliant. A

volume of interest was drawn semi-automatically around the tumor

by a chest radiologist (YB, 10 years of experience) in lung diagnosis

using radiomics and confirmed by another chest radiologist (WR,4

years of experience). Both radiologists were blinded to the patients’

clinical information. First, we imported contrast-enhanced T1-

weighted (CE T1w) and T2-weighted (T2w) images into

Radiomics prototype software (Radiomics, Frontier, Siemens). In

the segmentation module of radiomics, a few segmentation tools are

available for the semi-automatic delineation of the tumor in three

dimensions. Segmentation is produced semi-automatically by

drawing a line across the tumor boundary. Then, using an
Frontiers in Oncology 04
automatic algorithm, the tool finds neighboring voxels with the

same gray level in three-dimensional (3D) space, generating

random walker-based lesion segmentation for solid and subsolid

lung lesions (24). If the segmentation is incorrect, operators can

manually correct it in the 3D domain using the radiomics

prototype. Before feature extraction, all the MR images were

resampled to an isotropic voxel size of 1.00 × 1.00 × 1.00 mm3

using a linear interpolation algorithm. The signal intensities were

normalized using the z-score method prior to feature extraction. A

total of 1,412 radiomic features were extracted from the CE T1w

and T2w images (total of 2,824). Radiomic features consist of seven

classes: shape, first-order statistics, gray-level co-occurrence matrix

[GLCM), gray-level size zone matrix [GLSZM], gray-level run

length matrix [GLRLM), neighboring gray tone difference matrix

[NGTDM], and gray-level dependence matrix [GLDM]. In

addition, wavelet transform filtering was applied for textural

feature extraction. Regarding wavelet filtering, the built-in

stationary wavelet transformation was used through a high band-

pass or lower band-pass filter in the X, Y, and Z directions, which

created eight different preprocessed images, as the shape of the

radiomic features could only be extracted from the original images.

To test intraclass reproducibility, the data for 30 randomly selected

patients were segmented twice by a single radiologist (YB) within 1

month. To test the interclass reproducibility, the same 30 sets of

data were segmented by two radiologists (YB and WR). Spearman’s

correlation analysis was used to assess the differences between the

features generated at different times by different radiologists and

between the features generated twice by the same radiologist.

Interclass and intraclass correlation coefficients (ICCs) were used

to evaluate the intra- and inter-observer agreement of feature

extraction, where an ICC value greater than 0.80 indicated good
TABLE 1 Clinical characteristics of enrolled patients.

Characteristics Training Cohort Validation Cohort Test Cohort p-value

N = 233 N = 100 N = 26

Label-N (%) 0.496

benign 169 (72.532%) 72 (72.000%) 16 (61.538%)

malignant 64 (27.468%) 28 (28.000%) 10 (38.462%)

Gender-N(%) 0.013

Female 106 (45.494%) 55 (55.000%) 6 (23.077%)

Male 127 (54.506%) 45 (45.000%) 20 (76.923%)

Age- (years), Median [Q1;Q3] 54.000 [43.000;64.000] 54.000 [44.000;62.250] 56.500 [43.750;65.500] 0.632

Smoke history-N (%) 0.033

No 70 (65.421%) 40 (83.333%) 10 (55.556%)

Yes 37 (34.579%) 8 (16.667%) 8 (44.444%)

Family history-N (%) 0.724

No 102 (95.327%) 47 (97.917%) 17 (94.444%)

Yes 5 (4.673%) 1 (2.083%) 1 (5.556%)

Max diameter-(cm), Median [Q1;Q3] 1.200 [0.900;1.600] 1.200 [1.000;1.500] 1.400 [1.300;1.625] 0.302
fron
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agreement. Consequently, 2,145 features (CE T1w and T2w) were

retained for further analysis. The dataset was randomly divided into

training, testing, and validation cohorts from centers 1 and 2.
Feature selection and predictive
models building

We used a two-step feature selection procedure to gradually select

optimal features. First, univariate analysis (Mann–Whitney U test) was

used to select the most useful features from the primary dataset.

Second, the Boruta algorithm with threefold cross-validation for a

total of 100 iterations was used. The Boruta algorithm selects a unique

collection of attributes each time (25, 26). All feature selection

procedures were performed in the primary cohort and applied to the

final class in the validation cohort. After feature selection, five machine

learning classifiers are used for building predictive models, including

logistic regression (LR), Naïve Bayes (NB), support vector machine

(SVM), random forest (RF), and extreme gradient boosting (XGBoost).

A radiomics score (Rad-score) was obtained for each patient after

applying the best machine learning model output score (Figure 2). A

nomogram was constructed based on multivariate logistic regression

analysis. Clinical factors and Rad-scores were included in the

nomogram model. A calibration curve is plotted to determine the

predictive accuracy of the proposed model. Decision curve analysis

(DCA) was performed to evaluate clinical usefulness by quantifying the

net benefits of the nomogram model.
Statistical analysis

All statistical analyses were performed using the R software

(version 4.2.0; http://www.rproject.org). Qualitative data are

expressed as mean ± standard deviation (STD) for continuous data

and number of cases and percentages (n [%]) for categorical data. An

independent sample t test was used to compare the values between the
Frontiers in Oncology 05
two groups. The c2 test was used to compare categorical data between

the two groups. Statistical significance was set at P <0.05. The

classification performance of the proposed models was evaluated

using the area under the curve (AUC) of the receiver operating

characteristic (ROC) curve in both the training and validation cohorts.
Results

Clinical characteristics of patients

A total of 333 patients were enrolled in this study: 233 (70%) were

assigned to the training cohort, 100 (30%) to the test cohort, and 26

were prospectively included as the validation cohort. The clinical

characteristics of patients in the training, test, and validation cohorts

are shown in Table 1. Furthermore, 64 (27.5%) patients in the

training cohort, 28 (28.0%) patients in the test cohort, and 10

(38.5%) patients in the validation cohort had malignant pulmonary

nodules. There was no significant difference in the number of patients

with malignant tumors among the three cohorts (P = 0.496).
Important radiomic features selection and
machine learning classifiers for building
predictive models

After feature selection, the following six important features were

selected from 2,145 radiomic features: T2W_exponential_

firstorder_Kurtosis,T2W_exponential_firstorder_Skewness,

T2W_wavelet.LHL_glcm_ClusterProminence,T2W_wavelet.LHL_

glrlm_GrayLevelVariance,T1C_original_shape_Flatness,and

T1C_logarithm_glcm_JointAverage (Figures 3, 4A–F). The results of

the Boruta algorithm selection are shown in Figure S1. Five machine

learning classifiers were used to build predictive models: LR, NB,

SVM, RF, and XGB. The AUCs of machine learning (ML) models are

listed in Table 2. Among the five ML models, LR was 0.737, 0.681,
FIGURE 2

Flowchart of the experimental steps. An experienced radiologist segmented the regions of interest (ROI) of the lesions. Features were selected to
build the models. Receiver operating characteristic (ROC) curves were used to demonstrate the diagnostic efficiency of the models. Decision curves
were used to evaluate the potential net clinical benefit of the Prediction Models.
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and 0.576 in the training, validation, and test cohorts, respectively;

NB were 0.692, 0.694, and 0.577 in the training, validation, and test

cohorts, respectively; SVMwas 0.756, 0.750, and 0.743 in the training,

validation, and test cohorts, respectively; RF was 0.798, 0.778, and

0.767 in the training, validation, and test cohorts, respectively; and

XGB had the highest classification performance (0.901, 0.906, and

0.851, respectively) (Figures 5A–C). A Rad-score was obtained for

each patient after applying the best machine-learning model.
Development of a radiomics
nomogram model

Before constructing the clinical model, clinicopathological factors

were analyzed using univariate logistic regression. The predictors with

P <0.05 were included in the univariate logistic regression analysis to

find significant predictors. Logistic regression analysis identified age

and lymph node metastasis (LNM) as independent predictors.

Independent predictors (age and LNM) were used to build the

clinical model with AUCs of 0.745, 0.731, and 0.695 in the training,

validation, and test cohorts, respectively. Based on multivariate logistic

regression analysis, the independent predictors (Rad-score, age, and

LNM) were used to build the combined model and presented as a

radiomics nomogram. After 10-fold cross-validation, the radiomics

nomogram demonstrated AUCs of 0.918, 0.912, and 0.877 in the
Frontiers in Oncology 06
training, validation, and test cohorts, respectively (Table 2; Figure 6).

DCA was performed to determine the clinical utility of the combined

model. DCA showed that the combined model had a higher overall net

benefit than the other six other clinical models (LR, NB, SVM, RF,

XGBoost, and the clinical model) across most of the range of

reasonable threshold probabilities (Figure 7).
Discussion

In this study, five machine learning classifiers were built based on

multimodal MRI to extract radiomics features. Multivariate logistic

regression analysis of clinicopathologic factors was performed to screen

out independent predictors, and a clinical prediction model was

established to classify benign and malignant pulmonary nodules. The

classification efficiency of five machine learning classifiers was

compared, and the classifier with the highest prediction efficiency

among the machine learning classifiers was output with the Rad-score.

Finally, the Rad-score and independent predictive factors were used to

establish a multiple regression model and were presented in the

nomogram. The results showed that all five machine learning

classifiers could be used to classify benign and malignant pulmonary

nodules, and that the XGBoost classifier had the highest classification

performance. The AUC for the training, validation, and test sets were

0.901, 0.906, and 0.851, respectively. The Rad-score combined with
FIGURE 3

Heatmap of Spearman correlations between two of the six features that were retained. The results showed that the correlation coefficients between
the two pairs of features were less than 0.9.
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independent predictors to construct the joint prediction model showed

good classification efficiency, and its AUC in the training, validation,

and test sets were 0.918, 0.912, and 0.877, respectively. This model

could be used to classify benign and malignant pulmonary nodules.

The nature of small pulmonary nodules is still difficult to decipher,

which directly affects the choice of treatment and prognosis of patients.

Differentiation between benign and malignant small pulmonary

nodules less than 2 cm in diameter, avoiding unnecessary invasive

examination and surgical trauma, and preventing tumor progression

due to follow-up are necessary; at present, it is a hot spot for doctors in

the imaging, thoracic surgery, and respiratory departments to treat

these types of lung cancer patients in time and effectively. Therefore,

identifying and screening more comprehensive and effective indices of

lesion heterogeneity and microenvironment characteristics by non-

invasive examination to achieve accurate early screening of malignant

small pulmonary nodules is a key scientific problem that needs to be

urgently addressed in this research. With the emergence of artificial

intelligence technologies, including deep learning feature extraction

and segmentation technology, deep survival analysis, and radiomics

analysis, the depth features of small pulmonary nodules (<2 cm) can be

extracted quantitatively and segmented accurately. The survival

analysis model can be built by simulating the nonlinear risk score

function, and high-throughput features in the images can be extracted.

Quantitative characterization of the heterogeneity of lesions to achieve

accurate prediction of disease recurrence, non-invasive prognosis, and
Frontiers in Oncology 07
comprehensive quantification of the heterogeneity and

microenvironment of the lesions will provide a direction for the deep

mining and application of medical images and will help select more

appropriate, effective, and personalized treatment programs. However,

currently, radiomics and deep learning techniques used in lung disease

research are mostly focused on CT or PET/CT images, and guidance

based on multimodal MRI radiomics for the differentiation of benign

and malignant pulmonary nodules (<2 cm) to achieve personalized

treatment is still rare, particularly for the design of multimodal MRI

data models, fusion methods, and other issues that require

further study.

MRI is useful for distinguishing between tissues with different

pathological features. At the same time, DWI, IVIM, DKI, and DCE-

MRI can provide more sensitive quantitative and qualitative imaging

markers, which are helpful for the diagnosis, histological classification,

evaluation of therapeutic effect, and prognosis prediction of small

pulmonary nodules to guide clinical treatment. Satoh et al. (12) scored

the DWI signal intensity of 54 pulmonary nodules in 51 patients on a

5-point scale to calculate the difference in scores between malignant

and benign nodules. The results showed that the mean score of

malignant nodules was significantly higher than that of benign

nodules on DWI, with an ACU value of 0.796 and a threshold value

of three points, with a sensitivity, specificity, and accuracy of 88.9%,

61.1%, and 79.6%, respectively. Kono et al. (27) retrospectively analyzed

the dynamic contrast-enhanced features of 202 solitary pulmonary
A B

D E F

C

FIGURE 4

(A–F) Violin plot of data distribution of the remaining six features in the two groups of benign and malignant nodules after feature selection. * <0.05,
** <0.01, *** <0.001.
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A B C

FIGURE 5

(A–C) Diagnostic performance of machine learning models for classifying malignant and benign pulmonary nodules based on MR radiomic features
in the training, validation, and test cohorts. The number adjacent to each machine learning model is the area under the receiver operating
characteristic curve. LR, logistic regression; NB, Naïve Bayes; SVM, support vector machine; RF, random forest; XGBoost, extreme gradient boosting;
Clinical, clinical model; COMB, combined model.
TABLE 2 Predictive performance of different classification models.

Method in cohort AUC ACC SEN SPE PPV NPV cutoff

Training

LR 0.737 (0.666–0.807) 0.634 0.769 0.581 0.417 0.866 0.256

NB 0.692 (0.618–0.766) 0.664 0.600 0.689 0.429 0.816 0.299

SVM 0.756 (0.685–0.826) 0.720 0.708 0.725 0.500 0.864 0.265

RF 0.798 (0.730–0.865) 0.750 0.723 0.760 0.540 0.876 0.130

XGB 0.901 (0.858–0.944) 0.836 0.846 0.832 0.663 0.933 0.331

Clinical 0.745 (0.669–0.821) 0.789 0.477 0.910 0.674 0.817

COMB 0.918 (0.879–0.958) 0.875 0.785 0.910 0.773 0.916

Validation

LR 0.681 (0.462–0.901) 0.654 0.800 0.562 0.533 0.818

NB 0.694 (0.465–0.922) 0.654 0.600 0.688 0.545 0.733

SVM 0.750 (0.534–0.966) 0.731 0.700 0.750 0.636 0.800

RF 0.778 (0.599–0.957) 0.731 0.700 0.750 0.636 0.800

XGB 0.906 (0.789–1.000) 0.769 0.600 0.875 0.750 0.778

Clinical 0.731 (0.528–0.934) 0.654 0.400 0.812 0.571 0.684

COMB 0.912 (0.800–1.000) 0.808 0.700 0.875 0.778 0.824

Test

LR 0.576 (0.433–0.718) 0.515 0.630 0.473 0.304 0.778

NB 0.577 (0.442–0.712) 0.594 0.519 0.622 0.333 0.780

SVM 0.743 (0.635–0.850) 0.653 0.778 0.608 0.420 0.882

RF 0.767 (0.660–0.873) 0.752 0.519 0.838 0.538 0.827

XGB 0.851 (0.766–0.936) 0.822 0.741 0.851 0.645 0.900

Clinical 0.695 (0.557–0.832) 0.772 0.296 0.946 0.667 0.787

COMB 0.877 (0.803–0.951) 0.822 0.593 0.905 0.696 0.859
F
rontiers in Oncology
 08
 fronti
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; NB, Naïve Bayes; SVM,
support vector machine; RF, random forest; XGB, extreme gradient boosting; COMB, combined model.
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nodule of 1–3 cm in diameter. The maximum enhancement ratio, time

at maximum enhancement ratio, slope of time–enhancement ratio

curves, and washout ratio were assessed. In lung cancers, the time at

maximum enhancement ratio was 4min less. For all benign lesions, the

time at the maximum enhancement ratio was greater than 4 min or

gradual enhancement occurred without a peak time. Lung cancers have

different maximum enhancement ratios and slopes than benign lesions

do. Dynamic contrast-enhanced MRI is helpful for differentiating

benign from malignant solitary pulmonary nodules. The absence of

significant enhancement is a strong predictor of benign lesions. Feng

et al. (20) tested the performance of free-breathing DCE-MRI using a

radial volumetric interpolated breath-hold examination (VIBE)

sequence combined with DWI for quantitative solitary pulmonary

nodule (SPN) assessment. Quantitative enhancement parameters
Frontiers in Oncology 09
(Ktrans, Kep, and Ve) and ADC values were measured in 67

patients with pulmonary nodules who underwent conventional MRI,

DWI, and dynamic contrast-enhanced MRI. The results showed that

the KTRANS and Kep values of malignant nodules were higher than

those of benign nodules, whereas the ADC values were lower than

those of benign nodules. Using an ADC value of 0.98 × 10−3 mm2/s as a

threshold, the specificity and sensitivity for the diagnosis of benign and

malignant nodules were 90.6% and 80%, respectively. The results

showed that high-temporal-resolution DCE-MRI using the r-VIBE

technique in combination with DWI could contribute to pulmonary

nodule analysis and may serve as a potential alternative to distinguish

malignant from benign nodules. The above research shows that MRI

multi-sequence imaging can be used as a non-invasive means to

objectively and scientifically describe the morphological features of

pulmonary nodules and the internal structure of the tumor. The fusion

of multi-sequence MRI information is expected to replace biomarkers

in the early, sensitive, and the accurate diagnosis of pulmonary nodules,

thus improving the diagnostic accuracy of pulmonary solid nodules

and the survival rate of patients with lung cancer, providing technical

support for accurate diagnosis and treatment of pulmonary nodules.

However, the current study had a small sample size, poor diagnostic

efficacy, no external multicenter validation, and a lack of reliability

and stability.

Therefore, in this study, we established five machine learning

classifiers, one clinical predictive model, and one joint predictive

model, based on MRI radiomics features. Our results show that

both the machine learning classifier and joint prediction model have

a high prediction efficiency. Among the machine learning classifiers,

XGBoost had the highest classification efficiency, with AUCs of

0.901, 0.906, and 0.851 for the training, validation, and test sets,

respectively. The XGBoost output score combined with

independent predictors built a joint model with AUC of 0.918,

0.912, and 0.877 for the training, validation, and test sets,

respectively. This shows that our model has better predictive

power than previous studies (24, 28, 29). This may be because

our machine learning classifier uses the XGBoost algorithm.

XGBoost performs well in data analysis and prediction. It is a

decision-tree-based integration algorithm that strives to maximize
FIGURE 6

The radiomics nomogram was developed using independent predictors (rad score, age, and LNM) to predict benign and malignant pulmonary nodules.
FIGURE 7

Decision curves of the seven models in the training cohort. Net
income is shown on the y-axis, and the probability threshold is
shown on the x-axis.
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the speed and efficiency and prevent model overfitting. Combined

with the Rad-score, the classification performance of the model

significantly improved (30).

Regarding the advantages of our study, first, we used the XGBoost

algorithm. The XGBoost model trains extremely quickly, computes the

importance of each feature for feature selection, model interpretability,

model transparency, and model tuning, saves the tree model in clear

text, and facilitates model visualization and tuning. The XGBoost

gradient promotion algorithm uses a gradient descent algorithm to

minimize the prediction error and generates a set of weak prediction

models (decision tree). During training, a new regression tree was

added to the gradient elevation each time to reduce the residuals (the

difference between themodel predictions and label values). The existing

trees in the model remain unchanged, which reduces the overfitting

rate (31). Second, all procedures in this study were performed using the

same MRI device with the standard protocol, which avoided the

heterogeneity of image impressions from different scan and

reconstruction parameters, thus leading to more stable and reliable

results. Moreover, semiautomatic segmentation tools were

implemented in our radiomics research prototype; therefore,

individual differences in manual drawings were limited. Third,

repeated cross-validation was used for training to reduce biased

estimations, and testing was performed in a validation cohort and a

prospective cohort to evaluate the performance of our model.

Therefore, our model is robust and reliable.

Similar to most previous studies, our study had several limitations.

First, as this was a retrospective study, there may have been selection

bias; therefore, more in-depth research with a larger sample size is still

needed. Second, the data used for modeling in this study were obtained

from a central study with no external verification. In the next step, we

will gradually conduct external verification to verify the generalizability

of the model, and no corresponding standard will be available for the

randomness of high-throughput features, which are highly dependent

on random changes in images and imaging parameters. This suggests

that a standard is required to ensure reproducibility and reliability of

the study results (32).

In conclusion, our study demonstrates the ability of MRI radiomic

features to differentiate malignant from benign lung nodules. We have

also shown improvedMRI radiomics performance with the addition of

age and LNM and demonstrated the strong diagnostic performance of

four commonly used ML algorithms for nodule classification, with

XGBoost having the highest performance.
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