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Background: Breast cancer (BC) is the most common cancer in women and is

highly heterogeneous. BC can be classified into four molecular subtypes based on

the status of estrogen receptor (ER), progesterone receptor (PR), human epidermal

growth factor receptor 2 (HER2) and proliferation marker protein Ki-67. However,

they can only be obtained by biopsy or surgery, which is invasive. Radiomics can

noninvasively predict molecular expression via extracting the image features.

Nevertheless, there is a scarcity of data available regarding the prediction of

molecular biomarker expression using ultrasound (US) images in BC.

Objectives: To investigate the prediction performance of US radiomics for the

assessment of molecular profiling in BC.

Methods: A total of 342 patients with BC who underwent preoperative US

examination between January 2013 and December 2021 were retrospectively

included. They were confirmed by pathology and molecular subtype analysis of

ER, PR, HER2 and Ki-67. The radiomics features were extracted and four

molecular models were constructed through support vector machine (SVM).

Pearson correlation coefficient heatmaps are employed to analyze the

relationship between selected features and their predictive power on

molecular expression. The receiver operating characteristic curve was used for

the prediction performance of US radiomics in the assessment of molecular

profiling.

Results: 359 lesions with 129 ER- and 230 ER+, 163 PR- and 196 PR+, 265 HER2-

and 94 HER2+, 114 Ki-67- and 245 Ki-67+ expression were included. 1314

features were extracted from each ultrasound image. And there was a significant

difference of some specific radiomics features between the molecule positive

and negative groups. Multiple features demonstrated significant association with

molecular biomarkers. The area under curves (AUCs) were 0.917, 0.835, 0.771,
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and 0.896 in the training set, while 0.868, 0.811, 0.722, and 0.706 in the validation

set to predict ER, PR, HER2, and Ki-67 expression respectively.

Conclusion: Ultrasound-based radiomics provides a promising method for

predicting molecular biomarker expression of ER, PR, HER2, and Ki-67 in BC.
KEYWORDS

radiomics, biomarker, breast cancer, ultrasonography, support vector machine
Introduction

Breast cancer (BC) is currently the most prevalent form of

cancer and is also the leading cause of cancer-related deaths among

women, according to the International Agency for Research on

Cancer (1). The four molecular biomarkers, namely estrogen

receptor (ER), progesterone receptor (PR), human epidermal

growth factor receptor 2 (HER2), and proliferation marker

protein Ki-67, garner significant clinical attention in the clinical

practice (2). These four molecular biomarkers play a crucial role in

diagnosing BC. Based on the expression levels of these four

molecular profiles (3), BC is classified into four distinct subtypes:

luminal A, luminal B (including luminal B/HER2-negative and

luminal B/HER2-positive), HER2-positive, and triple-negative BC

(TNBC). In particular, the treatment protocols, prognosis, and

metastatic potential of BC can vary significantly among these

different molecular subtypes (4). Therefore, accurate prediction of

the molecular profiles holds immense significance in guiding

appropriate treatment strategies.

Currently, the assessment of molecular subtypes of BC before

surgery typically relies on the results of immunohistochemistry

(IHC) obtained through needle biopsy (5). However, this biopsy

procedure is invasive and time-consuming. Additionally, a single

local biopsy specimen may not always capture the complete

molecular characteristics of the whole cancer, because of the high

heterogeneity of BC (6). The tumor heterogeneity is an independent

factor linked to the insufficient response to neoadjuvant

chemotherapy (7). As a result, there is an urgent need for an

alternative method that can accurately and non-invasively assess the

expression of molecular biomarkers in BC.

With the rapid advancements in computer technology, the field

of radiomics has emerged as a cutting-edge approach that harnesses

high-throughput capabilities and mathematical algorithms to

extract a wide range of quantitative features from medical images

(8). This innovative technique not only overcomes the subjective

limitations inherent in traditional imaging diagnosis but also

enables a more comprehensive assessment of the overall

characteristics of lesions and the surrounding tissue. Numerous

studies have shown the effectiveness of radiomics based on X-ray,

magnetic resonance imaging (MRI), ultrasound and positron

emission tomography-computed tomography (PET-CT) for the

evaluation of malignancy, differentiation of molecular subtype,
02
and response to neoadjuvant therapy in BC (9). Ultrasound has

unique advantages for clinical applications due to its real-time

capabilities, frequent examination, and large data size. In

particular, the US-radiomics model has demonstrated exceptional

performance in distinguishing between benign and malignant

breast lesions (10). However, despite these advantages, far few

studies have investigated the application of ultrasound radiomics

for predicting molecular biomarker expression (11). Furthermore,

the number of studies exploring the specific radiomics features that

hold great importance in predicting the molecular subtype of BC

has been relatively limited.

In the present study, we investigated whether ultrasound

radiomics features could be adopted as a predictive biomarker for

discriminating the molecular biomarker profiling (ER, PR, HER2,

and Ki-67). The purpose of this study was to explore the potential of

radiomics features, and to provide complementary information to

aid in the diagnostic molecular biomarker expression in BC.
Methods

Study design and cohort of the study

This study was approved by the Ethics Committee of the Second

Affiliated Hospital of Fujian University of Traditional Chinese

Medicine (SPHFJP-T2022007-01), and informed consent was

waived due to the retrospective nature of this study. We retrieved

466 consecutive patients with BC who underwent breast US

examination and following treatment in our hospital from January

2013 to December 2021. Inclusion criteria were as follows: (1) Breast

US was performed before the operation, and patients did not receive

neoadjuvant chemotherapy (NAC) or biopsy prior to US

examination; (2) Primary BC was confirmed by pathology; (3)

Molecular subtype data (ER, PR, Ki-67, and HER2) were complete;

(4) The US image quality met the diagnostic requirements. Exclusion

criteria were as follows: (1) Patients without US examination; (2)

Cases with incomplete pathological data; (3) Patients who had

undergone local or systemic treatment such as puncture biopsy,

chemotherapy, radiotherapy, ablation, or resection before breast US

examination; (4) Cases with poor imaging quality. Finally, a total of

342 patients with invasive BC were included in this study. Among

them, 341 were female and 1 was male. Their mean age was 54.5 years
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(range from 25 to 90 years old). The workflow of this work shown in

Figure 1 mainly includes six steps: patient enrollment, ultrasound

image acquisition, features extraction, features selection, model

construction and model evaluation.
Breast ultrasonography

Breast ultrasound scanning was performed using Philips, GE, or

Siemens color Doppler ultrasound equipment. The patients were

positioned in a supine or lateral recumbent position with their

hands raised to expose both breasts and axillae, allowing for a multi-

angle scan to be performed. The lesions were scanned frommultiple

angles. And the largest section of ultrasound in each lesion was

selected for analysis. The ultrasonic characteristics of the lesions

were recorded, including their BI-RADS classification, location,
Frontiers in Oncology 03
size, shape, boundary, internal echo, calcification, posterior echo

changes, blood flow, and axillary lymph nodes. The images were

stored in DICOM format. The quality control of the images was

carried out by two experienced radiologists, namely, Qing Lin and

Quehui Guo. Both these experts possess proficiency in image

analysis and worked in consensus to ensure the accuracy and

reliability of this work.
Pathology analysis

All primary breast lesions of the participants were pathologically

confirmed by either biopsy or resection. Their expression levels of ER,

PR, HER2, and Ki-67 were determined by IHC or fluorescence in situ

hybridization. ER and PR positive is defined as more than 1%. For

HER2, a score of 3+ indicated positive; + or no expression is negative;
FIGURE 1

The workflow of this study. HER2, human epidermal growth factor receptor 2; TNBC, triple-negative breast cance; US, ultrasound; ER, estrogen
receptor; PR, progesterone receptor; Ki-67, proliferating cell nuclear antigen; ROI, the region of interest; GLCM, gray level co-occurrence matrix;
LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; ROC, receiver operating characteristic.
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a score of 2+ requires FISH to determine the amplification status (12).

The cutoff threshold for the Ki-67 is 20%. If Ki-67 is greater than or

equal to 20%, it indicates highly proliferative and defines as positive

(13). Based on the expression of ER, PR, HER2, and Ki-67, BC is

divided into four molecular subtypes, i.e. luminal A, luminal B

(including luminal B/HER2-negative and luminal B/HER2-

positive), HER2-positive, and triple-negative.
Segmentation of tumor and extraction of
radiomics features

The breast lesion region of interest (ROI) was manually

designated on a grayscale ultrasound image by two sonographers.

Those sonographers had no prior knowledge of the histopathological

results. An open-source imaging platform, ITK-SNAP (http://

www.itksnap.org), was utilized. To demonstrate the effectiveness of

the ROI selection method, Figure 2 displayed the original ultrasound

image and the ROIs for four patients with breast carcinoma, each

exhibiting different expression levels of molecular marker profile.

The extraction of lesion features was performed using Pyradiomics

version 3.0 software. A total of 1314 radiomics features was extracted

from each ultrasound image. Among these features, 7 categories of

features were extracted: first order features (n = 252), shape features (n

= 12), Gray Level Co-occurrence Matrix (GLCM, n = 336), Gray Level

Run Length Matrix (GLRLM, n = 224), Gray Level Size Zone Matrix

(GLSZM, n = 224), Gray Level Dependence Matrix (GLDM, n = 196),

Neighboring Gray Tone Difference Matrix (NGTDM, n = 70).
Features selection

The consistency of the extracted radiomics features was assessed

with the inter- and intra-class correlation coefficient (ICC). Forty

cases of ultrasound images, comprising 20 positive and 20 negative

cases for each of the molecular biomarkers (ER, PR, HER2, and Ki-

67), were randomly selected for analysis. To assess the

reproducibility of the radiomics features, two experienced

sonographers independently performed the ROI segmentation.

Additionally, in order to evaluate inter-class reproducibility,

sonographer 1 repeated the segmentation process one month after

the initial ROI segmentation. Radiomics features with inter- and

intra-class correlation coefficients (ICCs) greater than 0.75 were

considered to demonstrate good reproducibility and were selected

for model construction. Pearson’s coefficients matrix heatmaps

were calculated to analyze the relationship between the radiomics

features. And the most optimal features were selected.
Construction of the radiomics model

Before proceeding with the modeling process, several data pre-

processing steps were undertaken. These steps involved manual

e l iminat ion of dupl icate information, unpacking the

multidimensional array into one-dimensional data by column,

and filtering out features with zero variance using ANOVA. After
Frontiers in Oncology 04
standardizing the data, the least absolute shrinkage and selection

operator (LASSO) logistic regression algorithm was used to select

molecular-related features with non-zero coefficients, and the

penalty parameters were tuned by 10-fold cross-validation. The

mean and standard deviation of the selected features were

calculated for both the negative and positive groups. The t-values

and P-values were calculated to determine whether the features

differed significantly between the two groups. The selected features

were saved as radiomics labels for subsequent model construction.

The data were divided into a training set (70%) and a validation set

(30%), with 251 and 108 lesions in the training and validation sets,

respectively. Four support vector machine (SVM) models were created

using the radiomics labels and the binary targets for ER, PR, HER2, and

Ki-67. To optimize the performance of those models, the tree-

structured Parzen Estimator (TPE), a hyperparameter optimization

algorithm, was used.
Evaluation of the model

To evaluate the diagnostic performance of the model on the

training and validation sets, the receiver operating characteristic

(ROC) curve was plotted, and the area under the curve (AUC) was

calculated. Additionally, a confusion matrix was created to calculate

the sensitivity, specificity, accuracy, and F1 score of the model.
Statistical analysis

Python was used for statistical analysis (version 3.8.2). The

normality and homogeneity of variance of the numeric data were

assessed using the Kolmogorov-Smirnov test and F-test, respectively.

The baseline characteristics for numeric variables was evaluated with

the t-test, Fisher’s exact test, and MannWhitney U test. The Chi-

square test was applied for categorical variables. A two-sided p< 0.05

was considered a significant difference. The statistical analysis

packages include Levene, test, StandardScaler, MinMaxScaler,

VarianceThreshold, train_test_split, cross_validate, cross_val_score,

RepeatedKFold, confusion_matrix, accuracy_score, precision_score,

recall_score, f1_score, roc_auc_score, roc_curve, LassoCV, SVC, and

TPE. The Pearson’s coefficient was calculated using origin software.
Results

Clinicopathological characters

A total of 359 lesions were confirmed by pathology, with 326 cases

(95.3%) having a single lesion, 15 cases (4.4%) two lesions, and 1 case

(0.3%) three lesions. In terms of the histologic types, the most common

type was invasive ductal carcinoma, accounting for approximately

70.5% (253 lesions), followed by the carcinoma in situ, accounting

for 14.2% (51 lesions) and by the special types of invasive carcinoma,

accounting for 13.1% (47 lesions). The clinicopathological

characteristics of the patients were presented in Table 1;

Supplementary Table 2. The distribution of molecular subtype was as
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follows: 86 were luminal A (24.0%), 146 were luminal B (40.7%), 63

were HER2+ (17.5%) and 64 were TNBC (17.8%). The baseline

characteristics and clinicopathological information of both the

training set and test set are summarized in Table 2. There were no

significant differences in tumor size, age, gender, menopausal status,

clinical staging, tumor types, molecular subtypes between the two

groups. As demonstrated in Figure 3, the expression of ER, PR, HER2,

and Ki-67 was as follows: 129 lesions were ER-negative and 230 were

ER-positive. Similarly, 163 lesions were PR-negative while 196 were
Frontiers in Oncology 05
PR-positive. HER2 expression was negative in 265 lesions, while

positive in 94 lesions. Moreover, Ki-67 expression was negative in

114 lesions, but positive in 245 lesions.
Radiomics signature building

The study extracted 1314 features from each ultrasound image, and

1205 features were retained after processing. Supplementary Table 1
D

A B

E F

G H

C

FIGURE 2

Cases of the original US image and the ROI. (A) The original US image of case 1 with invasive BC, Ki67 (5%+), ER (90%+), PR (60%+), and HER2 (-).
(B) The ROI of case 1. (C) The original US image of case 2 with invasive BC, Ki-67 (30%+), ER (95%+), PR (95%+), and HER2 (-). (D) The ROI of case 2.
(E) The original US image of case 3 shows a patient with invasive BC with myeloid characteristics, Ki67 (50%+), ER (-), PR (-), and HER2 (+). (F) The
ROI of case 3. (G) The original US image of case 4 with invasive BC, Ki-67 (85%+), ER (-), PR (-), and HER2 (-). (H) The ROI of case 4.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1216446
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2023.1216446
shows the number of retained features after each step of feature selection.

And the irrelevant features were removed. To select the relevant features,

a LASSO logistic regression model was employed, then 39 and 20

signatures with non-zero coefficients were selected with the target of ER

(Figures 4A, E) and PR (Figures 4B, F), respectively, in the primary

cohort, after standardization. Normalization was applied before LASSO

to choose the HER2-targeted signatures. And 14 signatures were selected

by the LASSO algorithm (Figures 4C, G). Interestingly, no high-

performance features were selected to classify Ki-67 binary data by

20% cutoff points, regardless of whether standardization or

normalization was used before LASSO. Therefore, standardization was

implemented, and LASSO was conducted on the Ki-67 target using

continuous variables, specifically the exact values of the proliferation

index, and 16 signatures were chosen (Figures 4D, H). The selected

signatures were saved as radiomics labels for subsequent modeling.
Correlation between the radiomics
signature and molecular biomarkers

The radiomics heatmap showcases a matrix of correlation

coefficients among the features (Figure 5). The Pearson
Frontiers in Oncology 06
correlation coefficient was computed to evaluate the relationships

among these features. The resulting heatmaps represents these

associations, with the color red denoting positive correlations and

the color blue indicating negative correlations.

To ensure the accuracy of the radiomics analysis, features with

high correlation coefficients (r≥0.9) were removed from the initial

pool of 1205 radiomics features. Only the features that exhibited a

significant inter-group distribution difference were retained for

further analysis. As a result, a total of 39 features were identified

as essential for predicting ER expression, while 20 features for PR,

14 features for HER2, and 16 features for Ki-67. Notably, significant

correlations are observed between the four molecular biomarkers

and various radiomics features, including morphological features,

grayscale features, texture features, and laws features.
Radiomic features to predict
molecular profiles

Table 3 summarized the top five most significant features selected by

the LASSO model, along with their corresponding t-values and P-values

for the t-test. These values demonstrated a significant difference between
TABLE 1 Characteristics of the molecular biomarkers of patients.

Characteristics All lesions ER PR HER-2 Ki-67

(+) (-) P-value (+) (-) P-value (+) (-) P-value (+) (-) P-value

age 54.5 53.9 54.9 0.484 53.7 55.0 0.305 53.0 54.7 0.228 53.8 55.4 0.231

Menopausal status 0.040 0.005` 0.783 0.826

Premenopausal 156 112 44 100 56 40 116 106 50

Perimenopausal 7 5 2 5 2 1 6 4 3

Postmenopausal 192 113 79 91 101 50 142 131 61

Not available 4 0 4 0 4 3 1 4 0

Tumor types 0.032 0.076 `0.005 0.015

Invasive ductal carcinoma 253 151 102 129 124 73 180 185 68

Invasive lobular carcinoma 8 5 3 3 5 0 8 4 4

The specific type of IC 47 38 9 30 17 4 43 29 18

Carcinoma in situ 51 36 15 34 17 17 34 27 24

*Histologic grade of IC 0.000 0.000 0.000 0.000

Grade I 23 22 1 19 4 1 22 8 15

Grade II 122 97 25 82 40 20 102 71 51

Grade III 133 59 74 47 86 49 84 120 13

Grade X 30 16 14 14 16 7 23 19 11

#Tumor classification of CIS 0.001 0.000 0.000 0.001

Group 1 8 8 0 8 0 0 8 1 7

Group 2 19 17 2 17 2 2 17 7 12

Group 3 24 11 13 9 15 15 9 19 5
fron
*Tumor grade of invasive cancer was divided into grade I (well differentiated), grade II (moderately differentiated), or grade III (poorly differentiated) according to the Scarff-Bloom-Richardson
System. Grade X was defined as the grade that cannot be assessed or is unavailable. #Carcinoma in situ (CIS) cases were classified as group 1 (nonhigh grade CIS without comedo-type necrosis),
group 2 (nonhigh grade CIS with comedo-type necrosis), or group 3 (high-grade CIS with or without comedo-type necrosis) according to the Van Nuys Classification. ER, estrogen receptor; PR,
progesterone receptor; HER2, human epidermal growth factor receptor 2; Ki-67, proliferating cell nuclear antigen.IC, invasive carcinoma.
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the positive and negative groups (P<0.05). As compared to ER-negative

cancer, ER-postive tumors had higher values of ShortRunEmphasis

(SRE), Complexity, and ShortRunHighGrayLevelEmphasis

(SRHGLE), while lower values of Imc1 and SizeZoneNonUniformity

Normalized (SZNUN). Alternatively, PR-positive lesions showed

higher values of SmallDependenceHighGrayLevelEmphasis

(SDHGLE), while lower values of Maximum, SZNUN, BoundingBox5

and Imc1. HER2-postive cancers displayed significantly higher

GrayLevelNonUniformityNormalized (GLNUN), SizeZone

NonUniformityNormalized (SZNUN), InverseVariance,
Frontiers in Oncology 07
ZonePercentage and Imc1, as compared with HER2-negative

cancers. Ki-67-postive lesions showed higher BoundingBox5,

SmallAreaEmphasis (SAE), while lower Coarseness, Short

RunLowGrayLevelEmphasis (SRLGLE) than Ki-67-negative cancers.

Notably, SRE, Imc1, SZNUN, Complexity, Maximum, SDHGLE,

BoundingBox5, GLNU, SRLGLE, and SAE were the most

frequently selected signatures with significantly high weights (all

p<0.005), indicating their importance in distinguishing between the

positive and negative groups. They mainly belong to glcm, glrlm,

glszm, ngtdm.
TABLE 2 Baseline characteristics comparison between the training set and test set.

Characteristics
Training set
(n=251)

Test set
(n=108) P-value

Clinical tumor size (cm) 0.141

cT1 (≤ 2.0 cm) 128 (51.0%) 45 (41.7%)

cT2 (2.1–5.0 cm) 109 (43.4%) 59 (54.6%)

cT3 (> 5.0 cm) 14 (5.6%) 4 (3.7%)

Age (years) 53.7 54.5 0.556

Gender 0.301

Female 251 (100%) 107 (99.1%)

Male 0 (0%) 1 (0.09%)

Menopausal status 0.397

Premenopausal 107 (42.6%) 49 (45.4%)

Perimenopausal 138 (55.0%) 54 (50.0%)

Postmenopausal 3 (1.2%) 4 (3.7%)

Not available 3 (1.2%) 1 (0.9%)

Clinical staging 0.092

Phase I 112 (44.6%) 35 (32.4%)

Phase II 106 (42.2%) 58 (53.7%)

Phase III 30 (12.0%) 15 (13.9%)

Phase IV 3 (1.2%) 0 (0%)

Tumor types 0.634

Invasive ductal carcinoma 172 (68.5%) 81 (75.0%)

Invasive lobular carcinoma 6 (2.4%) 2 (1.9%)

The specific type of IC 36 (14.3%) 11 (10.2%)

Carcinoma in situ 37 (14.7%) 14 (13.0%)

Molecular subtypes 0.391

Luminal A 58 (23.1%) 28 (25.9%)

Luminal B 102 (40.6%) 44 (40.7%)

HER2+ 41 (16.3%) 22 (20.4%)

Triple-negative 50 (19.9%) 14 (13.0%)
fron
TNM, Tumor node metastasis. IC, invasive carcinoma. DCIS, ductal carcinoma in situ. HER2, human epidermal growth factor receptor 2.
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SVM model construction and validation of
the model

Four models for predicting the molecular biomarkers of ER, PR,

HER2, and Ki-67 were created using the features selected by LASSO

and the parameters optimized by TPE. Subsequently, four ROC

curves were plotted to evaluate the diagnostic efficacy of the models.

The AUCs for the training and validation cohorts were presented in

Figure 6. The diagnostic efficacy of the four ROC curves was ranked

that ER model being the most effective, followed by the PR model,

HER2 model, and lastly the Ki-67 model.

The performance of the four models namely the ER model, PR

model, HER2 model, and Ki-67 model, were evaluated. Those

assessment parameters, including sensitivity, specificity, accuracy,

and F1 score are presented in Table 4. The ultrasound-based

radiomics model displayed the highest discriminatory power for

ER, achieving an AUC of 0.917 in the training set and 0.868 in the

validation cohort (Figure 6A). For PR, the radiomics model

achieved an AUC of 0.835 in the training set and 0.811 in the

validation cohort (Figure 6B). The radiomics model generated an

AUC of 0.722 (Figure 6C) and 0.706 (Figure 6D) for HER2 and Ki-

67 in the validation cohort, respectively, which was slightly lower

than those for ER and PR. Those results suggest that all four models

are effective in predicting the molecular expression of BC. Notably,
Frontiers in Oncology 08
the degree of model fitting for ER, PR, and HER2 exhibited

remarkable performance, with no significant signs of overfitting.

Conversely, overfitting was evident for Ki-67.

Discussion

Molecular subtyping plays a vital role in tailoring treatment

approaches to individual patients. However, it requires biopsy or

surgery which is invasive, time-consuming, and sometimes prone to

inaccurate due to the heterogeneity. In recent studies, radiomics

shows good performance for predicting molecular subtypes of BC

(14). In our study, we extracted ultrasound radiomics features to

build the prediction models for the expression of ER, PR, HER2,

and Ki-67 in BC. Our results indicate that the ultrasound-based

radiomics models show excellent performance in predicting

molecular biomarkers in BC. Additionally, our research identified

several critical radiomics features that play a substantial role in

distinguishing between positive and negative expressions of

molecular biomarkers. These features, namely SRE, Imc1,

SZNUN, Complexity, Maximum, SDHGLE, BoundingBox5,

GLNU, SRLGLE, and SAE are highly associated with the

expression of ER, PR, HER2, and Ki-67. It is noteworthy that, to

the best of our knowledge, our study is the first to establish a

relationship between ultrasound-based radiomics features and
FIGURE 3

Patients included in this study (*comparison of the number of lesions in the negative and positive groups). 129 lesions were ER-negative and 230
were ER-positive. Similarly, 163 lesions were PR-negative while 196 were PR-positive. HER2 expression was negative in 265 lesions, while 94 lesions
showed HER2-positive expression.
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molecular profiles. Our study offers a non-invasive, cost-effective,

and time-efficient alternative for BR molecular classification. And

the identification of these specific features provides valuable insights

for further research and potential development of diagnostic tools.

It is well-known that the aggressiveness of BC is closely related

to its heterogeneity (15, 16), which sometimes is challenging to

assess fully when using histopathological tissue samples obtained

from needle biopsies (17, 18). The accuracy of molecule profiling

diagnosis can be impacted by the size and number of samples

obtained (19). Radiomics is a powerful tool that enables the non-
Frontiers in Oncology 09
invasive assessment of whole-tumor heterogeneity by extracting

quantitative features based on texture, shape, and intensity (20).

These features provide valuable insights into the underlying

biological processes of the imaged tissue, including tumor

heterogeneity, microenvironmental characteristics, and etc. There

is a growing literature that has reported to predict molecular

profiling in BC, but mostly based on MRI and X-ray analysis (21,

22). However, there has been a limited number of studies conducted

thus far that utilize ultrasound imaging as the primary modality for

investigation (23).
D
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G H
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FIGURE 4

Radiomics feature selection using LASSO logistic regression in the primary cohort. Selection of the tuning parameter (l) in the LASSO model of the
ER (A), PR (B), HER2 (C), and Ki-67 (D) via 10-fold cross-validation based on the mean standard error (MSE) of the minimum criteria. The value of L
give the minimum average binominal deviance was used to select features. LASSO coefficient profiles of the selected radiomics features of the ER
model (E), PR model (F), HER2 model (G), and Ki-67 model (H). Dotted vertical lines were drawn at the optimal values using the minimum criteria
and the MSE criteria.
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A B

DC

FIGURE 5

Pearson correlation coefficient heatmaps of selected features on predicting molecular expression of ER (A), PR (B), HER2 (C), and Ki-67 (D). Red
represents positive correlations and blue indicates negative correlations. ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal
growth factor 2; Ki-67, proliferating cell nuclear antigen.
TABLE 3 The top five signatures were selected by Lasso and the t-test values.

Target Top five features selected by Lasso Features Filter
�x ± s

t-value P-value
Positive Negative

ER ShortRunEmphasis glrlm lbp-2D 0.109 ± 0.069 0.086 ± 0.052 3.341 0.0009

Imc1 glcm original -0.198 ± 0.089 -0.164 ± 0.075 3.660 0.0003

SizeZoneNonUniformityNormalized glszm squareroot 0.466 ± 0.107 0.502 ± 0.113 3.003 0.0029

Complexity ngtdm square 3.261 ± 5.484 1.735 ± 3.168 2.900 0.0040

ShortRunHighGrayLevelEmphasis glrlm wavelet-LH 59.517 ± 60.040 44.905 ± 32.122 2.565 0.0107

PR Maximum Image-interpolated diagnostics 387.129 ± 124.209 438.003 ± 142.456 3.614 0.0003

SmallDependenceHighGrayLevelEmphasis gldm wavelet-LH 22.668 ± 26.959 15.418 ± 12.397 3.165 0.0017

SizeZoneNonUniformityNormalized glszm squareroot 0.461 ± 0.125 0.494 ± 0.112 2.485 0.0134

BoundingBox5 Mask-original diagnostics 172.755 ± 87.278 204.883 ± 82.722 3.556 0.0004

Imc1 glcm original -0.196 ± 0.089 -0.173 ± 0.079 2.561 0.0109

(Continued)
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Radiomics features are quantitative descriptors that encompass

various aspects of a medical image, including intensity, shape,

volume, texture, and etc. They are usually difficult to be interpreted

and analyzed intuitively. In our study, 7 categories of image features

were extracted from the 1314 radiomics features. We have
Frontiers in Oncology 11
innovatively developed four molecular prediction models based on

ultrastructural features. In the ER-positive model, higher values were

observed for SRE, Complexity, and SRHGLE, while lower values were

found for Imc1 and SZNUN. Similarly, in the PR-positive model,

higher values were observed for SDHGLE, while lower values were
TABLE 3 Continued

Target Top five features selected by Lasso Features Filter
�x ± s

t-value P-value
Positive Negative

HER2 GrayLevelNonUniformityNormalized glszm square 0.493 ± 0.206 0.429 ± 0.179 2.878 0.0042

SizeZoneNonUniformityNormalized glszm squareroot 0.503 ± 0.109 0.470 ± 0.109 2.524 0.0120

InverseVariance glcm wavelet-LL 0.418 ± 0.052 0.399 ± 0.065 2.467 0.0140

ZonePercentage glszm logarithm 0.484 ± 0.167 0.429 ± 0.176 2.654 0.0083

Imc1 glcm original -0.163 ± 0.075 -0.193 ± 0.088 2.996 0.0029

Ki-67 Coarseness ngtdm squareroot 0.021 ± 0.022 0.029 ± 0.032 2.802 0.0054

BoundingBox5 Mask-original diagnostics 195.792 ± 86.362 169.184 ± 84.711 2.734 0.0066

ShortRunLowGrayLevelEmphasis glrlm wavelet-HH 0.088 ± 0.062 0.115 ± 0.091 3.213 0.0014

SmallAreaEmphasis glszm wavelet-HL 0.604 ± 0.078 0.575 ± 0.106 2.911 0.0038

ShortRunLowGrayLevelEmphasis glrlm square 0.154 ± 0.061 0.172 ± 0.067 2.490 0.0132
fron
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; Ki-67, proliferating cell nuclear antigen.
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FIGURE 6

Comparison of the area under the ROC curves on the training set and validation cohort of ER model (A), PR model (B), HER2 model (C), and Ki-67
model (D).
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found forMaximum, SZNUN, BoundingBox5, and Imc1. The HER2-

positive model displayed significantly higher values for GLNUN,

SZNUN, InverseVariance, ZonePercentage, and Imc1 compared to

HER2-negative BC. In the Ki-67-positive model, higher values were

observed for BoundingBox5 and SAE, while lower values were found

for Coarseness and SRLGLE, compared to Ki-67-negative lesions.

The features of SRE, Imc1, SZNUN, Complexity, Maximum,

SDHGLE, BoundingBox5, GLNU, SRLGLE, and SAE are heavily

weighted (all P<0.005), indicating their pivotal role in discerning the

negative or positive expression of ER, PR, HER2, and Ki-67

molecules. SRE can assess the distribution of short runs of similar

intensity values within an image, which can characterize the texture

of BC. Its higher values mean a greater proportion of short runs of

similar intensity values in the image. Imc1 can characterizes the

similarity of gray-level intensity values between adjacent pixels,

taking into account their relative positions. SZNUN can determine

the degree of heterogeneity in the sizes of homogeneous regions

within an image. Its higher values indicate greater variability in the

sizes of homogeneous regions across the image. Complexity

characterizes the heterogeneity and irregularity in the image

intensity values. And the higher values indicating greater

complexity and heterogeneity in the image. Maximum is to

measure the maximum intensity value in the interpolated image.

Complexity characterizes the heterogeneity and irregularity in the

image intensity values. And the higher values indicating greater

complexity and heterogeneity in the image. Maximum is to

measure the maximum intensity value in the interpolated image.

SDHGLE measures the joint probability of occurrence of small

dependence gray level values with high gray-level values. It can

characterize the heterogeneity of a tumor. BoundingBox5

characterizes the compactness of ROI in an image, with higher

values indicating that the ROI is more compact. GLNU quantifies

the degree of variation in gray-level intensity. A higher value of

GLNU indicates that the intensity values within the ROI are more

widely distributed, suggesting higher degree of heterogeneity.

SRLGLE quantifies the small runs of low gray-level values within

an image. SAE measures the proportion of small homogeneous areas

in the image, with a higher value indicating a greater proportion of

small, homogeneous areas. To the best of our knowledge, this is the
Frontiers in Oncology 12
first study to investigate the correlation between the aforementioned

radiomics features and molecular biomarkers. Their heavy weight

emphasizes their importance as crucial markers in the assessment of

molecular expression.

These features, including GLCM, GLRLM, GLSZM, and

NGTDM, mainly belong to the categories of second-order

statistics or higher-order statistics. They provide valuable insights

into the irregular or heterogeneous texture of tumors that are not

discernible to the naked eye. As far as we know, there are very few

studies on the correlation between the aforementioned radiomics

features and molecular biomarkers. Previous report indicated that

higher Ki-67 expression was associated with posterior acoustic

enhancement, and P53-positive cancer was associated with an

absence of anecho halo, which was different from ours (24). This

inconsistency may be due to the different feature extraction

methods. The presence of irregular or heterogeneous tumor

textures, as indicated by these features, holds significant clinical

implications. It suggests the presence of diverse tissue components

within the tumor, potentially reflecting variations in cellularity,

vascularity, and spatial organization.

The SVM models created based on the LASSO-selected features

and PET-optimized parameters can identify molecular indicators

effectively. Our results indicate that US-based radiomics models

show optimal performance to predict molecular profiling, with the

best for ER, and followed by PR. Both of them had an AUC greater

than 0.80 in the validation cohort, whereas they showed lower

diagnostic efficacy for HER2 and Ki-67, with an AUC slightly higher

than 0.70 in the validation cohort. The ER model performed well in

the validated cohort with a high specificity of 87.1% and an F1 score

of 0.835. Before modeling, the choice of normalization and the

setting of LASSO parameters is crucial, as both will affect the

quantity and quality of LASSO feature selection. Moreover, the

effectiveness of features will greatly influence the model’s validity.

The AUCs for predicting molecular subtype we achieved are similar

to the AUCs of 0.74–0.97 in the other literature (25, 26).

In recent years, deep learning techniques have been widely

employed to investigate the molecular expression of BC (27, 28).

Deep learning models have demonstrated superior diagnostic

performance compared to traditional machine learning models.
TABLE 4 Diagnostic Performances of the SVM model.

target cohort AUC %Sn %Sp %Acc F1 score

ER train 0.917 77.1 89.8 82.1 0.840

validate 0.868 75.3 87.1 78.7 0.835

PR train 0.835 69.3 81.1 74.5 0.752

validate 0.810 78.6 73.1 75.9 0.772

HER2 train 0.771 71.9 70.1 70.5 0.526

validate 0.722 73.0 66.2 68.5 0.614

Ki-67 train 0.896 73.3 83.5 76.5 0.810

validate 0.706 61.6 77.1 66.7 0.714
fro
support vector machine, SVM; area under the curve, AUC; sensitivity, Sn; specificity, Sp; accuracy, ACC; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor
receptor 2; Ki-67, proliferating cell nuclear antigen.
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However, deep learning models require a relatively larger sample

size than traditional machine learning approaches. Additionally, the

training process of deep learning models can be likened to a “blind

box,”making it challenging to discern which features are utilized in

the modeling process and how they are interconnected. In contrast,

machine learning models offer interpretability by enabling the

analysis of specific features and their corresponding weights

throughout the modeling process (29, 30).

Our study has certain limitations that should be acknowledged.

Firstly, it is based on a retrospective, single-center design, and the

sample size is relatively small. Therefore, caution should be

exercised in generalizing the findings to larger populations. To

validate and strengthen our results, further investigations using a

larger, multi-center cohort are warranted. Another limitation of our

study is the utilization of only two-dimensional grayscale data. The

inclusion of additional imaging modalities or three-dimensional

data could provide a more comprehensive assessment of the

molecular profiling in BC. Additionally, research in the series

including the prediction of molecular subtypes, clinical decision

making or therapy response based on radiomics would enhance the

reliability and value of the radiomics analysis. Despite these

limitations, our findings hold significant value and contribute to

the understanding of the potential of ultrasound radiomics in

assessing the molecular characteristics of BC.
Conclusions

Our study provides evidence that some specific radiomics

features extracted from ultrasound images can effectively predict

molecular expression of ER, PR, HER2, and Ki-67 in BC. The

radiomics models based on the selected radiomics features show

good performance in non-invasively assessing the molecular

subtypes. Our findings provide a promising method in assessing

the molecular profile of breast cancer.
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