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Introduction: Gynecological cancers pose a significant threat to women

worldwide, especially those in resource-limited settings. Human analysis of

images remains the primary method of diagnosis, but it can be inconsistent

and inaccurate. Deep learning (DL) can potentially enhance image-based

diagnosis by providing objective and accurate results. This systematic review

and meta-analysis aimed to summarize the recent advances of deep learning

(DL) techniques for gynecological cancer diagnosis using various images and

explore their future implications.

Methods: The study followed the PRISMA-2 guidelines, and the protocol was

registered in PROSPERO. Five databases were searched for articles published

from January 2018 to December 2022. Articles that focused on five types of

gynecological cancer and used DL for diagnosis were selected. Two reviewers

assessed the articles for eligibility and quality using the QUADAS-2 tool. Data was

extracted from each study, and the performance of DL techniques for

gynecological cancer classification was estimated by pooling and transforming

sensitivity and specificity values using a random-effects model.

Results: The review included 48 studies, and the meta-analysis included 24

studies. The studies used different images and models to diagnose different

gynecological cancers. The most popular models were ResNet, VGGNet, and

UNet. DL algorithms showed more sensitivity but less specificity compared to

machine learning (ML) methods. The AUC of the summary receiver operating

characteristic plot was higher for DL algorithms than for ML methods. Of the 48

studies included, 41 were at low risk of bias.

Conclusion: This review highlights the potential of DL in improving the screening

and diagnosis of gynecological cancer, particularly in resource-limited settings.
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However, the high heterogeneity and quality of the studies could affect the

validity of the results. Further research is necessary to validate the findings of this

study and to explore the potential of DL in improving gynecological

cancer diagnosis.
KEYWORDS

medical image analysis, AI, deep learning, gynaecological cancer diagnosis, systematic
review and meta-analysis
1 Introduction

Gynecological cancers refer to various types of cancers that

affect the female reproductive system, including ovarian, cervical,

uterine, vaginal, and vulvar cancers (1, 2). These cancers are a

significant public health concern worldwide, with approximately 1.3

million new cases and 500,000 deaths annually (3–5). The high

mortality rate associated with gynecological cancers can be

attributed to late diagnosis, which underscores the importance of

early detection and treatment (6).

Medical imaging, such as ultrasound, computed tomography

(CT), and magnetic resonance imaging (MRI), plays a crucial role in

the early detection and diagnosis of gynecological cancers.

However, accurate interpretation of these images can be

challenging, and traditional diagnostic methods may not always

provide accurate results (7–9). In recent years, deep-learning

models have emerged as a promising tool for improving the

accuracy and efficiency of gynecological cancer diagnosis from

medical images (10–16).

Deep-learning models are a subset of artificial intelligence (AI)

that can learn to recognize patterns and features in data without

being explicitly programmed. These models can be trained using

large datasets of medical images to detect subtle differences between

normal and abnormal tissue (17–19). Studies have shown that deep-

learning models can achieve high accuracy in detecting

gynecological cancers from medical images, outperforming

traditional diagnostic methods such as manual interpretation by

human experts (20–30).

However, the effectiveness and reliability of these models in

clinical settings remain unclear, and a comprehensive review of the

existing literature is necessary.

The present study aims to conduct a systematic review and

meta-analysis of the current literature on deep-learning models for

image-based gynecological cancer diagnosis. The review will

address the following research questions:
1. What machine-learning and deep-learning models have

been developed for image-based gynecological cancer

diagnosis, and how do they compare in terms of

performance and accuracy?

2. What are the limitations and challenges associated with the

use of deep- learning models in gynecologica l

cancer diagnosis?
02
3. What are the implications of the findings for the clinical

application of deep-learning models in image-based

gynecological cancer diagnosis?
By answering these research questions, this study provides

valuable insights into the potential of deep-learning models for

improving the accuracy and efficiency of gynecological cancer

diagnosis and inform future research and clinical practice in this field.
2 Methods

2.1 Literature search

The literature search was conducted in accordance with the

Enhancing the Quality and Transparency of Health Research

(EQUATOR) Reporting Guidelines and the Preferred Reporting

Items for Systematic Reviews (PRISMA-2) (31). A protocol for the

study was registered in PROSPERO (ID No CRD42023421847).

The search was performed on the following databases and websites:

PubMed, Embase, Scopus, Google, and Google Scholar. The search

was conducted from January 8 to 30, 2023, and included articles

published between January 2017 and December 2022. The snowball

method was used to identify relevant articles from the reference lists

of retrieved articles. The sample search terms included gynecologic

cancer, diagnosis, prognosis, deep learning, AI, artificial

intelligence, machine learning, and neural network.
2.2 Inclusion and exclusion criteria

To be included in the review, studies had to meet the following

criteria: (i) consideration of at least one of the five types of

gynecologic cancers (cervical, ovarian, uterine, vaginal, or vulvar);

(ii) use of at least one deep learning technique as a classifier; (iii)

reporting of at least one performance evaluation measure for deep

learning-based image segmentation of gynecologic cancers; (iv)

publication between January 2017 and August 2022; (v) full-text

publication in English; and (vi) availability of full-text articles.

Abstracts and preprints were excluded.
2.3 Assessment of methodologic quality

The full texts of the selected articles were retrieved and assessed

for eligibility by the same two reviewers. Two researchers reviewed
frontiersin.org
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(ZA and AA) the titles and abstracts of retrieved articles and applied

inclusion and exclusion criteria. The full texts of qualifying articles

were retrieved and reviewed to confirm study eligibility. Any

disagreements were resolved by discussion or by consulting a

third reviewer. The following data were extracted from each

included study: authors, year of publication, country of origin,

cancer type, image modality, data source, data size, data

preprocessing, ML technique, performance metrics, validation

method, and main findings. The quality of the studies was

assessed using the Quality Assessment of Diagnostic Accuracy

Studies-2 (QUADAS-2) tool, which evaluates the risk of bias and

applicability of studies based on four domains: patient selection,

index test, reference standard, and flow and timing. The final

criterion is based on the risk of bias with respect to concerns

about applicability. Rating risks of bias was determined as high, low,

or unclear (32).
2.4 Data extraction

The following information was extracted from each included

study: first author, year of publication, country of origin, cancer

type, image modality, data source, data size, data preprocessing, ML

technique, performance metrics, validation method, and main

findings. The PRISMA guidelines were followed for data

extraction (31).
2.5 Qualitative synthesis

A qualitative synthesis was performed to provide a narrative

summary of findings from the included studies. This synthesis

involved a thematic analysis to identify common themes across

the literature. Reviewers independently analyzed articles, extracted

key findings, and identified themes related to the use of deep

learning techniques for image-based gynecological cancer diagnosis.

A constant comparative approach was used to identify

similarities and differences across studies. Any discrepancies were

resolved through discussion, with a third reviewer consulted when

necessary. The themes identified during the qualitative synthesis

were summarized and reported in the results section. The goal was

to offer a comprehensive overview of the existing literature and

pinpoint areas for future research.
2.6 Meta-analysis

A meta-analysis was performed to estimate the pooled

performance of deep learning techniques for image-based

gynecological cancer diagnosis. Only studies that reported

sensitivity and specificity values or provided sufficient data to

calculate them were included in the meta-analysis. The sensitivity

and specificity values were transformed into logit values and pooled

using a random-effects model. The heterogeneity of the studies was

evaluated using Higgins’ I2 statistic (33). Subgroup analyses were

performed based on the types of algorithm used (34). The summary
Frontiers in Oncology 03
receiver operating characteristic (SROC) curve and the area under

the SROC curve (AUC) were calculated to summarize the overall

diagnostic accuracy of advanced ML techniques. The statistical

analyses were performed using R software with the “meta” and

“mada” packages.
3 Results

3.1 Study selection

The search strategy yielded 1,002 articles from the four

databases. After removing duplicates, 836 articles remained for

title and abstract screening. Of these, 357 were removed by title

and abstract and then 339 articles were not had full texts and

removed it. The remaining 140 were full manuscripts and eligible

for final screening. However, 92 articles were excluded because of

the absence of image data and performance measure. Finally, 48

studies were eligible and included in our systematic review and of

which 24 studies were available for meta-analysis (Figure 1).
3.2 Study characteristics

A total of 48 studies were included in this analysis. The studies

used various imaging modalities, including cytology (20 studies),

colposcopy (15 studies), MRI (8 studies), CT scan (4 studies), and

hysteroscopy (1 study). The studies were published between 2017

and 2022, with the majority (19 studies) being published in 2022.

The types of cancer studied included cervical cancer (30 studies),

endometrial cancer (6 studies), ovarian cancer (9 studies),

combined gynecologic cancer (1 study), and vulvar and vaginal

cancer (2 studies). The number of images used by literatures were

ranged from 34 to 67811, with a mean of 2209 and a standard

deviation of 5830. 40 studies focused on automatic image

classification using various deep learning models. One study

focused on the quantification of abnormalities in gynecologic

cytopathology with deep learning and the remaining seven studies

focused on automatic tumor segmentation using deep learning

techniques (see details in Supplementary File 1).
3.3 Preprocessing and feature
extraction techniques

To create deep learning models for the diagnosis of gynecologic

cancer based on images, various researchers have employed distinct

methodologies. Nonetheless, a consensus among the majority of

authors is that initial image preprocessing, involving various

techniques, is essential. Following this, the identification and

extraction of crucial features are commonly performed before

proceeding with post-processing steps (for additional information,

please refer to Supplementary File 2).

The 12 articles reviewed various pre-processing and feature

extraction techniques to enhance image quality and extract

relevant information for analysis. These techniques were used in
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different combinations in the different studies. Some studies use a

combination of pre-processing techniques and feature extraction

methods, while others focus on one particular technique or

method. For instance, Bhatt et al. (35) used techniques such as

horizontal flipping, inverse rotation, random scaling, and

progressive resizing to augment data in Pap smear whole slide

images. Chandran et al. (36) employed techniques such as random

rotation, random brightness, random crop, random blur, and max

pooling to preprocess colposcopy images for the diagnosis of

cervical cancer. Cheng et al. (37) used techniques such as

threshold truncation, normalization, zooming, and max pooling

for image preprocessing. Chen et al. (38) utilized techniques such

as random rotation, oversampling, and max pooling for image

preprocessing. Cho et al. (39) used techniques such as automatic

central cropping, min-max normalization, data augmentation,

and Test-Time Augmentations (TTA) for image preprocessing.

Lastly, Dai et al. (40) used techniques such as normalization,

image resizing, N4BiasFieldCorrection using ANT, and bilinear

interpolation for image preprocessing in MRI images. Feature

extraction methods included in the articles were Otsu model-

based, Principal Component Analysis (PCA), Progressive Resizing

technique, Max Pooling, t-SNE, Test-Time Augmentations

(TTA), Bilinear interpolation, MobileNetv2, and Super pixel

gap-search (Markov random field) (see details in Table 1).
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3.4 Deep learning models in gynecologic
cancer diagnosis

In the context of gynecologic cancer diagnosis, deep learning

models have been widely used. Many studies have employed

convolutional neural networks (CNNs) or their variants, such as

VGGNet, UNet, ResNet, InceptionNet, MobileNet, EfficientNet,

DenseNet, YOLO, DResNet, CE-Net, HIENet, Xception, MIA3G,

Hybrid, 3D VB-Net, ShuffleNet and ColpNet. Other models, such as

autoencoders (AE), recurrent neural networks (RNN) and ensemble

learning methods (CNN with SVM or XGBoost), have also been

utilized. Among these models, ResNet is the most popular (appearing

in 15 studies), followed by VGGNet and UNet (appearing in 12

studies each), InceptionNet and EfficientNet (appearing in 8 studies

each), and DResNet, CE-Net, HIENet, KCNN, and MIA3G

(appearing in only one study each) (see Figure 2).
3.5 Deep learning for gynecologic
cancer segmentation

Seven studies that used different deep learning models,

including 3D-UNet, 3D VB-Net, ResNet18, 2D-RefineNet, CE-

Net, and fully convolutional neural networks, were reviewed for
frontiersin.or
FIGURE 1

Shows the PRISMA flowchart of the sudy selection process. PRISMA stands for preferred Reporting items for Systematic Review and Meta-Analysis.
He flowchart displays the search methodology and literature selection process.
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gynecologic cancer segmentation. The studies also used different

types of images (CT or MRI) and had various sample sizes, ranging

from 130 to 826 images. Various model performance measures were

reported, such as the 95% Hausdorf distance (HD_95), Dice

Similarity Coefficient (DSC), Mean Surface Distance (MSD),

Jaccard index (JI), and Average Surface Distance (ASD).

The DSC score, which measures the overlap between automatic

and manual segmentation, was one of the most commonly used

performance measures. Cheng et al. (37) achieved the highest DSC

score for CTV segmentation using 3D-UNet on 400 MRI images, with

a score of 0.93. For bladder segmentation, Ding et al. (47) and Cheng

et al. (37) achieved the highest DSC score using 3D-UNet on 130 and

400 MRI images, respectively, with a score of 0.91. Ma et al. (48)

achieved the highest DSC score for rectum segmentation using 3D VB-
Frontiers in Oncology 05
Net on 200 CT images, with a score of 0.88. Ding et al. (47) also

achieved the highest DSC score for femoral head segmentation using

3D VB-Net on 130 MRI images, with a score of 0.92.

The HD_95, which measures the maximum distance between

automatic and manual segmentation boundaries, was another

commonly used performance measure. Ding et al. (47) achieved

the lowest HD_95 for CTV segmentation using 3D-UNet on 130

MRI images, with a score of 10.03. Ma et al. (48) achieved the lowest

HD_95 for bladder and rectum segmentation using 3D VB-Net on

200 CT images, with scores of 4.86 and 4.11, respectively. Ma et al.

(48) also achieved the lowest HD_95 for femoral head segmentation

using 3D VB-Net on 302 CT images, with a score of 4.86(see details

in Table 2).
3.6 Deep learning models used for
abnormality detection

Several models have been utilized by Ke and Shen for automatic

abnormality detection frommedical images, including U-Net, Mask

RCNN, 3D-UNet, and a ResNet-U-Net hybrid. Performance

metrics such as pixel accuracy, mean pixel accuracy, and mean

IoU were used to evaluate the models, with the ResNet-U-Net

hybrid achieving the highest performance, scoring 97.4%-pixel

accuracy, 95.5% mean pixel accuracy, and 91.3% mean IoU. On

the other hand, U-Net had the lowest performance, with a pixel

accuracy of 91.3%, mean pixel accuracy of 90.6%, and mean IoU of

89.9%. Figure 3 displays the deep learning models utilized for

quantifying images (See Figure 3).
3.7 Deep learning models used for
automatic image classification

In the literature reviewed for gynecologic cancer screening and

diagnosis, various deep learning models were employed, including

ResNet50, Colponet, ResNeSt, N-Net, 3D-UNet, and YOLOv3.

Several studies reported high performance measures, with

ResNet-v2 used by AbuKhalil et al. (41) achieving 96.7%

precision, 97.39% sensitivity, and 96.61% accuracy on 918 images.

Bhatt et al. (35) utilized convNet with transfer learning and

progressive resizing with K-Nearest Neighbour and EfficientNet-

B3 on 917 and 966 images, respectively, achieving 78.14% and

99.01% accuracy (Table 3 for details).

In this review, ResNet, a commonly used CNN network, has

demonstrated effectiveness in gynecologic cancer tasks like cervical

cancer detection, endometrial cancer diagnosis, and ovarian cancer

classification. ResNets utilize skip connections, enabling the

network to learn identity mappings, preventing overfitting.

ResNets consist of residual blocks with convolutional layers, batch

normalization, and activation functions. Skip connections can be

implemented using identity or projection shortcuts, impacting

network performance (66) (see Supplementary File 3 for detail).
TABLE 1 Indicates different pre-processing and feature extraction
techniques used in the reviewed articles.

Authors
(publication
year)

Pre-processing
technique

Feature
Extraction

AbuKhalil, T.,
et al. (2022) (41)

Median filtering (MF) Otsu model based

Alquran, H., et al.
(2022) (42)

Combination of normalization,
attribute selection,
discretization, and concept
hierarchy generation

Principal Component
Analysis (PCA)

Best, M. G., et al.
(2021) (43)

Combination of normalization,
attribute selection,
discretization, and concept
hierarchy generation

Principal Component
Analysis (PCA)

Bhatt A.R. et al.
(2021) (35)

Horizontal flipping
Inverse rotation
Random scaling

Progressive
Resizing technique

Chandran, V.,
et al. (2021) (36)

Random Rotation, brightness
corrections, crop, blur

Max Pooling

Cheng et al
(2021) (37)

Threshold Truncation,
Normalization and Zooming

Max Pooling

Chen, X., et al.
(2020) (38)

Random Rotation
and Oversampling

Max Pooling

Cheng, W., et al.
(2019) (44)

Quintile Normalization t-SNE

Cho, B., et al.
(2020) (39)

Automatic central cropping,
min–max normalization,
data augmentation

Test-Time
Augmentations (TTA)

Dai , M., et al.
(2022) (40)

Normalization, Resizing N4BiasFieldCorrection
Bilinear interpolation

Habtemariam, L.
et al. (2022) (45)

Histogram Matching
Image-to-Image Translation
Real-time augmentation

MobileNetv2

Kudva, V. and K.
Prasad
(2020) (46)

RGB channel superposition
Bi-Histogram Equalization with
adaptive sigmoidal function
combined with sobel operator
(horizontal and vertical)

Super pixel gap-search
(Markov random
field)
Max pooling
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TABLE 2 Indicates different deep learning for gynecologic cancer segmentation.

Authors
(publication year)

Number
of Images

Advanced
ML models

Model performance measures

95%
Hausdorf
distance
(HD_95)

DSC MSD
(mm)

Jaccard
index (JI)

Average
surface
distance
(ASD)

Cheng et al. (2021) (37) 400 3D-UNet 10.03 85.2

Ding, Y., et al. (2022) (47) 130 3D-UNet 10.08 85 77 2.58

3D VB-Net 11.2 83 75 2.26

Lin, Y., et al. (2020) (49) 169 ResNet18 82

Ma, C., et al. (2022) (48) 200 3D VB-Net 4.86 88 1.32

335 3D VB-Net 6.47 70 2.42

302 3D VB-Net 4.11 86 1.15

Williams, M., et al.
(2018) (50)

169 3D-UNet 82

Xiao, C., et al. (2022) (51) 313 2D-RefineNet 82

Fully convolutional
neural networks

80

2D-UNet 82

Context Encoder Network
(CE-Net)

81

3D-UNet 80

3D- ResUNet 81

3D-RefineNet 82

Zaffino, P., et al.
(2022) (52)

826 3D-UNet 60 2
F
rontiers in Oncology
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FIGURE 2

The figure provides an overview of the diversiy and popularity of models used in different studies for the diagnosis of gynecologic cancers.
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3.8 Pooled performance of DL algorithms

In this section, the researchers analyzed 48 studies that applied

deep learning (DL) algorithms for diagnosing gynecologic cancer.

However, only 24 of these studies had sufficient data to calculate the

diagnostic accuracy using contingency tables. The authors used

hierarchical summary receiver operating characteristic (SROC)

curves to summarize the overall performance of the DL algorithms

across the studies. The sensitivity and specificity were plotted for each

study, with sensitivity measuring the proportion of true positives and

specificity measuring the proportion of true negatives. The area under

the curve (AUC) was used as a measure of the overall accuracy of the

algorithm. The results showed that the pooled sensitivity and

specificity for all DL algorithms were 89.40% (95% CI, 86.19–

92.62%) and 87.6% (95% CI, 82.6–92.46%), respectively, with an

AUC of 0.88 (95% CI, 0.84–0.93). Some studies used more than one

DL algorithm and reported the best accuracy among them. The

authors also summarized the performance of the best DL algorithms

across the studies, with pooled sensitivity and specificity of 68.1%
TABLE 3 The table provides an overview of the performance and diversity of deep learning models used in different studies for gynecologic cancer
screening and diagnosis.

Authors
(Publication
year)

No
of
Images

Focus Advanced
ML Models

Performance
measures

AbuKhalil, T., et al.
(2022) (41)

918 Optimal Deep Learning Based Inception Model for Cervical Cancer Diagnosis ResNet- v2 Precision = 96.7
Sensitivity = 97.39
Accuracy = 96.61

Best, M. G., et al.
(2021) (43)

5,271 CAD system based on deep learning for classifying colposcopy images. ResNet-50 Accuracy = 88.2
Specificity = 90.1
PPV (%) =86.7
NPV (%) = 83.8
AUC = 93.6

Bhatt AR.et al.
(2021) (35)

917 Cervical cancer detection in pap smears whole slide images using convNet with
transfer learning and progressive resizing.

K-Nearest Neighbour Precision = 79.27
Sensitivity = 95.59
Accuracy = 78.14
F1-score =86.67

Bhatt AR. et al.
(2021) (35)

966 Cervical cancer detection in pap smears whole slide images using convNet with
transfer learning and progressive resizing.

EfficientNet-B3 Precision = 99.15
Sensitivity = 98.89
Accuracy = 99.01
Specificity = 99.02
F1-score = 98.87

Chandran, V.,
et al. (2021) (36)

5679 Diagnosis of Cervical Cancer based on Ensemble Deep Learning Network using
Colposcopy Images

CYENET Sensitivity = 92.4
Accuracy = 92.3
Specificity = 96.2
PPV (%) = 92
NPV (%) = 95

Cheng, S., et al.
(2021) (37)

3545 Robust whole slide image analysis for cervical cancer screening using
deep learning

Recurrent Neural
Network (RNN)

Sensitivity = 81.9
Accuracy = 89
Specificity = 79.3

Cho, B. J., et al.
(2020) (39)

791 Classification of cervical neoplasms on colposcopy photography using
deep learning

Resnet-152 Sensitivity = 85.2
Accuracy = 87.7
Specificity = 88.2
PPV (%) = 58.9
NPV (%) = 97

(Continued)
FIGURE 3

Showed deep learning models used to quantify images.
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TABLE 3 Continued

Authors
(Publication
year)

No
of
Images

Focus Advanced
ML Models

Performance
measures

Cho, B. J., et al.
(2022) (53)

588 Automated Diagnosis of Cervical Intraepithelial Neoplasia in Histology Images
via Deep Learning

DenseNet-161 Accuracy = 93.2
AUC = 0.99

Habtemariam, L.,
et al. (2022) (45)

4005 Cervix Type and Cervical Cancer Classification System Using Deep
Learning Techniques

ResNet50 Accuracy = 90.73

Hou, X., et al.
(2022) (54)

34 Artificial Intelligence in Cervical Cancer Screening and Diagnosis EfficienetNetB0 Accuracy = 92.19

Karasu Y., et al.
(2022) (55)

2452 Deep Learning Models for Automated Cross-Preparation Diagnosis of Multi-
Cell Liquid Pap Smear Images

ResNet50 Precision = 99.2
Sensitivity = 99
Accuracy = 99.19
AUC = 0. 99
F1-score =99.19

Saini, B. et al.,
(2020) (56)

800 Automated cervical cancer screening using colposcopy images Colponet Accuracy = 83.4

Nambu, Y. et al.
(2022) (57)

919 A screening assistance system for cervical cytology of squamous cell atypia
based on a two-step combined CNN algorithm with label smoothing

ResNeSt Precision = 71.89
Sensitivity = 70.8
Accuracy = 90.5

Park, Y. R., et al.
(2021) (58)

4119 Comparison of machine and deep learning for the classification of cervical
cancer based on cervicography images

ResNet50 Precision = 93.9
Sensitivity = 89
Accuracy = 91
AUC = 0.97
F1-score =91

Sheikhzadeh F.,
et al. (2018) (59)

749 Automatic labelling of molecular biomarkers of immunohistochemistry images
using fully convolutional networks

N-Net Accuracy = 92
F1-score =96

Wang, H., et al.
(2022) (60)

917 Recognition and Clinical Diagnosis of Cervical Cancer Cells Based Lightweight
Deep Network for Pathological Image

ResNet-50 Accuracy = 95.4

Williams, M., et al.
(2018) (50)

169 Deep learning for fully automated tumor segmentation and extraction of MRI
features in cervical cancer

3D-UNet Sensitivity = 89
PPV (%) = 92

Chen, X., et al.
(2020) (38)

530 Deep learning for the determination of myometrial invasion depth and
automatic lesion identification in endometrial cancer MR imaging

You Only Look Once
v3 (YOLOWv3)

Precision = 86.67
Sensitivity = 66.78
Accuracy = 84.7
Specificity = 87.5
PPV (%) = 44.44
NPV (%) = 94.59

Dai, M., et al.
(2022) (40)

86 Application of machine learning for the differentiation of uterine sarcomas from
atypical leiomyoma’s

3D-Unet Precision = 87
Sensitivity = 76
Accuracy = 77

Kudva, V. et al.
(2019) (61)

2198 Transfer Learning for Classification of Uterine Cervix Images for Cervical
Cancer Screening

AlexNet Sensitivity = 93.3
Accuracy = 93.4
Specificity = 93.2

Kudva , V. et al
(2020) (46)

1644 Hybrid Transfer Learning for Classification of Uterine Cervix Images for
Cervical Cancer Screening

Hybrid (AlexNet and
VGG-16)

Sensitivity = 89.16
Accuracy = 91.46
Specificity = 93.83

Sun, H., et al.
(2020) (62)

3302 CAD in Histopathological Images of the Endometrium Using a Convolutional
Neural Network and Attention Mechanisms

HIENet Precision = 96.7
Sensitivity = 81.04
Accuracy = 93.53
Specificity = 94.78
AUC = 0.96

Urushibara, A.,
et al. (2022) (63)

618 The efficacy of deep learning models in the diagnosis of endometrial cancer
using MRI: a comparison with radiologists

Fully Convolutional
Neural Network (CNN)

Sensitivity = 80
Accuracy = 80
Specificity = 80
AUC = 0.87

Zhang Z., et al.
(2021) (64)

1851 Deep learning model for classifying endometrial lesions VGG-16 Precision = 93.3
Sensitivity = 83

(Continued)
F
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(95% CI, 57.2–80.9) and 94.1% (95% CI, 89.6–96.7), respectively, and

an AUC of 0.81 (95% CI, 0.90–0.94). These results demonstrate that

DL algorithms have a high diagnostic accuracy for gynecologic cancer

(See Figures 4, 5 for details).
3.9 Subgroup meta-analyses

In this analysis, 24 studies were used to compare the

performance of deep learning (DL) algorithms and machine

learning (ML) methods in diagnosing gynecologic cancer. A
Frontiers in Oncology 09
random model was utilized to calculate the pooled sensitivity and

specificity for each algorithm type. The results showed that DL

algorithms had higher sensitivity (80% [95% CI, 73.1 – 89.7%]) and

lower specificity (91.9% [88.6 – 94.4%]) compared to ML methods

(sensitivity: 34.6% [95% CI, 18.2-65.8%]; specificity: 97.6% [95% CI,

86.0- 99.6%]). Additionally, the area under the curve (AUC) was

higher for DL algorithms (0.86 [0.81–0.92]) than for ML methods

(0.66 [0.52–0.83]), which is a measure of the overall accuracy of the

algorithm. These findings suggest that DL algorithms perform

better than ML methods in detecting gynecologic cancer (See

Figure 6 for details).
TABLE 3 Continued

Authors
(Publication
year)

No
of
Images

Focus Advanced
ML Models

Performance
measures

Accuracy = 90.8
Specificity = 96
AUC = 0.94
F1-score = 87.8

Takahashi Y.,
et al., (2021) (65)

600 Automated system for diagnosing endometrial cancer by adopting deep-learning
technology in hysteroscopy

ResNet50 Precision = 83
Sensitivity = 82
Accuracy = 91
Specificity =72
FIGURE 4

Summary estimate of pooled specificity of 24 studies using forest plot.
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3.10 Heterogeneity analysis

The analysis of heterogeneity among studies comparing deep

learning (DL) algorithms and traditional machine learning (ML)

approaches for gynecologic cancer detection revealed a high degree

of variability (I2 = 98.1%, p < 0.0001). Using the inverse variance

method and the DerSimonian-Laird estimator, the pooled

sensitivity (SE) and specificity (SP) for the two types of

algorithms were calculated. The results showed that DL

algorithms had a significantly higher SE (98.9% [98.7%; 99.1%])

than ML methods (34.6% [95% CI, 18.2-65.8%]), while ML

methods had a higher SP (97.6% [95% CI, 86.0- 99.6%]) than DL

algorithms (91.9% [88.6 – 94.4%]). The area under the curve (AUC)

was also found to be higher for DL algorithms (0.86 [0.81–0.92])

than for ML methods (0.66 [0.52–0.83]), indicating that DL

algorithms are more accurate at detecting gynecologic cancer.

These findings highlight the potential of DL algorithms in

improving the accuracy of gynecologic cancer diagnosis, but also

call for further investigation to address the heterogeneity observed

among studies (see Figure 5 for detail). The results of our analysis

show that deep learning (DL) algorithms are significantly more

effective than traditional machine learning (ML) approaches when

it comes to correctly classifying patients with gynecologic cancer.

Specifically, the pooled odds ratio (OR) of the random effect model

was found to be 56.2459 [95% CI, 28.3682; 111.5195), with a p-value
Frontiers in Oncology 10
less than 0.0001. This means that DL algorithms are approximately

56 times more likely than ML methods to make accurate diagnoses

of gynecologic cancer. These findings have important implications

for the development of diagnostic tools and the treatment of

patients with gynecologic cancer, suggesting that DL algorithms

may offer a more effective and reliable approach to diagnosis and

treatment (See Figure 7 for details). In this study, the authors used

advanced deep learning models to diagnose gynecologic cancer

based on various data types. The SROC plot showed that the deep

learning models had a high sensitivity and specificity for

gynecologic cancer diagnosis. The AUC was 0.81, which indicates

a good performance (See Figure 8 for details).
3.11 Quality assessment

We used QUADAS-2 to evaluate the quality of the studies and

presented a summary of findings with a suitable diagram in

Figure 9. Out of 48 studies, 41 had low risk of bias and 7 had

high or unclear risk of bias. Four studies had high or unclear risk of

bias in the patient selection domain because they did not report

their inclusion or exclusion criteria or they excluded patients

improperly. Two studies had high or unclear risk of bias in the

index test domain because they did not have a predefined threshold

(see Figure 9).
FIGURE 5

Summary estimate of pooled sensitivity of 24 studies using forest plot.
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4 Discussion

The studies included in this review showed a great diversity in

terms of imaging modalities, publication years, types of cancer,

number of images, and deep learning applications. The studies were

mostly recent, with almost half of them being published in 2022.

Cervical cancer was the most common type of cancer studied,

followed by ovarian cancer and endometrial cancer. Gynecologic

cancer and vulvar and vaginal cancer were the least common types

of cancer studied. The number of images used in the studies varied

widely, from a few dozens to tens of thousands. The majority of the

studies focused on automatic image classification using deep

learning models, such as convolutional neural networks, recurrent

neural networks, or attention mechanisms. Only a few studies

focused on quantification or segmentation of gynecologic

abnormalities using deep learning techniques.

Cytology and colposcopy were the most common imaging

modalities used, followed by MRI and CT scan. Hysteroscopy was

the least common modality used. Cytology is a simple, inexpensive,

and widely available method for screening and diagnosing cervical

cancer. However, it has low sensitivity and specificity, especially for

high-grade lesions and adenocarcinoma. It also requires adequate

sampling and interpretation by trained personnel. Cytology alone is

not sufficient for staging cervical cancer or detecting recurrence

(67). Colposcopy is a visual examination of the cervix using a

magnifying device. It can identify abnormal areas that may need

biopsy or treatment. It can also assess the extent of cervical lesions

and guide conization or excision procedures. However, colposcopy

is operator-dependent and subjective. It may miss lesions in the
Frontiers in Oncology 11
endocervical canal or outside the transformation zone. It also has

limited value for staging cervical cancer or detecting recurrence

(67). MRI is regarded as the gold standard for local staging of most

gynecologic malignancies (68). It has superb soft tissue contrast and

resolution without exposing the patients to ionizing radiation. It can

delineate tumor size, depth of invasion, parametrial involvement,

lymph node status, and distant metastasis. Advances in functional

MRI with diffusion-weighted and dynamic contrast-enhanced

sequences provide more detailed information regarding tumor

cellularity, vascularity, and viability (69). However, MRI is

expensive, time-consuming, and not widely available. It may also

have artifacts or false-positive findings due to inflammation,

fibrosis, or post-treatment changes (68).

CT scan is a fast and widely available imaging modality that can

evaluate the whole abdomen and pelvis in one examination. It can

detect enlarged lymph nodes, ascites, peritoneal implants, liver

metastasis, and other signs of advanced disease. However, CT

scan has low sensitivity and specificity for local staging of

gynecologic cancers. It also exposes the patients to ionizing

radiation (69).

This review revealed that various pre-processing and feature

extraction techniques were applied to gynecologic cancer image

analysis in different studies. The most common pre-processing

techniques used by different authors are filtering, normalization

data augmentation and histogram matching. Filtering is a technique

used to remove noise and artifacts from the images, such as

Gaussian noise, speckle noise, or motion blur. It can be done

using different methods, such as average filter, median filter,

adaptive median filter, or Gaussian filter (70, 71). Normalization
FIGURE 6

Pooled performance of DL algorithms versus ML using the same sample.
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technique can adjust the intensity values of the images to a common

scale, such as 0-1 or 0-255. It helps to reduce the effect of

illumination variations and enhance the contrast of the images

(70, 72). Data augmentation is a technique of generating new

images from the existing ones by applying transformations, such

as rotation, flipping, scaling, cropping, or zooming. It helps to

increase the size and diversity of the dataset and reduce the

overfitting problem (70, 72). And also, Histogram matching is a

pre-processing technique used to modify the histogram of an image

to match the histogram of another image. It helps to improve the

quality and consistency of the images and reduce the effect of

scanner variations (72).

Principal Component analysis (PCA), max pooling, t-

distributed stochastic neighbor embedding (t-SNE) and Test-time

augmentations (TTA) techniques are widely used feature extraction

techniques in the literature. Principal component analysis (PCA can

reduces the dimensionality of the data by projecting it onto a lower-

dimensional subspace that captures most of the variance (71). Max

pooling reduces the size of the feature maps by applying a max

operation over a sliding window and it can helps to extract the most

salient features and make them invariant to small translations (71).

T-distributed stochastic neighbor embedding (T-SNE) can reduces

the dimensionality of the data by embedding it into a lower-

dimensional space that preserves the local similarities. T-SNE can

help visualize and cluster high-dimensional data. Test-time

augmentations (TTA) technique applies data augmentation
Frontiers in Oncology 12
techniques at test time and averages the predictions from multiple

augmented images and it helps to improve the robustness and

accuracy of the classification.

Our results also showed that 3D VB-Net achieved the best

performance among the DL models for gynecological cancer

segmentation. The 3D VB-Net model had an average HD_95 of

5.48 mm, which means that 95% of the distances between the

predicted and ground truth boundaries were less than 5.48 mm.

The model also had an average DSC of 81%, which means that the

overlap between the predicted and ground truth regions was 81%.

The model had an average MSD of 1.63 mm, which means that the

average distance between the predicted and ground truth centroids

was 1.63 mm. Finally, the model had an average JI of 75%, which

means that the ratio of the intersection and union of the predicted

and ground truth regions was 75%. These metrics indicate that the

3D VB-Net model was able to segment the gynecological tumors

accurately and consistently. The worst performance was obtained by

ResNet18, which had an average DSC of only 82%. This means that

the ResNet18 model had a lower overlap between the predicted and

ground truth regions than the other models. The other models had

similar performance, with average HD_95 ranging from 10.03 to

11.2 mm, DSC from 80 to 85%, MSD from 1.15 to 2.58 mm, and JI

from 75 to 77%. These metrics indicate that the other models were

able to segment the gynecological tumors reasonably well, but not as

well as the 3D VB-Net model. Our findings are consistent with

previous studies that reported superior performance of 3D VB-Net
FIGURE 7

Summary of pooled odds ratio of 24 studies using forest plot.
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over other DL models for prostate cancer segmentation (64, 73, 74).

The advantages of 3D VB-Net include its ability to capture

volumetric information from MRI images, which is important for

tumor detection and characterization. The model also uses a

Variational auto encoder for feature extraction, which is a

generative model that can learn a latent representation of the data

and reconstruct it with minimal error. The model also incorporates

boundary loss for accurate segmentation, which is a loss function

that penalizes the deviation of the predicted boundaries from the

ground truth boundaries (64). On the other hand, ResNet18

performed poorly in our study, which might be due to its shallow

architecture and lack of spatial information (49). ResNet18 is a

convolutional neural network that has only 18 layers, which might

not be enough to learn complex features from MRI images. The
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model also does not use any spatial information, such as coordinates

or distances, which might be useful for tumor localization

and segmentation.

The best performance of models for gynecologic cancer

classification was obtained by Bhatt et al. (35) who used

EfficientNet-B3, which is a convolutional neural network that uses

a compound scaling method to balance the depth, width, and

resolution of the network. They trained their model on 966

images of patients with cervical cancer and evaluated it on 101

images of patients with benign or malignant lesions. They achieved

an accuracy of 99.01%, which means that they correctly classified

99.01% of the lesions as benign or malignant. They also achieved a

precision of 99.15%, which means that 99.15% of the lesions that

they predicted as malignant were actually malignant. They achieved
FIGURE 8

Summary of the receiver operating characteristic (SROC) plot of the advanced machine learning algorithms.
FIGURE 9

Risk of bias and concern of applicability for each item in included studies.
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a sensitivity of 98.89%, which means that they detected 98.89% of

the malignant lesions in the dataset. They achieved a specificity of

99.02%, which means that they rejected 99.02% of the benign

lesions in the dataset. They achieved an F1-score of 98.87%,

which is a harmonic mean of precision and sensitivity that

measures the balance between them. Another model that achieved

a high performance for gynecologic cancer classification was

obtained by Dai et al. (40) who used 3D-UNet, which is a deep

convolutional neural network that can segment 3D volumes. They

trained their model on 86 MRI images of patients with cervical or

ovarian cancer and evaluated it on 43 MRI images of patients with

benign or malignant tumors. They achieved an accuracy of 94.19%,

which means that they correctly classified 94.19% of the tumors as

benign or malignant. They also achieved a precision of 95.35%,

which means that 95.35% of the tumors that they predicted as

malignant were actually malignant. They achieved a sensitivity of

93.02%, which means that they detected 93.02% of the malignant

tumors in the dataset. They achieved a specificity of 95.35%, which

means that they rejected 95.35% of the benign tumors in the dataset.

They achieved an F1-score of 94.19%, which is a harmonic mean of

precision and sensitivity that measures the balance between them.

They achieved an AUC of 0.94, which is the area under the receiver

operating characteristic curve that measures how well the model

can distinguish between benign and malignant tumors. Our

findings are consistent with previous studies that reported the

benefits of CNNs with transfer learning and progressive resizing

for cervical cancer detection (75) and 3D-UNet or its variants for

ovarian cancer detection (52, 54, 76). The advantages of these

models include their ability to learn high-level features from

medical images, such as edges, shapes, textures, and patterns that

are relevant for tumor identification and characterization. They also

have the ability to adapt to different domains and modalities, such

as histopathology, ultrasound, or MRI, by transferring the

knowledge learned from one domain or modality to another.

They can also handle large-scale and imbalanced datasets, such as

those with more benign than malignant tumors or vice versa, by

using data augmentation techniques or class weighting schemes to

increase the diversity and balance of the data. Moreover, they can

improve segmentation accuracy by using 3D information fromMRI

images, such as depth and volume, and by using loss functions that

emphasize the boundary accuracy, such as dice loss or focal loss.

Other studies have also used deep learning models and

techniques for gynecologic cancer diagnosis using different types

of images. For example, Gao et al. (2021) used a deep convolutional

neural network (DCNN) to diagnose ovarian cancer using

multimodal medical images (FDG-PET/CT) with an accuracy of

0.94 and an AUC of 0.98 (77). Ho et al. (2022) used deep interactive

learning to diagnose BRCA mutation status in ovarian cancer using

H&E-stained whole slide images with an accuracy of 0.86 and an

AUC of 0.91 (78). Li et al. (79) used a self-adapting ensemble

method to diagnose gynecological brachytherapy on CT images

with an accuracy of 0.88 and an AUC of 0.93 (80).

A meta-analysis examined the SE and SP of DL algorithms and

traditional ML approaches for diagnosing COVID-19 from chest X-

rays by using studies that reported these measures (81). The inverse

variance method and the DerSimonian-Laird estimator were
Frontiers in Oncology 14
utilized to synthesize the results and evaluate the heterogeneity.

The studies exhibited very high heterogeneity (I2 = 98.1% [97.7%;

98.4%], p < 0.0001). The DL algorithms demonstrated significantly

higher SE (98.9% [98.7%; 99.1%]) and SP (97.5% [96.9%; 97.9%])

than the traditional ML approaches (p < 0.0001), indicating better

diagnostic performance.

The random-effects model indicated that deep learning

algorithms had a much higher odds ratio (OR) of 56.2459 [95%

CI, 28.3682; 111.5195) and p-value <0.0001 for gynecologic cancer

detection than machine learning algorithms, meaning that they

were about 56 times more likely to make a correct diagnosis. This is

a larger OR than the one found for COVID-19 detection from chest

X-rays, which was 9.8 [95% CI, 6.1; 15.7] and p-value <0.0001,

meaning that deep learning algorithms were about 10 times more

likely to make a correct diagnosis than machine learning algorithms

(82). This suggests that deep learning algorithms had a bigger edge

over machine learning algorithms for gynecologic cancer detection

than for COVID-19 detection.

The diagnostic accuracy of advanced deep learning models for

gynecologic cancer was assessed by pooling the sensitivity,

specificity, and SROC curve from different studies. The AUC of

the SROC curve was 0.81, which indicates a moderate level of

accuracy. This is lower than the AUC of 0.86 reported for deep

learning models for COVID-19 detection from chest X-rays (83),

suggesting that gynecologic cancer diagnosis is more challenging

and requires further improvement of the algorithms.
5 Conclusion

This review demonstrates that deep learning techniques have

been widely utilized in various imaging modalities for detecting,

segmenting, and diagnosing gynecologic cancers. Medical image

analysis, including lesion segmentation, classification, detection,

and quantification, has exhibited tremendous potential with the

use of deep learning. The studies reviewed in this paper employed

imaging modalities such as cytology, colposcopy, MRI, CT scan, and

hysteroscopy. Cytology is utilized for cervical cancer screening and

diagnosis by examining cells or tissue fragments under a microscope,

while colposcopy inspects the cervix with a magnifying device and is

typically done after an abnormal cytology result. MRI and CT scans

are non-invasive techniques used to visualize the structure and

function of gynecologic organs, while hysteroscopy views the

inside of the uterus with a thin camera. These imaging modalities

aid in the diagnosis of cervical cancer and other gynecologic cancers,

such as endometrial cancer and ovarian cancer. However, they also

have drawbacks, including subjectivity, error, low resolution, noise,

artifact, and variability. Deep learning can assist cytologists,

colposcopists, radiologists, and gynecologists in overcoming these

challenges by improving the accuracy, efficiency, objectivity, quality,

segmentation, and interpretation of these images.

Normalization, rotation, cropping, and filtering were the most

commonly used pre-processing techniques. Max pooling, principal

component analysis, and progressive resizing were the most

frequently utilized feature extraction techniques. These methods

can help achieve higher accuracy, efficiency, and objectivity in
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diagnosing and prognosing gynecologic cancers using various types

of images. However, there is no universal or optimal set of

techniques for different imaging modalities, settings, and

objectives. As a result, it is critical to choose and customize these

methods according to the specific needs and challenges of

each application.

The review indicates that neural network architectures such as

3D-UNet, 3D VB-Net, ResNet18, 2D-RefineNet, CE-Net, or fully

convolutional neural networks have been frequently utilized for

image segmentation and classification, achieving high performance.
6 Implication and limitations of
the study

Our review demonstrates that CNNs and their variants are

effective in detecting gynecologic cancer using medical images,

which can aid in diagnosis and treatment. However, our study

has some limitations that need to be addressed. First, we did not

investigate other types of cancer like breast, lung which are highly

prevalent and the review also includes only few imaging modalities

so, it lacks the generalizability issue. Since the review focused on

comparing the performance of different machine learning and deep

learning models, we don’t know the performance of these models as

compared with human experts. The summary roc curve of the

review indicates that DL algorithms surpass traditional ML

approaches in diagnosing gynecologic cancer using medical

images. This implies that DL algorithms can improve the early

detection and treatment of these diseases, particularly in resource-

limited environments where imaging is more feasible than other

modalities. However, the diagnostic accuracy of DL algorithms for

gynecologic cancer is moderate and requires further improvement.

This suggests that there are still challenges and limitations in

implementing DL algorithms for this complex and diverse

disease, and that additional research is necessary to optimize

these algorithms’ performance and generalizability. Therefore,

future research should concentrate on developing more robust,

dependable, transparent, and ethical deep learning models and

techniques for diagnosing gynecologic cancer.
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71. Torres-Garcıá AA, Mendoza-Montoya O, Molinas M, Antelis JM, Moctezuma
LA, Hernández-Del-Toro T. Chapter 4 - Pre-processing and feature extraction. In:
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