
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Marco Rengo,
Sapienza University of Rome, Italy

REVIEWED BY

Davide Ciardiello,
University of Campania Luigi Vanvitelli, Italy
Anton A. Plekhanov,
Privolzhsky Research Medical University
(PIMU), Russia

*CORRESPONDENCE

Seun Ja Park

parksj6406@daum.net

Tae Il Kim

taeilkim@yuhs.ac

†These authors have contributed equally to
this work

RECEIVED 27 April 2023
ACCEPTED 26 September 2023

PUBLISHED 26 October 2023

CITATION

Kim JH, Yu J, Kim DK, Lee S, Lee SH,
Ahn BK, Kim TI and Park SJ (2023) Tumor
microbiome analysis provides prognostic
value for patients with stage III
colorectal cancer.
Front. Oncol. 13:1212812.
doi: 10.3389/fonc.2023.1212812

COPYRIGHT

© 2023 Kim, Yu, Kim, Lee, Lee, Ahn, Kim and
Park. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 October 2023

DOI 10.3389/fonc.2023.1212812
Tumor microbiome analysis
provides prognostic value
for patients with stage III
colorectal cancer

Jae Hyun Kim1†, Jongwook Yu2†, Dong Keon Kim2,
Seunghun Lee3, Seung Hyun Lee3, Byung Kwon Ahn3,
Tae Il Kim2,4* and Seun Ja Park1*

1Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic
of Korea, 2Department of Internal Medicine, Yonsei University College of Medicine,
Seoul, Republic of Korea, 3Department of Colorectal Surgery, Kosin University College of
Medicine, Busan, Republic of Korea, 4Brain Korea 21 Project for Medical Science, Yonsei
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Introduction: Although patients with colorectal cancer (CRC) can receive

optimal treatment, the risk of recurrence remains. This study aimed to evaluate

whether the tumor microbiome can be a predictor of recurrence in patients with

stage III CRC.

Methods: Using 16S rRNA gene sequencing, we analyzed the microbiomes of

tumor and adjacent tissues acquired during surgery in 65 patients with stage III

CRC and evaluated the correlation of the tissue microbiome with CRC

recurrence. Additionally, the tumor tissue microbiome data of 71 patients with

stage III CRC from another center were used as a validation set.

Results: The microbial diversity and abundance significantly differed between

tumor and adjacent tissues. In particular, Streptococcus and Gemella were more

abundant in tumor tissue samples than in adjacent tissue samples. The microbial

diversity and abundance in tumor and adjacent tissues did not differ according to

the presence of recurrence, except for one genus in the validation set. Logistic

regression analysis revealed that a recurrence prediction model including tumor

tissue microbiome data had a better prediction performance than clinical factors

(area under the curve [AUC] 0.846 vs. 0.679, p = 0.009), regardless of sex (male

patients: AUC 0.943 vs. 0.818, p = 0.043; female patients: AUC 0.885 vs. 0.590, p

= 0.017). When this prediction model was applied to the validation set, it had a

higher AUC value than clinical factors in female patients.

Conclusion: Our results suggest that the tumor microbiome of patients with

CRC be a potential predictor of postoperative disease recurrence.
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1 Introduction

Colorectal cancer (CRC) is the second leading cause of cancer

deaths worldwide. Compared with the 2020 estimates, the global

burden of CRC is predicted to increase by 63% in 2040 (1).

Moreover, the incidence of early-onset CRC (before age 50 years)

is increasing in high-income countries (2). For resectable non-

metastatic CRC, colectomy with en bloc removal of regional lymph

nodes is the preferred treatment; however, several studies reported

that approximately 25–30% of patients with stage III CRC

experienced disease recurrence within the first 5 years after

surgery (3–6). In addition, although adjuvant chemotherapy has

demonstrated benefits in patients with stage III CRC, it can reduce

the risk of recurrence by only approximately 30% (7, 8). The

mortality rates for CRC are consistently higher in men compared

to women across different regions worldwide, with men having a

mortality rate approximately 25% higher than women (9). Several

retrospective studies have shown that female CRC patients typically

have longer survival rates than males (10–12). However, some

studies have failed to find any survival benefit for women (13).

Several prognostic factors for CRC recurrence have been

recognized, including a poorly differentiated histology, greater

tumor depth, higher number of positive lymph nodes,

lymphovascular invasion, perineural invasion, and tumor budding

(14–17). In contrast, high microsatellite instability (MSI) and

abundant tumor-infiltrating T-cells have been associated with a

favorable prognosis in patients with CRC (18–20). Recently, the

detection of circulating tumor DNA after surgery has been

suggested as a predictor of a high risk of recurrence (21, 22).

Nevertheless, a more precise prediction of the risk of CRC

recurrence after surgery is still required in clinical practice.

Emerging evidence has demonstrated the microbial

composition and ecological changes in patients with CRC and the

roles of several bacteria in colorectal carcinogenesis and treatment

(23). The gut microbiome, which includes Faecalibacterium,

Akkermansia, and Bifidobacterium species, is expected to play an

important role in mediating the outcomes of chemotherapy and

immunotherapy in patients with melanoma and lung cancer, as it

affects immune system activation and tumor responses to treatment

(24–26). In particular, the presence of abundant Fusobacterium

nucleatum (F. nucleatum) DNA in tissues has been associated with

worse clinical outcomes in patients with CRC (27). One study of

patients with pancreatic cancer demonstrated that the diversity and

composition of the tumor microbiome are important determinants

of long-term survival (28). A recent study of patients with CRC

showed that two pathogenic bacteria, F. nucleatum and Bacteroides

fragilis (B. fragilis), were more abundant in patients without

recurrence than in those with recurrence (29). However, the

association between the tumor microbiome and clinical outcomes

in patients with CRC remains unclear.

We designed this study to investigate the potential role of the

tumor microbiome in predicting postoperative recurrence in

patients with stage III CRC. To verify the results, we also

analyzed the tumor microbiome data of patients with stage III

CRC from another center.
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2 Materials and methods

2.1 Patients and sample collection

Two pairs of tumor tissues and adjacent normal-appearing

mucosal tissues (hereinafter “adjacent tissues”) from patients with

CRC who underwent colorectal resection at Kosin University

Gospel Hospital (Busan, Republic of Korea) were previously

collected and stored immediately in a deep freezer (−80°C). From

these samples, we selected and analyzed tumor and adjacent tissues

from patients with stage III CRC who underwent adjuvant

chemotherapy. Patients with pathological stage I or II CRC who

had clinical stage III disease before surgery, those with < 3 months

of adjuvant chemotherapy, and those with < 24 months of follow-up

were excluded from the analysis. Further, tumor tissue samples

from patients with stage III CRC who underwent surgery and

adjuvant chemotherapy at Yonsei University Severance Hospital

(Seoul, Republic of Korea) were used as a validation set. Detailed

clinical data, such as age, sex, height, weight, ABO blood type,

history of smoking and alcohol drinking, family history of CRC,

comorbid diseases, tumor location, histology, lymphovascular

invasion, perineural invasion, Kirsten rat sarcoma viral oncogene

homolog (KRAS) mutation, MSI status, T stage, N stage, and

laboratory findings (including carcinoembryonic antigen [CEA]

level), were assessed. The study protocol was reviewed and

approved by the institutional review board of Kosin University

Gospel Hospital (approval no. KUGH 2021-01-028).
2.2 Adjuvant chemotherapy and definition
of recurrence

Patients with CRC who underwent colorectal resection received

were given either FOLFOX, CAPEOX, or FL as adjuvant

chemotherapy for a duration of 6 months. The FOLFOX regimen

includes intravenous administration of oxaliplatin 85 mg/m2,

leucovorin 400 mg/m2, and a bolus of 5-fluorouracil 400 mg/m2

on day 1. This is followed by a continuous infusion of 5-

fluorouracil 1200 mg/m2/day for 2 days. The treatment cycle is

repeated every 2 weeks. The CAPEOX regimen includes

intravenous administration of oxaliplatin 130 mg/m2 on day 1

and oral administration of capecitabine 1000 mg/m2 twice a day

for 14 days. The treatment cycle is repeated every 3 weeks. The FL

regimen consists of intravenous administration of leucovorin 400

mg/m2, and a bolus of 5-fluorouracil 400 mg/m2 on day 1. This is

followed by a continuous infusion of 5- fluorouracil 1200 mg/m2/

day for 2 days.

The recurrence of CRC was diagnosed on endoscopic biopsy,

surgical resection, and/or radiological imaging study. In this study,

we defined recurrence as both locoregional and distant recurrence.

Locoregional recurrence was defined as a recurrence at the site of

original surgical resection or at the draining lymph nodes. Distant

recurrence was defined as a recurrence of CRC developing spread to

distant sites including the liver, lung, peritoneum, ovaries, adrenal

glands, bone, and brain.
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2.3 DNA extraction and bacterial
16S rRNA sequencing

The samples collected at Kosin University Gospel Hospital were

transported to Hecto Healthcare Co., Ltd. (Seoul, Korea) and

immediately frozen at −80°C. Microbial DNA was extracted using

the Maxwell® RSC PureFood GMO and Authentication Kit (Promega,

Madison, WI, USA) according to the manufacturer’s instructions. To

determine DNA concentrations, we used an ultraviolet–visible

spectrophotometer (NanoDrop 2000c; Thermo Fisher Scientific,

Waltham, MA, USA). QuantiFluor® ONE dsDNA System

(Promega) was used for quantification. The DNA samples were

stored at −20°C until required for experiments. A sequencing library

was prepared according to the Illumina 16S Metagenomic Sequencing

Library Preparation Guide (Illumina, San Diego, CA, USA). The V3–

V4 region of the bacterial 16S rRNA gene was amplified using primer

sets F319 (5′-TCGTCGGCAGCGT-CAGATGTGTATAAGAGA
CAGCCTACGG-GNGGCWGCAG-3′) and R806 (5′-GTCTCGT
GGGCTCGGAGATGTGTATAAGAGAC-AGGACTACHVGGG

TATC-TAATCC-3′). The amplified products were purified using

Agencourt® AMPure XP beads (Beckman Coulter, Brea, CA, USA),

and the quality of the library was confirmed using the Bioanalyzer 2100

system (Agilent, Santa Clara, CA, USA). The pooled libraries were

sequenced with 300-bp paired-end reads on the MiSeq platform using

the MiSeq version 3 Reagent Kit (Illumina). To prevent contamination,

all experimental procedures were conducted inside a biosafety cabinet

(BSC). DNA extraction was performed using sterile disposable Petri

dishes and surgical blades to cut the sample into appropriate sizes while

it was still frozen on dry ice. During the analysis stage, library pooling

was performed by mixing Phix control at a 30% ratio with filtered real

sequences used as raw data. The resulting data was then subjected to

quality filtering, denoising, and sequencing error removal using

QIIME2 software before proceeding with further analysis.
2.4 Data analysis and statistical analysis

Raw sequencing data were processed using the Quantitative

Insight into Microbial Ecology software package 2 (QIIME 2,

version 2021.4; http://qiime2.org). Denoising was performed

using the Deblur algorithm, and a taxonomy table was created

using the SILVA database (version 138). The non-archaeal/bacterial

sequences were removed according to the taxonomic classification

results. FASTQ reads were filtered, trimmed, and merged in

DADA2 to generate a table of amplicon sequence variants.

Taxonomy was assigned to the amplicon sequence variants using

a naive Bayes classifier and compared to the SILVA version 138.99

reference database. Alpha diversity was assessed using the Shannon

index, Chao1 index, Simpson index, and observed operational

taxonomic units, whereas beta diversity was evaluated using

principal coordinate analysis based on the Bray–Curtis distance.

These analyses were performed using QIIME 2 and R (version 4.1.3;

R Foundation for Statistical Computing, Vienna, Austria). To

compare the taxa, we selected only those with a mean relative
Frontiers in Oncology
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abundance greater than or equal to 1%. Data visualization was

performed using the ggplot2 package in R, and statistical analysis

was conducted using the Wilcoxon signed rank test and

PERMANOVA from the vegan package. Linear discriminant

effect size analysis was performed using the online platform,

Galaxy (https://huttenhower.sph.harvard.edu/galaxy).

The patients’ demographic and clinical data were compared

using Student’s t-test and Fisher’s exact test. Continuous data with a

normal distribution are expressed as mean ± standard deviation,

and categorical data are presented as numbers (percentage). The

Wilcoxon signed-rank test was used to compare microbial

abundance between tumor and adjacent tissues, as well as

according to the presence of recurrence. Logistic regression

analysis was performed to evaluate factors predicting disease

recurrence. The ‘glm’ function in R was used to fit a logistic

regression model to our data, including predictors such as clinical

variables and microbiome to predict the binary outcome variable of

recurrence. The ‘step’ function was then used to perform backward

selection and select the final model. Receiver operating

characteristic (ROC) and area under the curve (AUC) analyses

were performed to estimate the thresholds of variables. A random

forest model was used to assess the mean decrease in the Gini

coefficient. To control for the false discovery rate (FDR), statistical

significance was determined using the Benjamini-Hochberg

procedure with a threshold of FDR-adjusted p value < 0.05. All

statistical analyses were performed using R.
3 Results

3.1 Baseline characteristics and evaluation
of clinical variables affecting recurrence

Patients with stage III CRC who underwent surgery followed by

adjuvant chemotherapy at Kosin University Gospel Hospital (65

patients, discovery set) and Yonsei University Severance Hospital

(71 patients, validation set) were enrolled in this study. The baseline

characteristics of the patients are summarized in Table 1. The mean

age in the discovery set was younger than that in the validation set

(60.0 ± 9.3 vs. 64.7 ± 11.4 years, p = 0.010). Additionally, the

discovery set had a higher prevalence of current smokers (27.7% vs.

9.9%, p = 0.027) and lymphovascular invasion (63.1% vs. 36.6%, p =

0.004) compared to the validation set. In the discovery set, 60 patients

(92.3%) received FOLFOX and 5 patients (7.7%) received CAPEOX.

In the validation set, 59 patients (83.1%) received FOLFOX, 8 patients

(11.3%) received CAPEOX, and 4 patients (5.6%) received FL. All of

the patients received treatment for a minimum of 5 months or more.

We compared the clinical variables according to the presence of

recurrence, and no differences were observed in all factors,

including tumor location, histology, lymphovascular invasion,

perineural invasion, KRAS mutation, MSI status, T stage, N stage,

and laboratory findings (Table 2). We evaluated clinical factors as

predictors of tumor recurrence; however, none of the factors were

found to be significant (Figure 1).
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3.2 Microbiome differences between
adjacent and tumor tissues

On the basis of previous results (27, 28), we hypothesized that the

tissue microbiome of patients with CRC could be a predictor of

tumor recurrence after surgery. We focused on the individual

differences in the microbiome and attempted to evaluate the

possibility that the tissue microbiome can predict recurrence in

patients with stage III CRC who underwent surgery and adjuvant

chemotherapy. We compared the microbiome differences between

adjacent and tumor tissues in patients in the discovery set. Alpha

diversity was not different but beta diversity was significantly different

between the two tissues, and the taxonomic composition showed

differences at the phylum, genus, and species levels (Figure S1).

Microbial abundance was remarkably different between adjacent

and tumor tissues. At the phylum level, Fusobacteriota,

Verrucomicrobiota, and Bacteroidota were more abundant in

tumor tissue samples (Figure 2A). At the genus level, Streptococcus

and Gemella were more abundant in tumor tissue samples
TABLE 1 Baseline characteristics.

Characteristics
Discovery

set
(n = 65)

Validation
set

(n = 71)

p
Value

Age (years) 60.0 ± 9.3 64.7 ± 11.4 0.010

Sex 0.335

Male 34 (52.3) 44 (62.0)

Female 31 (47.7) 27 (38.0)

Height (cm) 161.6 ± 9.2 163.1 ± 8.8 0.325

Weight (kg) 61.2 ± 11.5 63.2 ± 11.3 0.303

BMI (kg/m2) 23.3 ± 3.4 23.7 ± 3.5 0.552

ABO blood type 0.096

A 34 (52.3) 30 (42.3)

B 9 (13.8) 21 (29.6)

O 14 (21.5) 16 (22.5)

AB 8 (12.3) 4 (5.6)

Smoking 0.027

None 29 (44.6) 41 (57.7)

Past 18 (27.7) 23 (32.4)

Current 18 (27.7) 7 (9.9)

Alcohol drinking 0.299

None 26 (40.0) 33 (46.5)

Past 23 (35.4) 28 (39.4)

Current 16 (24.6) 10 (14.1)

Family history 4 (6.2) 7 (9.9) 0.633

Comorbid diseases 0.204

None 36 (55.4) 34 (47.9)

DM 11 (18.5) 17 (23.9)

HTN 17 (33.8) 34 (47.9)

Dyslipidemia 1 (1.5) 3 (4.2)

Vascular disorders 7 (10.5) 4 (5.6)

Hepatitis C 1 (1.5) 0 (0)

Stomach cancer 1 (1.5) 1 (1.4)

Tumor location 0.197

Right colon 23 (35.4) 36 (50.7)

Left colon 28 (43.1) 23 (32.4)

Rectum 14 (21.5) 12 (16.9)

Histology 0.794

Well differentiated 4 (6.2) 7 (9.9)

Moderately differentiated 54 (83.1) 58 (81.7)

Poorly differentiated 5 (7.7) 5 (7.0)

(Continued)
TABLE 1 Continued

Characteristics
Discovery

set
(n = 65)

Validation
set

(n = 71)

p
Value

SRC/mucinous 2 (3.1) 1 (1.4)

Lymphovascular invasion 41 (63.1) 26 (36.6) 0.004

Perineural invasion 15 (23.1) 14 (19.7) 0.789

KRAS mutation 11 (42.3) 25 (39.1) 0.962

MSI status 0.223

MSS 40 (61.5) 61 (85.9)

MSI-low 1 (1.5) 0 (0.0)

MSI-high 5 (7.8) 3 (4.2)

N/A 19 (29.2) 7 (9.9)

Tumor stage 0.060

IIIA 4 (6.2) 10 (14.1)

IIIB 45 (69.2) 53 (74.6)

IIIC 16 (24.6) 8 (11.3)

Adjuvant chemotherapy
regimen

0.145

FOLFOX 60 (92.3) 59 (83.1)

CAPEOX 5 (7.7) 8 (11.3)

FL 0 (0.0) 4 (5.6)

CEA (ng/mL) 12.0 ± 18.7 8.2 ± 17.1 0.218
fron
Values are presented as n (%) or mean ± standard deviation.
BMI, body mass index; DM, diabetes mellitus; HTN, hypertension; SRC, signet ring cell
carcinoma; KRAS, Kirsten rat sarcoma viral oncogene homolog; MSI, microsatellite
instability; MSS, microsatellite stable; N/A, non-available; FOLFOX, consists of oxaliplatin,
leucovorin, and 5-fluorouracil; CAPEOX, consists of oxaliplatin and capecitabine; FL, consists
of 5-fluorouracil and leucovorin; CEA, carcinoembryonic antigen.
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(Figure 2B). In contrast, the phyla Firmicutes, Proteobacteria, and

Actinobacteriota (Figure 2A), and the genera Parabacteroides,

Faecalibacterium, and Parasutterella were more abundant in

adjacent tissue samples (Figure 2B). Further, linear discriminant

effect size analysis confirmed that the microbial abundance in

adjacent tissues was distinct from that in tumor tissues (Figure 2C).
Frontiers in Oncology 05
3.3 Microbiome differences according to
the presence of recurrence

Figure S2 displays the Kaplan-Meier curves for overall survival

and disease-free survival differences between the discovery set and

validation set. We assessed differences in the tissue microbiome
TABLE 2 Comparison between patients with and without recurrence.

Discovery set Validation set

Characteristics
No recurrence

(n = 40)
Recurrence
(n = 25)

p Value
No recurrence

(n = 52)
Recurrence
(n = 19)

p Value

Tumor location 0.828 0.640

Rectum 13 (32.5) 10 (40.0) 25 (48.1) 11 (57.9)

Left colon 18 (45.0) 10 (40.0) 17 (32.7) 6 (31.6)

Right colon 9 (22.5) 5 (20.0) 10 (19.2) 2 (10.5)

Histology 0.739 0.288

Well differentiated 3 (7.5) 1 (4.0) 6 (11.5) 1 (5.3)

Moderately differentiated 32 (80.0) 22 (88.0) 43 (82.7) 15 (78.9)

Poorly differentiated 4 (10.0) 1 (4.0) 3 (5.8) 2 (10.5)

SRC/mucinous 1 (2.5) 1 (4.0) 0 (0.0) 1 (5.3)

Lymphovascular invasion 24 (60.0) 17 (68.0) 0.699 19 (36.5) 7 (36.8) 1.0

Perineural invasion 7 (17.5) 8 (32.0) 0.295 8 (15.4) 6 (31.6) 0.237

KRAS mutation 8 (20.0) 3 (12.0) 0.354 17 (32.7) 8 (42.1) 0.618

MSI status 0.095 0.401

MSS 21 (52.5) 19 (100) 45 (86.5) 16 (84.2)

MSI-low 1 (2.5) 0 (0) 3 (5.8) 0 (0.0)

MSI-high 5 (12.5) 0 (0) 4 (7.7) 3 (15.8)

N/A 13 (32.5) 6 (24.0)

T stage 0.967 0.719

T1/2 3 (7.5) 1 (4.0) 8 (15.4) 2 (10.5)

T3/4 37 (92.5) 24 (96.0) 44 (84.6) 17 (89.5)

N stage 0.829 0.206

N1a/b 20 (50.0) 11 (44.0) 43 (82.7) 13 (68.4)

N2a/b 20 (50.0) 14 (56.0) 9 (17.3) 6 (31.6)

Hemoglobin (g/dL) 12.6 ± 1.8 12.7 ± 2.2 0.901

White blood cells (×103/μL) 7.3 ± 1.9 6.8 ± 2.0 0.341

Platelets (×103/μL) 265.7 ± 92.5 255.2 ± 74.4 0.637

Glucose (mg/dL) 116.5 ± 59.6 118.4 ± 43.5 0.894

HbA1c (%) 7.4 ± 2.4 7.1 ± 2.0 0.795

Albumin (g/dL) 4.1 ± 0.4 4.1 ± 0.4 0.768

HS-CRP (mg/dL) 0.8 ± 2.0 2.0 ± 4.2 0.234

Cholesterol (mg/dL) 174.1 ± 29.5 170.7 ± 35.2 0.707

HDL (mg/dL) 46.4 ± 11.5 46.1 ± 12.4 0.918

(Continued)
fro
ntiersin.org

https://doi.org/10.3389/fonc.2023.1212812
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kim et al. 10.3389/fonc.2023.1212812
according to the presence of recurrence. As shown in Figure S3, the

taxonomic composition of the tissue microbiome was not different at

the phylum, genus, and species levels between patients with and

without recurrence in both the discovery and validation sets. In the

discovery set, alpha diversity, beta diversity, and microbial abundance

at the phylum and genus levels in adjacent and tumor tissues were not

significantly different according to the presence of recurrence

(Figure 3). Similar results were obtained when the data were

divided into male and female groups (Figure S4). In the validation

set, alpha and beta diversities did not differ according to the presence

of recurrence, and microbial abundance at the phylum and genus

levels were also not different, except for the genus Prevotella

(Figure 4). Similar results were obtained when the data were

divided into male and female groups; however, Prevotella was more

abundant in tumor tissue samples from male patients without

recurrence (Figure S5).
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3.4 Generation and validation of a
prediction model for CRC recurrence

Although we found no significant differences in tissue microbial

diversity and abundance between patients with and without recurrence,

we attempted to generate a recurrence prediction model including

microbiome data using logistic regression analysis in the discovery set.

When the analysis was performed by combining clinical factors (age,

CEA level, histology, lymphovascular invasion, perineural invasion,

stage T, and stage N) and tumor microbiome data (selecting only the

genera with a relative abundance greater than or equal to 1%), we

found that CEA level, T stage, and perineural invasion (among clinical

factors), as well as the tumor tissue microbiome (including Gemella,

Parabacteroides, Parasutterella, and Prevotella) were significant. We

obtained the following estimation formula for the prediction model

(see Supplementary Data):
FIGURE 1

Forest plots of clinical factors as predictors of tumor recurrence. BMI, body mass index; SRC, signet ring cell carcinoma; CEA, carcinoembryonic
antigen; CA19-9, carbohydrate antigen 19-9.
TABLE 2 Continued

Discovery set Validation set

Characteristics
No recurrence

(n = 40)
Recurrence
(n = 25)

p Value
No recurrence

(n = 52)
Recurrence
(n = 19)

p Value

Triglyceride (mg/dL) 92.6 ± 36.9 103.1 ± 38.8 0.336

LDL (mg/dL) 108.4 ± 26.5 105.0 ± 31.4 0.678

LDH (IU/L) 338.5 ± 63.6 362.5 ± 87.8 0.210

CEA (ng/mL) 8.8 ± 12.0 17.1 ± 25.5 0.142 7.3 ± 16.3 10.6 ± 19.3 0.484

CA 19-9 (U/mL) 13.1 ± 26.9 18.6 ± 18.5 0.375
fro
Values are presented as n (%) or mean ± standard deviation.
SRC, signet ring cell carcinoma; KRAS, Kirsten rat sarcoma viral oncogene homolog; MSI, microsatellite instability; MSS, microsatellite stable; N/A, non-available; HbA1c, hemoglobin A1c; HS-CRP,
high-sensitivity C-reactive protein; CEA, carcinoembryonic antigen; CA 19-9, carbohydrate antigen 19-9; HDL, high-density lipoprotein; LDL, low-density lipoprotein ; LDH, lactate dehydrogenase.
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f xð Þ = − 4:29796 + 0:04667*CEA level + 1:08028 ∗T stage

+ 1:47743 ∗ perineural invasion − 33:38073 ∗Gemella

+ 28:07568 ∗ Parabacteroides − 141:75533*Parasutterella

+ 7:85802 ∗ Prevotella(Akaike information criteria : 74:9,

 Nagelkerke R2 :  47:2%)

We applied the prediction model in generating the ROC curve

and compared it to clinical factors (combination of CEA level, T

stage, and perineural invasion) without microbiome. The AUC

value of this model was 0.846 (95% confidence interval [CI], 0.754–

0.938) in the total patients, and a good AUC value was obtained in
Frontiers in Oncology 07
both male and female patients (Figure 5). When compared with the

ROC curve of clinical factors without microbiome, the prediction

model showed a significantly better AUC value than clinical factors

in the total patients (0.846 vs. 0.679, p = 0.009) (Figure 5A),

regardless of sex (0.943-0.818, p = 0.043 in male; 0.885 vs. 0.590,

p = 0.017 in female) (Figures 5C, D). In the random forest model

analysis, Gemella, Parabacteroides, and Prevotella had a mean

decrease in the Gini coefficient of > 3.0 (Figure 5B).

When the prediction model was applied to the validation set, it

showed an AUC value of 0.740 (95% CI, 0.606–0.873), which was not

better than the AUC value of clinical factors without microbiome in

the analysis of the total patients (Figure 6A). However, the prediction
B

C

A

FIGURE 2

Microbial abundance between adjacent and tumor tissues in patients in the discovery set. (A) Phylum level. (B) Genus level. (C) Linear discriminant
analysis effect size. ns, non-significant; LDA, linear discriminant analysis. '*', p < 0.05; '**', p < 0.01; '***', p < 0.001; '****', p < 0.0001.
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model showed a better AUC value than clinical factors in female

patients (0.858 vs. 0.624, p = 0.022) (Figure 6D), but not in male

patients (Figure 6C). In the random forest model analysis of the

validation set, Faecalibacterium, Prevotella and Gemella had a mean

decrease in the Gini coefficient of > 3.0 (Figure 6B).
4 Discussion

In the present study, we assessed a model combining clinical

factors and tumor tissue microbiome data for predicting recurrence

in patients with stage III CRC. This model showed better AUC
Frontiers in Oncology 08
values than clinical factors. Our data suggest that analysis of the

tumor tissue microbiome combined with clinical factors may help

predict recurrence in patients with CRC.

Recent studies have identified Fusobacterium, Bacteroides,

Peptostreptococcus, Gemella, and Parvimonas as genera that are

potentially associated with CRC, and emerging evidence has

demonstrated their oncogenic functions; however, inter-individual

variations in tumor-associated mucosal microbiome remain a barrier

to elucidating the role of the microbiome in colorectal tumorigenesis.

Concerning intra-individual variations in microbial patterns, several

studies have shown that the microbiome structure of cancerous

tissues significantly differs from that of the intestinal lumen, and
B

C

D

A

FIGURE 3

Microbial diversity and abundance in adjacent and tumor tissues according to the presence of recurrence in the discovery set. (A) Alpha diversity.
(B) Beta diversity. (C) Phylum level. (D) Genus level. OTUs, operational taxonomy units; PCoA, principal coordinate analysis; ns, non-significant.
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that the microbiome of CRC tissues remarkably differs from that of

adjacent tissues (30–32). Consistent with previous studies, our study

showed significant differences in the beta diversity and abundance of

microbiome between tumor and adjacent tissues. In particular,

Streptococcus and Gemella were more abundant in tumor tissue

samples than in adjacent tissue samples. An analysis of paired

samples of CRC-adjacent mucosa and colonic mucosa from healthy

controls showed differences in microbial community configurations

(33). These results suggest that the microbial communities in the
Frontiers in Oncology 09
colorectal mucosa show distinct alterations according to the stage of

colorectal carcinogenesis.

The observed association between the gut microbiome and

clinical outcomes has raised the possibility that bacteria can serve

as prognostic markers. Several studies reported that increased

abundance of F. nucleatum and B. fragilis was associated with

poor clinical outcomes and late-stage CRC (34, 35). In a recent

study investigating the profiles of the gut mucosal microbiome in

patients with CRC recurrence, a total of 17 bacteria were suggested
B

C

D

A

FIGURE 4

Microbial diversity and abundance in tumor tissues according to the presence of recurrence in the validation set. (A) Alpha diversity. (B) Beta
diversity. (C) Phylum level. (D) Genus level. OTUs, operational taxonomy units; PCoA, principal coordinate analysis; ns, non-significant. '*', p < 0.05.
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as potential biomarkers for CRC recurrence and patient prognosis

(36). In addition, the persistence of F. nucleatum after neoadjuvant

chemoradiotherapy in patients with locally advanced rectal cancer

was found to be correlated with high relapse rates (37). In the

present study, we assessed microbial differences according to the

presence of recurrence, and found no significant differences in

microbial diversity and the abundance of each microbial group

between patients with and without recurrence, except for one genus

in the validation set. This lack of difference may be explained by the

possibility that a network of numerous microbiomes, rather than

the presence of a characteristic microbiome in tumor tissues,

contributes to the development of recurrence.

We generated a prediction model for CRC recurrence by

combining clinical factors and tumor tissue microbiome data. The

model finally included several genera, such asGemella, Parabacteroides,

Parasutterella, and Prevotella. This prediction model had a good AUC

value in patients with CRC regardless of sex and showed significantly

better performance in predicting recurrence than the clinical factors.

These results suggest that gut microbiome assessment has a potential

role in predicting CRC recurrence; however, further studies with larger

sample sizes are needed.

Adjuvant chemotherapy has demonstrated benefits in patients

with stage III CRC, it can reduce the risk of recurrence by
Frontiers in Oncology 10
approximately 30% (7, 8). According to the NCCN guidelines, for

low-risk (T1-3, N1) stage III CRC patients, CAPEOX (3 months) or

FOLFOX (3-6 months), as well as other options like capecitabine (6

months) or 5-FU (6 months), are recommended. On the other

hand, for high-risk (T4, N1-2; any T, N2) stage III CRC patients, the

recommended options include CAPEOX (3-6 months) or FOLFOX

(6 months), as well as other options like capecitabine (6 months) or

5-FU (6 months) (38). Liquid biopsy is a promising alternative

strategy for directly evaluating circulating tumor DNA (ctDNA)

from the blood. It aims to detect evidence of minimal residual

disease, which could potentially be the source of a later clinical

recurrence. Recently, in a study of 455 stage II CRC patients,

ctDNA-guided management led to a reduced rate of adjuvant

chemotherapy usage, and ctDNA-positive patients who received

adjuvant chemotherapy exhibited a three-year recurrence-free

survival of 86.4% (39). Although further research is needed, the

combined analysis of liquid biopsy and tumor microbiome has the

potential to offer more promising insights into predicting patient

prognosis and determining the need for additional chemotherapy

after surgery in stage III CRC patients.

The strength of our study is that the results obtained by

analyzing tumor and adjacent tissue samples from one center

were validated by comparing them with tumor tissue data from
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FIGURE 5

Receiver operating characteristic (ROC) curve and random forest model analyses in the discovery set. (A) ROC curves of the prediction model and
the clinical factors in the total patients. (B) Random forest model evaluating tissue microbiomes. (C) ROC curves of the prediction model and the
clinical factors in male patients. (D) ROC curves of the prediction model and the clinical factors in female patients. †Includes clinical factors (CEA
level, T stage, and perineural invasion) and tumor tissue microbiome (Gemella, Parabacteroides, Parasutterella, and Prevotella). ¶Includes CEA level, T
stage, and perineural invasion. AUC, area under the curve; RFM, random forest model.
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another center. However, our study had several limitations. First,

the tumor tissue samples from the two centers were collected at

different times and stored in different locations, which may have

introduced heterogeneity in the results. Second, we could not

compare the microbiomes of adjacent tissues in the validation set

because no adjacent tissue data were collected from the other center.

Third, the prediction model generated using the discovery set did

not show a better AUC value than the clinical factors for the total

patients and male patients in the validation set. We believe that this

was due to data heterogeneity and the small number of samples.

Fourth, the study’s sample size was small, which could reduce the

reliability of our results. To overcome these limitations, further

well-designed studies with larger sample sizes are needed.

In summary, we conducted a comprehensive investigation of

the differences in microbial diversity and abundance between tumor

and adjacent tissues, as well as their association with recurrence in

CRC patients. Additionally, we developed a prediction model using

tissue microbiome data to forecast postoperative recurrence. While

the predictive performance of our model, measured by AUC values,

did not surpass that of the clinical factors alone in the validation set,

we did observe a relatively higher AUC value for the new model

using microbiome data in female patients. However, we
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acknowledge the need for further research to explore potential

gender-based differences in the microbiome profile’s predictive

capacity for CRC recurrence. Therefore, the approach for the

generalization of these findings should proceed with caution, and

we refrain from unequivocally concluding that the tumor

microbiome can predict postoperative disease recurrence in all

patients. Nevertheless, we believe that our study contributes to

emphasizing the importance of the tissue microbiome in diagnosing

and predicting the recurrence of CRC.
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SUPPLEMENTARY FIGURE 1

Microbial diversity and composition in adjacent and tumor tissues of patients
in the discovery set. (A) Alpha diversity. (B) Beta diversity. (C) Taxonomic

composition at the phylum level. (D) Taxonomic composition at the genus

level. (E) Taxonomic composition at the species level.

SUPPLEMENTARY FIGURE 2

Taxonomic composition of microbiomes. (A–C) Taxonomic composition at

the phylum, genus, and species levels in the discovery set. (D–F) Taxonomic
composition at the phylum, genus, and species levels in the validation set.

SUPPLEMENTARY FIGURE 3

Microbial diversity and abundance in adjacent and tumor tissues according to

the presence of recurrence in male and female patients in the discovery set.
(A) Alpha diversity. (B) Phylum level. (C) Genus level.

SUPPLEMENTARY FIGURE 4

Microbial diversity and abundance in tumor tissues according to the presence

of recurrence in male and female patients in the validation set. (A) Alpha
diversity. (B) Phylum level. (C) Genus level.
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