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Evaluation of molecular
receptors status in breast cancer
using an mpMRI-based feature
fusion radiomics model:
mimicking radiologists’ diagnosis
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Guangzhou First People’s Hospital, Guangzhou, Guangdong, China, 4Department of Clinical &
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Guangzhou First People’s Hospital, Guangzhou, Guangdong, China, 6Department of Radiology, The
First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China, 7School of Biomedical
Engineering, Southern Medical University, Guangzhou, Guangdong, China
Objective: To investigate the performance of a novel feature fusion radiomics

(RFF) model that incorporates features from multiparametric MRIs (mpMRI) in

distinguishing different statuses of molecular receptors in breast cancer (BC)

preoperatively.

Methods: 460 patients with 466 pathology-confirmed BCs who underwent

breast mpMRI at 1.5T in our center were retrospectively included hormone

receptor (HR) positive (HR+) (n=336) and HR negative (HR-) (n=130). The HR-

patients were further categorized into human epidermal growth factor receptor

2 (HER-2) enriched BC (HEBC) (n=76) and triple negative BC (TNBC) (n=54). All

lesions were divided into a training/validation cohort (n=337) and a test cohort

(n=129). Volumes of interest (VOIs) delineation, followed by radiomics feature

extraction, was performed on T2WI, DWI600 (b=600 s/mm2), DWI800 (b=800 s/

mm2), ADC map, and DCE1-6 (six continuous DCE-MRI) images of each lesion.

Simulating a radiologist’s work pattern, 150 classification base models were

constructed and analyzed to determine the top four optimum sequences for

classifying HR+ vs. HR-, TNBC vs. HEBC, TNBC vs. non-TNBC in a random

selected training cohort (n=337). Building upon these findings, the optimal single

sequence models (Rss) and combined sequences models (RFF) were developed.

The AUC, sensitivity, accuracy and specificity of each model for subtype

differentiation were evaluated. The paired samples Wilcoxon signed rank test

was used for performance comparison.

Results: During the three classification tasks, the optimal single sequence for

classifying HR+ vs. HR- was DWI600, while the ADC map, derived from DWI800
performed the best in distinguishing TNBC vs. HEBC, as well as identifying TNBC
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vs. non-TNBC, with corresponding training AUC values of 0.787, 0.788, and

0.809, respectively. Furthermore, the integration of the top four sequences in RFF

models yielded improved performance, achieving AUC values of 0.809, 0.805

and 0.847, respectively. Consistent results was observed in both the training/

validation and testing cohorts, with AUC values of 0.778, 0.787, 0.818 and 0.726,

0.773, 0.773, respectively (all p < 0.05 except HR+ vs. HR-).

Conclusion: The RFF model, integrating mpMRI radiomics features,

demonstrated promising ability to mimic radiologists ’ diagnosis for

preoperative identification of molecular receptors of BC.
KEYWORDS

breast cancer, magnetic resonance imaging, molecular receptor, radiomics,
classification
Introduction

Breast cancer (BC) exhibits significant heterogeneity at both

intra- and inter-tumor levels. Different molecular receptor statuses

are associated with varying prognoses, treatment responses and

survival outcomes (1, 2). Profiling of gene expression has identified

the four main intrinsic molecular subtypes of BC, including luminal

A, luminal B, human epidermal growth factor receptor 2-enriched

(HER-2), and triple negative (TN), each of which exhibits distinct

molecular receptor statuses and therefore requires tailored

therapeutic approach, such as endocrine therapy or neoadjuvant

systemic therapy (NST) (3–5).

Currently, molecular receptor status is mainly determined by

gene expression profiling or immunohistochemical (IHC)

surrogates from invasive tissue biopsy or surgical specimens in

clinical practice. However, due to tumor heterogeneity, a single

tissue biopsy is insufficient to capture the global genetic, epigenetic,

and/or phenotypic characteristics of a breast tumor, leading to

inevitable selection bias (1, 2). In addition, as the tumor biology

evolves and continuous treatments are administrated, the receptor

status and molecular subtypes of BC may change, posing challenges

in accurately reflecting the true state of the lesions (5). Therefore,

there is a need to develop an effective method for precise assessment

of the whole-tumor’s histological characteristics, and for spatial-

temporal monitoring of the dynamic tumor biological behavior

during treatment.

MRI-based radiomics, which uses data-mining algorithms or

statistical analysis tools on high-throughput imaging features to

obtain predictive or prognostic information, has shown promising

potentials as an alternative tool for the assessment of BC’s

molecular receptors status (6–8). Multiparametric magnetic

resonance imaging (mpMRI), which combines morphological (T2

weighted-imaging [T2WI]), functional (diffusion-weighted imaging

[DWI]) and kinetic (dynamic contrast-enhanced [DCE])

information, has further demonstrated great promise for

preoperative identification of different molecular receptor statuses
02
of BC (8–10). However, previous investigations mainly selected

only one or two single MRI sequence-derived images (e.g., T2WI,

DWI-derived apparent diffusion coefficient [ADC] maps, or the

early phase of DCE-MRI) for analysis (7, 11–14), which deviates

from the real clinical scenario where radiologists routinely go

through all acquired MRI images to make a final diagnosis.

Without a comprehensive consideration of the various

contributions from different MRI sequences, it may result in

subjectivity and an insufficient assessment.

Herein, we hypothesize that a mpMRI-based radiomics method

has the potential to provide accurate prediction of molecular

subtypes and receptor status of BC. The aim of this study is to

develop a novel feature fusion radiomics (RFF) model that

incorporates radiomics features extracted from optimally

performed mpMRIs to mimic the routine diagnostic practices of

radiologists and preoperatively identify different molecular receptor

statuses in BC.
Materials and methods

Patient cohort

This study was approved by the Ethics Committee of the Second

Affiliated Hospital of South China University of Technology

(Guangzhou First People’s Hospital) Hospital, with informed

consent being waived due to the retrospective nature of this

study. A total of 535 patients who underwent breast mpMRI for

preoperative assessment at our hospital between January 2017 and

April 2022 were included. The inclusion criteria were as follows: (1)

histopathological confirmation of BC by surgical resection or needle

biopsy; (2) patients who underwent a routine mpMRI including

T1WI, T2WI, DWI (with b values of 0 s/mm2, 600 s/mm2 and 800

s/mm2), DWI-derived ADCmap and DCE-MRI (with 6 continuous

enhancing phases) within one week prior to pathological

examinations; (3) no additional therapy prior to MRI. The
frontiersin.org
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exclusion criteria were: (1) recurrent BC (n=11); (2) incomplete

pathological results, such as those lacking IHC results and Ki-67

scores, or unclear histological types (n=15); (3) cases with Volumes

of interest (VOI) that were difficult to delineate due to images

artifacts (n=39). (4) patients with breast implants (n=4). In cases of

multicentric or multifocal tumors, only the largest malignant lesion

was selected. For bilateral disease, the largest lesions of both breasts

were selected according to pathological results. Finally, 460 patients

with 466 lesions were enrolled in this study. The lesions were

categorized into HR+ (n=336) and HR- groups (n=130), with the

HR- group further divided into HEBC (n=76) and TNBC (n=54)

subgroups. Based on sample size calculations (15, 16), a required

sample size of 210 (42 cases of TNBC and 168 cases of non-TNBC)

was sufficient to detect differences between various molecular

subtypes of BC with a power of 95%. Appendix 1 showed the

detailed information on the sample size calculation process. All

lesions were divided randomly into a training/validation cohort

(n=337) and a test cohort (n=129) at a ratio of ~3:1, in which a

random selected training cohort (n=337) was established to

determine the optimal single MR sequence for subsequent

experiments, as shown in Figure 1.
MRI acquisition

All preoperative routine mpMRI examinations were performed

on a 1.5-T MRI system (uMR 560, United Imaging) using a

dedicated 4-channel SENSE breast coil . The standard

examinations included T1W, T2W, DWIs (with three b values of

b=0 s/mm2, b=600 s/mm2 (DWI600) and b=800 s/mm2 (DWI800))

and six continuous DCE-MRI (DCE1-6) scans with ~62 seconds per

phase. ADC maps were derived from DWI using the b=0 s/mm2

and b=800 s/mm2 data through the embedded immediate post-
Frontiers in Oncology 03
processing software. The DCE-MRI protocol involved injecting

gadolinium-diethylenetriamine pentaacetic acid (GD-DTPA, 0.1

mmol/kg) and acquiring images in the five consecutive phases

after pre-contrast T1WI. The six phases were named as: pre-

contrast (DCE1), super-early-contrast (DCE2), early-contrast

(DCE3), and delayed-contrast (DCE4-6). The detailed MRI

scanning parameters are provided in Supplementary Materials

Table S1.
The volume of interest delineation

The volume of interest (VOI) was defined on all images that

were stored in DICOM format. In order to standardize the extracted

image biomarkers from mpMRI, we followed the major procedure

outlined by the Image Biomarker Standardization Initiative (IBSI)

(17). Before VOI delineation, we used the General registration

(elastix) method, available as the “SlicerElastix” plugin in the

open-source image analysis platform 3D Slicer (https://

www.slicer.org), to register all sequences’ images. This alignment

enabled us to better handle morphological variations and structural

differences in breast tissue, particularly when aligning the other

sequence images with the DCE2 image. Additionally, we resampled

all MRI sequences to a standard resolution of 1.096 x 1.096 x 1.2,

ensuring isotropic voxels and reducing variations caused by

differences in scanning equipment, protocols, and patient

positioning. Furthermore, we normalized the intensity levels of all

images to a range of 0-255 to reduce the influence of contrast and

brightness variations, which might otherwise affect the

quantification of radiomics features (18).

Slice-wise delineation of the VOI was carried out using the ITK-

SNAP software (http://www.itksnap.org) on T2W, DWI600,

DWI800, ADC maps, and DCE1-6 images. The process started
FIGURE 1

Flow chart of the study’s population with inclusion and exclusion criteria. BC, breast cancer; HEBC, human epidermal growth factor receptor 2
enriched BC. TNBC, triple-negative breast cancer. “n=466” represented the total lesion number.
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with manual delineation of the visible tumor margins on the DCE2
images with the most distinguishable lesion boundary. The

contoured VOIs on DCE2 were then replicated to the remaining

DCE sequences, resulting in 6 VOIs based on the DCE-MRI data.

Similar steps were repeated for the DWI600, DWI800, and ADC

maps. Subsequently, VOI delineation was performed on the T2W

images according to the position and shape of the VOI completed

above. Slight adjustments were allowed on all images in order to

obtain tailored VOIs. The VOI delineation was performed by two

radiologists (WZ and JL, with 6 and 4 years of experience in

radiological diagnosis, respectively) who were blind to all prior

patient information. The interobserver correlation coefficient (ICC)

value of the two radiologists was assessed.
Radiomics feature extraction and analysis

The radiomics features were extracted from ten VOIs of each

lesion using the open-source software toolkit Pyradiomics (19). A

total of 109 features were extracted from three categories of features:

1) intensity features (n=19); 2) morphology features (n=15); texture

features (n=75). Only the extracted radiomics features with ICC >

0.75 were then fed into 150 classification base models, which were

built using 10 classifiers and 15 feature selection methods. Detailed

definitions of the above-mentioned features can be found in

Pyradiomics documentation and IBSI (17). The full list of

radiomics features and the methods employed in this study are

summarized in Tables S2, S3, respectively.
Feature fusion radiomics modeling
and evaluation

Based on the newly developed mpMRI-based RadioFusionOmics

model by our lab, we constructed a feature fusion radiomics (RFF)

model that integrated radiomics information from different MRI

sequences to produce more discriminative fused features. A random

selected training cohort (n = 337) was used to analyze all radiomics

features from each MRI sequence, analogous to a radiologist’s initial

reviewing of a patient’s complete set of MR images. According to the

highest cross-validation AUC obtained in the training/validation

process, the optimal single sequences that can identify hormone

receptor positive (HR+) vs. HR- BC, TNBC vs. HEBC, as well as

TNBC vs. non-TNBC were determined and regarded as the single

sequence-based radiomics (Rss) model.

Subsequently, the radiomics features from the top four high-

performing single sequences were combined to perform multiple

sequence feature fusion, similar to a radiologist’s final reviewing

focusing on specific sequences after a preliminary review. The best

combination of sequences (combination of two, three or four

sequences, a total of 11 types of combinations) was then

identified to develop the RFF models. Utilizing feature-level

fusion, the RFF model conducted a feature-wise fusion strategy by

finding a transformation to map the feature matrix with a set of

MRI sequences (e.g., dimension = 10) to a lower dimensional space

(e.g., dimension = 1). By integrating the class structure information
Frontiers in Oncology 04
(i.e., information on the molecular receptor status of memberships

of the training samples) in the calculation of the transformation, the

RFF was able to eliminate the between-class correlations and

strengthen the within-class correlations during the feature fusion,

which can effectively enhance the discriminative power of fused

features. Various base models (n=11*150 = 1650) were trained

using the fused features and their performances were evaluated and

ranked via a stratified ten-fold cross-validation. The optimal base

models for Rss and RFF were verified in the training/validation

cohort and test cohort. Technical details related to the RFF are

shown in Appendix 2. The flow chart of this study was displayed

in Figure 2.
Histopathology

All surgical or biopsy specimens were examined by two

pathologists (YZ and WD, with 6 and 16 years of experience in

the pathological diagnosis of BC, respectively). The following

pathological biological markers of BCs were assessed and

recorded: tumor maximal diameter, affected side in the breast,

number of tumors, histology type, and IHC status of estrogen

receptor (ER), progesterone receptor (PR), HER-2, and Ki-67

index. Tumors with ER or PR positive expression (> 10% of

tumor nuclei staining) were classified as HR positive (HR+) (20).

Positive HER-2 expression was defined as a 3+ IHC score or 2+

accompanied by fluorescence in situ hybridization positive (FISH+)

result (21). The Ki-67 scores were classified into two groups: < 14%

as low Ki-67 level and ≥14% as high Ki-67 level. The molecular

subtypes of BCs were classified as follows: luminal A (ER and/or PR

positive, HER-2 negative, and Ki-67 < 14%), luminal B (ER and/or

PR positive, HER-2 negative, and Ki-67 ≥ 14% or ER and/or PR

positive, HER-2 positive, regardless Ki-67 expression), HER-2

enriched (ER and PR negative, HER-2 positive), which was

recorded as HEBC, and triple negative cancer (ER, PR and HER-

2 negative), named as TNBC. The luminal A and luminal B

comprised the HR+ group. The Ki-67 expression was scored as

the percentage of positive invasive tumor cells with any nuclear

staining, with the mean percentage of positive cells recorded (4).

Four cases of different molecular subtypes of breast cancer were

presented in the supplementary materials Figures S3-S6.
Statistical analysis

The Chi-square Test and Fisher’s Exact Test were used for

categorical variables, the One-way ANOVA analysis was used for

normally distributed continuous variables, and the Kruskal-Wallis

H test was used for non-normally distributed continuous variables

to compare demographic and pathological characteristics between

different molecular subtypes. The normality of data distribution was

evaluated by the Shapiro-Wilk test. The results for normally

distributed continuous variables were reported as mean ± SD,

while non-normally distributed continuous variables were

reported as median (interquartile range, IQR). Categorical

variables were presented as numbers and proportions. The
frontiersin.org
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performance of each Rss and RFF base models were evaluated via the

area under the receiver operative characteristic curve (AUC),

sensitivity (SEN), specificity (SPE) and accuracy (ACC) among

different subtypes of BC. The performance of the Rss and RFF was

compared using the paired samples Wilcoxon signed rank test.

Two-sided p < 0.05 was considered statistically significant. All

statistical analyses were conducted using the SPSS 25.0 software

(IBM SPSS Corporation, USA) and python 3.6.2 (Python Software

Foundation (USA, https://www.python.org/downloads/).
Results

Demographics data and
tumor characteristics

The clinical pathological characteristics of the 460 patients

with 466 lesions (6 patients had bilateral lesions) enrolled in the

study are presented in Table 1. Among the 466 lesions, 336 lesions

(72.1%) were classified as HR+ BCs, with 142 lesions being

luminal A and 194 lesions being luminal B. Additionally, 76

lesions (16.3%) were classified as HEBCs, and 54 lesions (11.6%)
Frontiers in Oncology 05
were classified as TNBCs. The median tumor size of TNBCs

(26.0 mm) and HEBC (27.0 mm) was found to be significantly

larger than that of HR+ (21.0 mm) (p = 0.000). TNBCs showed a

higher prevalence of mass enhancement in DCE MRI (81.5%) and

invasive carcinoma (96.2%) compared to HR+ and HEBCs (p <

0.001). TNBCs also had a higher Ki-67 index (> 14%) in

comparison with HR+ and HEBCs. Moreover, the age of

patients and number of tumors among HR+, HEBC and TNBC

groups were significantly different (p < 0.05). Baseline

characteristics were not significantly different between both

training/validation and test cohorts (Table S4).
Selection of the dominant sequence and
development of the Rss model

All the discriminative base models established based on single

mpMRI sequence were compared to determine the optimal

sequences among HR+ vs. HR-, TNBC vs. HEBC and TNBC vs.

non-TNBC. Supplementary Figure S1 demonstrated the

discrimination comparison results on ten sequences of the three

classification tasks.
FIGURE 2

Flow chart of the study. HR, hormone receptor; TNBC, triple-negative breast cancer; HEBC, human epidermal growth factor receptor 2 enriched BC.
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By analyzing the dominant radiomics features of each sequence,

the optimal sequence for discriminating HR+ vs. HR- was DWI600,
the optimal Rss model, namely Rss (DWI600), achieved the highest

AUC of 0.787 in the random training cohort (Figure 3), and similar

performance in the training/validation cohort (AUC=0.767) and

test cohort (AUC=0.768), respectively (Table 2).

The optimal sequence for identifying TNBC and HEBC was

DWI-derived ADC map, the best Rss model, recorded as Rss

(ADC), yield the highest AUC of 0.788 in the random training

cohort (Figure 3), and the best AUC of 0.769 and 0.718 in the

training/validation cohort and test cohort, respectively (Table 2).

Regarding TNBC vs. non-TNBC discrimination, the ADC map

was also the best sequence, the optimal Rss model (Rss [ADC])

demonstrated the highest AUC of 0.809 in the random training

cohort (Figure 3), and the best AUC of 0.784 and 0.735 in the

training/validation cohort and test cohort, respectively (Table 2).
Frontiers in Oncology 06
RFF model development and evaluation

We selected the top four superior sequences for molecular

receptor status classification to build the RFF model. As shown in

Figure 3 and Figure S1, the top four superior sequences for HR+ vs.

HR- were DWI600, DWI800, DWI-derived ADC map and DCE5,
with all AUCs > 0.77 in the random training cohort (Figure S1A).

Similarly, DWI-derived ADCmap, DCE2, DCE3 and DCE4 were the

top four dominant sequences for TNBC vs. HEBC, yielding all

AUCs > 0.72 (Figure S1B). While the four most predominant

sequences for TNBC vs. non-TNBC were DWI-derived ADC

map, DWI600, T2WI and DCE2, achieving all AUCs greater than

0.73 (Figure S1C).

Subsequently, the performances of each combination of the top

two, three or four high-performance mpMRI sequences in random

training cohort (a total of 11 types of combinations during each
TABLE 1 Demographics data and tumor characteristics.

characteristics HR+ (n=336) HEBC (76) TNBC (n=54) P values

age 55.77 ± 11.00 54.58 ± 9.73 51.43 ± 12.09 0.024a

tumor size (mm)* 21.00 (16.00-30.00) 27.00 (18.25-42.75) 26.00 (19.75-39.25) 0.000b

affected side 0.119c

left 167 (49.7) 47 (61.8) 25 (46.3)

right 169 (50.3) 29 (38.2) 29 (53.7)

tumor enhancement morphology 0.004c

mass enhancement 317 (94.3) 69 (90.8) 44 (81.5)

non-mass enhancement 19 (5.7) 7 (9.2) 10 (18.5)

number of tumor 0.001c

single 233 (69.3) 37 (48.7) 40 (74.1)

multicentric or multifocal 103 (30.7) 39 (51.3) 14 (25.9)

Ki-67 status 0.000c

<14% 123 (36.6) 5 (6.6) 1 (1.9)

>14% 213 (63.4) 71 (93.4) 53 (98.1)

histological type 0.000d

invasive carcinoma 294 (87.5) 62 (81.6) 52 (96.2)

ductal carcinoma in situ 22 (6.6) 14 (18.4) 1 (1.9)

intraductal papillary lesions 18 (5.5) 0 (0) 0 (0)

others† 1 (0.4) 0 (0) 1 (1.9)
fr
Unless indicated otherwise, data are numbers of cancers, with percentages in parentheses.
*Data are median, with interquartile range (IQR) in parentheses.
†Other invasive cancers are 1 neuroendocrine carcinoma in HR+ and 1 malignant phyllodes tumor carcinoma in TNBC.
aOne-way ANOVA analysis.
bKruskal-Wallis H test.
cChi-square test.
dFisher’s Exact Test.
A P value less than 0.05 was considered statistically significant, presented in bold. HR hormone receptor, HEBC human epidermal growth factor receptor 2 enriched breast cancer, TNBC triple
negative breast cancer.
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classification task) were compared and displayed in Figure S2. Our

results illustrated that the model RFF (DWI600+DWI800+DCE5), RFF

(ADC+DCE2+DCE4) and RFF (ADC+DWI600+T2WI+DCE2) were

superior over the other sequences combinations in the random

training cohort, yielding the maximal AUC of 0.809, 0.805 and

0.847, respectively. Similar performances were obtained in the

training/validation cohort and test cohort, outperforming the Rss

model with an AUC of 0.778 and 0.726, 0.787 and 0.773, 0.818 and

0.773, respectively (both p<0.05 except HR+ vs. HR-), as shown in

Tab le 2 . Among RFF (DWI60 0+DWI80 0+DCE5) , RFF

(ADC+DCE2+DCE4) and RFF (ADC+DWI600+T2WI+DCE2), the

base model (classifier + feature selection method) were respectively

“Logistic Regression + Multi-Cluster Feature Selection” (MCFS),

“Logistic Regression + Discriminative Feature Selection” (UDFS)

and “Logistic Regression + trace_ratio”. The MpMRI-based feature

fusion method employed in the task of TNBC vs. non-TNBC

achieved the optimal discriminative capability, yielding AUC,
Frontiers in Oncology 07
ACC, SEN and SPE of 0.818, 0.718, 0.705, 0.721 in the training/

validation cohort and 0.773, 0.767, 0.636, 0.780 in the test

cohort, respectively.
Top-ranked radiomics features

The top-ranked features associated with the three classification

tasks were also sieved by the proposed RFF model and their

discriminative capabilities were analyzed. Based on the feature

selection procedure of each base model, we counted and ranked

the occurrence of each selected feature (only for base models with

AUC > 0.6). The fifteen most frequently selected features of the

three classification tasks were displayed in Tables S5-S7. Most

dominant features were texture features in HR+ vs. HR- (8/15)

and TNBC vs. HEBC (8/15), while intensity-based features were the

superior discriminative features of TNBC vs. non-TNBC (11/15).
TABLE 2 performance of the optimal Rss model and the optimal RFF model for different molecular receptor statuses discrimination.

Classification
tasks

Model Training/Validation cohort Test cohort

AUC ACC SEN SPE P
value

AUC ACC SEN SPE P
value

HR+ vs. HR- Rss (DWI600) 0.767 0.736 0.770 0.653 0.768 0.693 0.689 0.706

RFF (DWI600+DWI800+DCE5) 0.778 0.737 0.753 0.699 0.066 0.726 0.659 0.673 0.613 0.028

TNBC vs. HEBC Rss (ADC) 0.769 0.656 0.667 0.650 0.718 0.692 0.684 0.700

RFF(ADC+DCE2+DCE4) 0.787 0.692 0.655 0.720 0.043 0.773 0.645 0.636 0.650 0.017

TNBC vs. non-TNBC Rss (ADC) 0.784 0.727 0.683 0.734 0.735 0.707 0.611 0.721

RFF(ADC+DWI600+T2WI
+DCE2)

0.818 0.718 0.705 0.721 0.042 0.773 0.767 0.636 0.780 0.025
fro
P value: compared the performance between the optimal Rss model and the optimal RFF model in the training/validation cohort and test cohort of each discriminative task. Significant values (P <
0.05) are presented in bold. HR, hormone receptor; HEBC: human epidermal growth factor receptor 2 enriched BC; TNBC: triple-negative breast cancer. AUC, area under the receiver-operating
characteristic curve; SEN, sensitivity; SPE, specificity; ACC, accuracy.
FIGURE 3

Each sequence with the maximum AUC value in identifying HR+ vs. HR- (DWI600), TNBC vs. HEBC (ADC), and TNBC vs. non-TNBC (ADC) in the
random training cohort. HEBC, human epidermal growth factor receptor 2 enriched BC;TNBC, triple-negative breast cancer; HR, hormone receptor.
◆ The optimal single sequence for each classification.
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The top 5 most frequently selected radiomics features associated

with the discrimination of HR+ and HR- included three

morphology-based features and two gray level co-occurrence

matrix (GLCM) features, while intensity-based features accounted

for 80% (4/5) and 100% (5/5), respectively among the top 5

radiomics features of TNBC vs. HEBC and TNBC vs. non-TNBC

(Table 3). All the features showed statistically significant differences

between HR+ and HR-, TNBC and HEBC, TNBC and non-TNBC

with p-values < 0.001. The mean feature values of each group were

used as the threshold to identify different molecular receptor
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statuses. In the task of discriminating TNBC from non-TNBC,

the top 5 features outperformed other two tasks, with ~75% of the

non-TNBC having larger feature values, while ~65% of the TNBC

group had smaller values in all top 5 features (Table 3).
Discussion

Our study aimed to simulate the diagnostic process of

radiologists by comprehensively analyzing radiomics features
TABLE 3 The top 5 most frequently selected radiomics features of the three classification tasks based on the optimum RFF models.

Classification tasks Top 5 radiomics features P value M (<Mean |>Mean)

HR+ vs. HR-

shape_SphericalDisproportion (1st) 0.0002 0.569
HR+ (70.59% | 29.41%)

HR- (57.58% | 42.42%)

shape_MinorAxisLength (2nd) 0.0013 0.203
HR+ (64.29% | 35.71%)

HR- (49.49% | 50.51%)

shape_Sphericity (3rd) 0.0002 -0.691
HR+ (72.27% | 27.73%)

HR- (56.57% | 43.43%)

glcm_Correlation (4th) 0.0002 0.729
HR+ (57.56% | 42.44%)

HR- (39.39% | 60.61%)

glcm_Imc2 (5th) 0.0010 1.069
HR+ (57.14% | 42.86%)

HR- (41.41% | 58.59%)

TNBC vs. HEBC

firstorder_Entropy (1st) <10-4 -1.229
TNBC (67.44% | 32.56%)

HEBC (30.36% | 69.64%)

firstorder_MeanAbsoluteDeviation (2nd) 0.0004 -0.778
TNBC (55.81% | 44.19%)

HEBC (30.36% | 69.64%)

firstorder_Uniformity (3rd) <10-4 0.838
TNBC (69.77% | 30.23%)

HEBC (35.71% | 64.29%)

glcm_ClusterTendency (4th) 0.0017 -0.390
TNBC (58.14% | 41.86%)

HEBC (28.57% | 71.43%)

firstorder_RobustMeanAbsoluteDeviation (5th) 0.0007 -0.689
TNBC (53.49% | 46.51%)

HEBC (32.14% | 67.86%)

TNBC vs. non-TNBC

firstorder_90Percentile (1st) <10-7 -0.169
TNBC (62.79% | 37.21%)

non-TNBC (25.17% | 74.83%)

firstorder_MeanAbsoluteDeviation (2nd) <10-6 -0.232
TNBC (62.79% | 37.21%)

non-TNBC (24.83% | 75.17%)

firstorder_RobustMeanAbsoluteDeviation (3rd) <10-6 -0.198
TNBC (62.79% | 37.21%)

non-TNBC (22.45% | 77.55%)

firstorder_Entropy (4th) <10-6 -0.365
TNBC (67.44% | 32.56%)

non-TNBC (30.95% | 69.05%)

firstorder_RootMeanSquared (5th) <10-5 -0.103
TNBC (60.47% |39.53%)

non-TNBC (27.55% | 72.45%)
The ‘Mean’ shows the mean of the mean radiomics feature values of the two groups in each classification. The letter of ‘(<Mean | >Mean)’ represents the percentage of patients in the two groups
with feature value smaller than or larger than the ‘Mean’ value. Values in bold indicate these features with better discriminative performance.
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from mpMRI to distinguish different receptor statuses (HR+ vs.

HR-, TNBC vs. HEBC, and TNBC vs. non-TNBC) of breast cancers.

Initially, the most discriminative MRI sequences (denoted as Rss

models) were screened out from the radiomics features, and then

the “RFF models” were built by incorporating the top four sequences

with high performance on molecular subtype classification. This

approach resembles the typical diagnostic process of a radiologist,

who first performs a preliminary assessment of all available imaging

sequences and then focuses on a subset of sequences with

particularly informative features for the final diagnosis. The

results showed that the RFF models “DWI600+DWI800+DCE5”,

“ADC+DCE2+DCE4” and “ADC+DWI600+T2WI+DCE2”

outperformed each Rss model in the classification tasks of HR+

vs. HR-, TNBC vs. HEBC, and TNBC vs. non-TNBC, with all AUC

values exceeding 0.7. These findings highlight the effectiveness of

fusing multi-sequence MRI radiomics features by the RFF approach

to achieve high performance in differentiating different receptor

statuses of BCs.

Breast cancers exhibit high heterogeneity, leading to distinct

therapeutic approaches, such as endocrine therapy for HR+ BCs,

targeted therapy with anti-HER-2 monoclonal antibodies for

HEBCs, and NST mainly for TNBCs (3). Radiomics, deriving

multiple quantitative features from multimodal medical images,

may capture spatiotemporal heterogeneity reflected by different

molecular receptor statuses before treatment. This improves the

discriminative and predictive abilities of medical image in oncology

(6, 22). Previous studies have applied radiomics preoperatively to

assess molecular receptor statuses of BCs and reported preliminary

success (7, 8, 11, 12). For instance, Leithner et al. found that

radiomic signatures extracted from DCE-MRI via a K-Nearest

Neighbors (KNN) classifier were capable of classifying luminal A

vs. luminal B, luminal B vs. triple negative, luminal B or HER-2

enriched vs. all other cancers (all ACC >77%) (11). However, most

previous studies employed only one or twoMRI sequence(s) such as

DCE-MRI or DWI-derived ADC maps, without exploring all

routine mpMRI sequences, leading to uncertainty regarding

which sequences are more important. Our study compared the

performances of all ten routine mpMRI sequences, revealing that

radiomics signatures from DWI600, DWI800, DWI-derived ADC

map, and DCE5 sequences exhibited superior discriminative power

for HR+ vs. HR-, especially the DWI600 and DWI800 sequences.

Interestingly, radiomics features from DWI-derived ADC maps

contributed more than other sequences for TNBC vs. HEBC and

TNBC vs. non-TNBC.

The DWI provides a quantitative ADC parameter that closely

reflects the microenvironment of tumor structures such as tumor

cellularity, fluid viscosity, the amount of fibrous stroma, and cell

membrane permeability, by detecting the Brownian motion of water

molecules (23, 24). DWI and ADC maps have been widely used in

tumor characterization, particularly in BC. While previous studies

have conducted quantitative analyses based on ADC maps to

identify different molecular receptor statuses or subtypes of BC,

however, the reported results were inconsistent (25–29). For

example, Suo et al. found that HER-2 positive subtype exhibited

higher mean ADC values than other subtypes of BC with either

standard (800 s/mm2) or high (1500 s/mm2) b-values (26).
Frontiers in Oncology 09
However, other studies have reported that TNBC had a higher

mean ADC value than other subtypes (28, 29). These inconsistent

findings may be due to the use of different b-values in DWI,

different ROI selection strategies (e.g., 2D or 3D ROIs, ROI

containing the whole tumor or the lower part of ADC values

within the lesion), variations in magnetic field, etc. (27, 30, 31).

Further studies and investigations are warranted, but these trends in

ADC values according to clinically relevant subtypes may provide

potential imaging biomarkers to aid treatment decisions in BC in

the future. The results of our comprehensive analysis revealed that

ADC map and DWI sequences played a dominant role in the three

classification tasks, suggesting that radiologists should give greater

attention to ADC maps and DWI sequences during the clinical

interpretation process.

In addition, we found that the DCE5 sequence, one of the

delayed-contrast phases, was more important than other DCE

phases in the differentiation between HR+ and HR- BCs.

Generally, a time-signal intensity curve on DCE-MRI with a rapid

enhancement (corresponding to DCE2-3 in our study) followed by a

washout pattern, is generally indicative of a malignant breast lesion.

However, this pattern does not apply to TNBC, which is a common

HR- subtype. A previous study showed persistent enhancement

pattern on DCE-MRI was significantly associated with TNBC (32).

Interestingly, another research showed that a significant proportion

(33% [25 of 76]) of familial BCs exhibited a slow or intermediate

initial enhancement followed by steady delayed enhancement

pattern, which was the general DCE-MRI kinetic feature for

benign BC lesions (33). This discrepancy in DCE-MRI

enhancement patterns between HR+ and HR- subtypes may be

explained by their unique pathohistological features (34, 35). ER-

negative BCs are known to have several unique histological features,

such as prominent lymphoid stroma, comedo-type necrosis, and

central fibrosis (34). TNBC is also highly associated with the

presence of a central scar, tumor necrosis, and stromal

lymphocytic response (35). These features may result in retaining

of contrast agent within the center of lesions and show persistent

enhancement, which may be captured as dominant radiomics

features from the delayed-contrast phase of DCE-MRI. Our

results suggested the potential of the delayed-contrast phase of

DCE-MRI in differentiating HR+ and HR- subtypes and in the

selection of endocrine therapy candidates.

In this study, we explored the potential of fusing dominant features

from mpMRI sequences to improve the accuracy of BC subtype

classification. Our hypothesis was that multi-dimensional image

information from multiple MRI sequences could be captured and

integrated to provide a more comprehensive representation of the

breast lesion. Different from previous studies (7, 14, 36), we investigated

all sequences of a routine breast MRI examination and selected the top

four high-performance sequences to develop a discriminative model via

fusing dominant features of multi-sequences. Incorporating class

structure information, the RFF can not only effectively integrate

features from different MR sequences, but also ensures that the fused

features are more representative and discriminative. The results of our

study emphasized the importance of incorporating multiple MRI

sequences in the radiomics analysis of breast cancer, as it can lead to

improved accuracy in molecular subtype classification.
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Our results showed that the top 5 radiomics features that

effectively differentiated HR+ and HR- BC were three

morphology-based features and two GLCM-based features. This

aligns with prior studies, which have shown that molecular subtypes

of BC exhibit distinct morphological and textural characteristics on

MRI images (11, 37). Tumors of the luminal type, for instance, tend

to present with irregular shapes and irregular/spiculated contours

on MRI due to their slow growth rate and the desmoplastic reaction

of the surrounding tissue (10, 33). On the contrary, rapidly growing

TNBCs and HEBCs tend to have well-defined, oval/round shapes

with smooth outlines (10, 32). According to IBSI, GLCM represents

the distribution of intensities of neighboring pixels along image

directions and reflects the heterogeneity of image intensity (17).

Previous studies have shown that BC subtypes also exhibited

distinct ADC values, DWI manifestations and enhancing intensity

patterns (11, 27, 38–40). A recent study also reported that non-

TNBCs had significantly higher mean/median/5th percentile washin

values compared to TNBCs, indicating that HR+ and HR- lesions

have different intensity-derived radiomics features (41). Of note,

first order features accounted for 80% (4/5) and 100% (5/5) for

classifying TNBC vs. HEBC and TNBC vs. non-TNBC, respectively.

The intensity statistical features described intensity distribution

within the ROI and also reflected tumor’s heterogeneity (11, 42).
Limitations

Our study has certain inherent limitations that merit

acknowledgment. First, the retrospective design and single-center

setting of this study was subjected to selection bias. Conducting a

multi-center study was not feasible due to the variations in MRI

scan protocols across medical centers, necessitating the inclusion of

DCE-MRI with 6 different phases and DWI with b values of 600 and

800 mm2/s. Second, a majority of tumors with non-mass

enhancement in DCE-MRI were excluded due to challenges in

defining the boundaries for VOI delineation, potentially

introducing further selection bias. Third, the manual delineation

of tumors in this study is time-consuming and prone to subjectivity,

and future studies will incorporate semi- or automatic segmentation

techniques to enhance objectivity. Fourth, not all radiomics features

were analyzed, e.g., gray level dependence matrix (GLDM) being

beyond the scope of IBSI was excluded. Fifth, we included a subset

of breast cancers that were pathologically confirmed through needle

biopsy, which may introduce inherent bias of needle biopsy. Finally,

the biological interpretability of the “fused features” used in RFF

model was insufficient as a result of implementing the feature fusion

strategy, which we will focus on in our future studies.
Conclusion

In conclusion, the RFF model was successfully developed by

integrating mpMRI image information to determine different

molecular receptors of breast cancer preoperatively. This model,
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which mimics the diagnostic work pattern of radiologists,

outperformed single MR sequence-based radiomics models to

distinct molecular receptor status.
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