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Department of Rehabilitation Medicine, General Hospital of Northern Theater Command,
Shenyang, China
Osteosarcoma (OS) is a primary malignant bone tumor that occurs in children

and adolescents, and the PI3K/AKT pathway is overactivated in most OS patients.

MicroRNAs (miRNAs) are highly conserved endogenous non-protein-coding

RNAs that can regulate gene expression by repressing mRNA translation or

degrading mRNA. MiRNAs are enriched in the PI3K/AKT pathway, and aberrant

PI3K/AKT pathway activation is involved in the development of osteosarcoma.

There is increasing evidence that miRNAs can regulate the biological functions of

cells by regulating the PI3K/AKT pathway. MiRNA/PI3K/AKT axis can regulate the

expression of osteosarcoma-related genes and then regulate cancer

progression. MiRNA expression associated with PI3K/AKT pathway is also

clearly associated with many clinical features. In addition, PI3K/AKT pathway-

associated miRNAs are potential biomarkers for osteosarcoma diagnosis,

treatment and prognostic assessment. This article reviews recent research

advances on the role and clinical application of PI3K/AKT pathway and miRNA/

PI3K/AKT axis in the development of osteosarcoma.
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GRAPHICAL ABSTRACT

Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma.
1 Introduction

Osteosarcoma (OS) is a primary malignant bone tumor derived

from bone forming mesenchymal stem cells. It is highly malignant

and can be locally aggressive and often leading to pulmonary or even

systemic metastases. Children and adolescents are the most common

patients with osteosarcoma, second only to lymphoma and brain

tumors in the childhood and adolescent population (1–3). The distal

end of the femur is the most common site for osteosarcoma, followed

by the proximal end of the tibia and humerus (2, 4–6). Local invasion

is observed in more than 85% of osteosarcoma patients, with lung

metastases being the most common in 74% of patients with

metastases, followed by bone metastases in 9% of patients, and

both bone and lung metastases in 8% of patients with metastases

(6). In recent decades, surgery combined with new chemotherapy has

been recognized as the standard treatment for osteosarcoma,

significantly improving overall survival and quality of life (7).

Emerging chemotherapy regimens include cisplatin (DDP),

a d r i a m y c i n ( DOX ) , m e t h o t r e x a t e (MTX ) , a n d

isocyclophosphamide (IFO) (7). However, the therapeutic effect of

chemotherapeutic agents is limited by various reasons, such as escape

of apoptosis, reduced drug uptake, and increased drug metabolism.

Systemic metastasis limits the effectiveness of surgical resection, so

metastatic and drug resistance often result in unsatisfactory outcomes

and prognosis for patients with osteosarcoma (8). The problems

described above involve changes in multiple biological processes,
Frontiers in Oncology 02
including changes in genetic and epigenetic characteristics.

Understanding and studying the molecular changes of genes

associated with the formation of osteosarcoma and associated

signaling pathways will help uncover the mechanisms underlying

its occurrence and development, providing new directions for the

diagnosis, targeted therapy, and prognosis of osteosarcoma.

More than 98% of the genes in the human genome are

composed of noncoding genes (9–11). Since they lack the ability

to encode proteins, their transcripts are considered non-coding Rna

(ncRNA) (12, 13). With the development of high-throughput

sequencing technology, the characteristics of ncRNAs have

gradually emerged, and microRNA (miRNA, miR), long ncrna

(lncRNA) and circular RNAs (circRNA) are considered as

classical ncRNA (14–16). Among them, miRNA is a conserved

endogenous non-coding RNA of approximately 22 nucleotides in

length (17, 18). MiRNA can bind to the untranslated region (UTR)

of mRNA and regulate the expression of target genes by inhibiting

the translation or degradation of mRNA, thereby affecting a variety

of intracellular signaling pathways and playing an important role in

the formation of tumors (19). The abnormal expression of miRNA

in tumor cells can affect the malignant biological behavior of tumor

cells (20–23), and osteosarcoma is no exception. MiRNA have a

very important role in the development of osteosarcoma and are

clearly associated with many clinical features (24–27). MiRNAs are

expected to become effective biomarkers for diagnosis, targeted

therapy and prognosis of osteosarcoma patients.
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It is well known that the PI3K/AKT pathway plays an extremely

important role in the life activities of cells (28), It can be activated by

insulin growth factors and cytokines under physiological conditions

and participates in the regulation of a variety of intracellular signal

transduction and cell biological processes (29), such as cell growth,

differentiation, transcriptional regulation, protein synthesis,

metabolism, autophagy, cell proliferation, apoptosis, angiogenesis,

migration, and cytoskeletal reorganization (30–36). Aberrant

activation of the PI3K/AKT pathway has been observed in almost

all types of tumor cells (37–39), such as ovarian cancer (40, 41), lung

cancer (42, 43), gastric cancer (44, 45), pancreatic cancer (46, 47),

breast cancer (48, 49), hepatocellular carcinoma (50, 51),

lymphoma (52, 53), osteosarcoma (54) and so on. Therefore, an

in-depth study of the function of PI3K/AKT pathway in

carcinogenesis is of great importance.

Recently, there is increasing evidence that the interaction

between miRNA and PI3K/AKT pathway has an important role

in the biological process of osteosarcoma (55–58). Moreover, this

interaction has been found to be significantly associated with many

clinical features (59, 60), and these studies provide a new

perspective for the diagnosis, targeted therapy and prognosis of

osteosarcoma patients. In recent years, the study of miRNA

associated with the PI3K/AKT pathway has also been a hot spot

for investigating mechanisms related to osteosarcoma development.

In this review, we review the molecular mechanisms and functional

roles of the miRNA/PI3K/AKT axis in the pathogenesis and

progression of osteosarcoma.
2 PI3K/AKT pathway in osteosarcoma

It is well known that aberrant activation of the PI3K/AKT

pathway may lead to tumorigenesis. In recent years, a large amount

of evidence has shown that dysregulation of PI3K/AKT pathway is

involved in a variety of pathological processes of OS, including OS

occurrence, proliferation, metastasis, migration, invasion, cell cycle

progression, apoptosis, autophagy, angiogenesis, chemoresistance,

Epithelial-Mesenchymal Transition (EMT), aerobic glycolysis, etc.

This section introduces the PI3K/AKT pathway and outlines the

mechanisms involved in the role of PI3K/AKT pathway in the

development of osteosarcoma.
2.1 Overview of the PI3K/AKT pathway

Abnormalities in the PI3K/AKT pathway are common in

osteosarcoma, and the PI3K/AKT pathway plays a critical role in

regulating the growth, proliferation, differentiation, migration,

metastasis, infiltration, apoptosis, and drug resistance of

osteosarcoma (61–65). It has been demonstrated that the

dysregulation of major factors in this signaling pathway in

osteosarcoma cells is closely related to the activation and

inhibition of other downstream signaling pathways. PI3K, a

member of the large family of lipid kinases, is a downstream

effector of receptor tyrosine kinases (RTKs) and G protein-
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coupled receptors (GPCRs) (66). Based on the differences in

structure and function of PI3K, it has been classified into three

subclasses, class I, II and III (36, 67). Among them, class I PI3K is

the most relevant to tumors, and the most intensive research has

been conducted on class I. Class I is further divided into class IA

and class IB, and they are composed of the p110a, b, g and d
catalytic subunits encoded by the PIK3CA, PIK3CB, PIK3CG and

PIK3CD genes, respectively, and the PIK3R1, PIK3R2 and PIK3R3

genes encoding p85a, p85b and p55g regulatory subunits of the

PIK3R1, PIK3R2 and PIK3R3 genes (68, 69). The binding between

subunits not only stabilizes the structure of PI3K but also provides

sites for activation of PI3K by RTKs, GPCRs, and oncogenes (e.g.

Ras) (36, 67, 70). Various molecules including insulin, epithelial

growth factor (EGF), glucose, fibroblast growth factor (FGF) and

vascular endothelial growth factor (VEGF) can activate PI3K via

RTKs and GPCRs (71, 72). Activated PI3K can convert

phosphatidylinositol 3,4-bisphosphate (PIP2) to 3,4,5-

trisphosphate (PIP3), and PIP3 can bind to phosphatidylinositol-

dependent kinase 1 (PDK1) to phosphorylate AKT (73). During this

process, the negative regulator phosphatase and tensin homologue

(PTEN) can invert PIP3 to PIP2 to limit the intensity of this

activation process (74).

AKT is a serine/threonine kinase encoded by the PKB gene.

AKT can lead to the activation of the downstream PI3K/AKT

pathway through the phosphorylation of various substrates,

including AKT1, AKT2 and AKT3, which is an extremely

important protein molecule in the PI3K/AKT pathway (75).

Activation of AKT is mainly the result of PDK-1 and mTORC2

phosphorylation at threonine 308 and serine 473, respectively (76,

77).AKT can also be inhibited by dephosphorylation of CTMP,

PP2A, and tcl1 (78–80), after which activated AKT is transferred to

the cytoplasm and nucleus, where it can activate or inhibit matrix

metalloproteinases (MMPs) through phosphorylation and

dephosphorylation, cyclic-dependent kinase (CDKs), MDM2,

GSK3b, FOXO1, and other downstream substrates (71, 81–83),

thus affecting various cellular signaling pathways and metabolic

pathways and leading to abnormal life activities in normal cells.
2.2 Role of PI3K/AKT pathway in OS
development

2.2.1 Malignant phenotype of osteosarcoma
PI3K/AKT pathway and its upstream and downstream related

molecules can have a significant impact on the formation of

osteosarcoma and the associated malignant phenotype. This

evidence strongly suggests the importance of the PI3K/AKT

pathway for osteosarcoma formation, as evidenced by whole-

genome sequencing analysis of OS cell lines that revealed

significant upregulation of AKT expression, followed by

significant inhibition of proliferation in all cell lines by the

addition of the metamorphic AKT inhibitor MK-2206 (84). The

levels of phosphorylated PI3K (p-PI3K) and phosphorylated AKT

(p-AKT) are closely related to the activation of PI3K/AKT pathway,

downregulation of fatty acid synthase (FAS) significantly reduces
frontiersin.org
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the expression levels of p-PI3K and p-AKT, which in turn reduced

the proliferation and invasion of U-2OS cells (Figure 1A) (84).

Chordin-like 2 (CHRDL2) is one of the Bone morphogenic proteins

(BMPs) antagonist that prevents the interaction between BMPs and

their cognate cell surface receptors (89). CHRDL2 is highly

expressed in osteosarcoma tissues, and it was confirmed

experimentally that CHRDL2 promotes the metastasis and

proliferation of osteosarcoma cells through the BMP-9/PI3K/AKT

pathway (Figure 1B) (86). Cyclooxygenase-2 (COX-2) is a

membrane-bound protein closely related to inflammatory

diseases. It is an inducible cyclooxygenase and rate-limiting

enzyme for prostaglandin synthesis. Most tissue cells do not

express COX-2 under physiological conditions, but it shows an

increasing trend under pathological conditions such as

inflammation and tumor (90). In osteosarcoma, COX-2 affects

the expression levels of vimentin, E-cadherin, MMP-9 and MMP-

2 by activating the PI3K/AKT/NF-k b signaling pathway, leading to

a significant increase in the migratory ability of osteosarcoma cells

(Figure 1C) (87). Studies have reported that glycoprotein non-

metastatic melanoma protein B (GPNMB) affects the metastasis of

tumor cells in addition to being associated with tissue regeneration,

inflammation, and cell proliferation (91). GPNMB may also be a

potential target for targeted therapy of osteosarcoma, as it has been

found that GPNMB can regulate the metastasis and proliferation of

osteosarcoma cells by affecting the PI3K/AKT/mTOR pathway (92).

PTEN, the first tumor suppressor gene identified with tyrosine

phosphatase activity (93), is a potent negative regulator of AKT and
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plays a crucial role in controlling PI3K/AKT signaling activation

(94). MiR-221, miR-17, and miR-128 overexpression leads to the 3-

UTR of PTEN by directly binding diminished inhibition of PTEN

and activation of the PI3K/AKT pathway, which significantly

promotes OS cell proliferation, migration and invasion (94, 95).

In a similar vein, HER4 is a member of the ErbB family, and it has

been demonstrated that HER4 can promote osteosarcoma

progression in part by affecting the PTEN/PI3K/AKT pathway

(Figure 1D) (88). On the other hand, if we block the PI3K/AKT

signaling cascade by various means can prevent the development of

OS-related malignant phenotypes. A recent study showed that OS

cell proliferation was significantly inhibited after Ski knockdown,

and in-depth studies revealed a significant decrease in the protein

levels of p-PI3K and p-AKT in the cells, thus the mechanism was

hypothesized to be the knockdown of Ski blocking the PI3K/AKT

pathway (Figure 2A) (62). Melanoma deficiency factor 2 (AIM2) is

lowly expressed in osteosarcoma cells, and overexpression of AIM2

inhibits the levels of p-PI3K, p-AKT and p-mTOR thereby

suppressing the proliferation, invasion and migration of

osteosarcoma cells, a process that can be reversed by LY294002,

suggesting that AIM2 is a tumor suppressor (61). However, this

study lacks research on the upstream mechanism of AIM2, and no

animal experiments have been conducted to further confirm this

conclusion. Therefore, it has certain limitations. Molecules such as

Schisandrin B (Sch B), Budding uninhibited by benzimidazoles 1

(BUB1), can affect the malignant phenotype of osteosarcoma by

activating or inhibiting the PI3K/AKT pathway (100, 101).
A B
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FIGURE 1

(A) Representative images of the transwell invasion assays and wound healing assays are shown for each group (85). (B) Overexpression of CHRDL2
promoted osteosarcoma cell proliferation and mobility. (a) Wound healing assay. (b) Transwell assay (86). (C) COX-2 overexpression increases migration and
invasion in MG-63 cells (87). (D) The role of HER4 in the PI3K/mTOR signaling pathway. (D-a) The western blotting was used to measure the protein
expression of p-PI3K, p-AKT, and p-PTEN. (D-b) Wound healing assay was performed to measure the migration ability of cells (88).
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2.2.2 Cell cycle
The entire process of cell division from the completion of one

division to the end of the next is called the cell cycle, and the strictly

conserved cell cycle control mechanism is the main regulatory

mechanism of cell proliferation; cancer is the result of continuous

overdivision of cells, and therefore dysregulation of the cell cycle is

closely related to the biological behavior of osteosarcoma (102). The

cell cycle consists of interphase and mitotic phase consisting of G1,

S and G2 phases. The transition from G1 to S phase and G2 to M

phase are two very important phases of the cell cycle, which are very

complex and active, and are particularly susceptible to abnormal

environmental conditions thus appearing to lead to abnormal cell

cycle emergence (64). Kexiang Zhang et al. recently found that

Notch1 inhibited PI3K/AKT signaling, leading to S-phase block and

effectively inhibiting the proliferation of osteosarcoma cells (103).

Yong Cui et al. also demonstrated that S-phase block could be

induced in osteosarcoma cells by altering the PI3K/AKT pathway

(Figure 2B) (104). In addition, G2/M phase block can also be caused

through the PI3K/AKT pathway, thereby inhibiting the

proliferation of OS cells, as confirmed by Bin Zhu et al.

(Figure 2C) (96). PI3K/AKT pathway can also be inhibited by

activating mTOR thereby inducing G0/G1 phase cell cycle arrest in

OS cell lines (97). Cyclin family members can interact with CDK

proteins to form an active heterodimer complex, which is necessary

for the formation of specific phases of the cell cycle. Therefore,

cyclin and CDK proteins play an important role in the progression
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of the cell cycle (105). It has been demonstrated that the PI3K/AKT

signaling pathway can influence the cell cycle progression of

osteosarcoma cells by affecting the expression of cell cycle

proteins and CDK. For example, DA-LIANG KONG et al.

significantly inhibited the phosphorylation of AKT by sodium

cantharidininate (SC) without inhibiting mTOR, JNK or p38, and

inhibition of AKT phosphorylation decreased the expression of

CDK4, CDK6 and cyclin D1, which induced G0/G1 phase block in

MG-63 cells that further inhibited the proliferation of osteosarcoma

cells (Figure 2D) (104). This shows that the PI3K/AKT signaling

pathway has an extremely important role in influencing the cell

cycle progression of osteosarcoma cells, and its in-depth study is of

great significance.

2.2.3 Apoptosis
Apoptosis, a self-destructive mechanism present in cells, has the

main role of removing senescent and abnormal cells and

maintaining a normal physiological state of internal environmental

homeostasis. In pathological states, the homeostasis of apoptosis can

be dysregulated, which can negatively affect the organism and may

lead to the development of a range of tumors, including

osteosarcoma (106, 107). Apoptosis is mainly initiated by the

death receptor pathway, which is mediated by death receptors

including tumor necrosis factor (TNF) receptors, TNF-related

apoptosis-inducing ligand (TRAIL) receptors and Fas, and the

mitochondrial apoptosis pathway, also known as the Bcl-2
A

B D

E
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FIGURE 2

(A) Proliferation rates of MG63/U2OS cells among the control, NC-siRNA and Ski-siRNA groups at 24 and 48 h following transfection (62). (B) Cell cycle
profiles determined by propidium iodide (PI) staining and flow cytometry assays of (a) MNNG/HOS and (b) U2OS cells transfected with si-SLC3A2 or
si-NC (96). (C) Flow cytometric analysis of the percentage of cells in different phases of the cell cycle with three independent experiments (97).
(D) Following SC treatment, cell cycle distribution was determined by flow cytometry at 24 h (98). (E) ISL treatment induces apoptosis in U2OS cells (63).
(F) The apoptotic rates of HOS and MG-63 cells were detected by Annexin V/PI double-staining assay (99). *p < 0.05, **p < 0.01.
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regulatory pathway, as it is mainly regulated by the Bcl-2 family

(108). Several recent studies have suggested that in osteosarcoma,

abnormalities in the PI3K/AKT pathway may affect the apoptotic

program of osteosarcoma cells (100, 101, 109–117). For example,

Jing Chen et al. used Isoliquiritigenin (ISL) to inhibit the PI3K/AKT

pathway and found that the protein expression levels of Bax and

active Caspase-3 were elevated, while Bcl-2 levels were significantly

decreased, and further studies revealed that apoptosis was

accelerated and the invasion, proliferation and migration of

osteosarcoma cells were inhibited (Figure 2E) (63), thus suggesting

that the mitochondrial apoptotic pathway would be partially affected

by the PI3K/AKT pathway. This conclusion was further supported

by the use of agonists of the PI3K/AKT pathway to reverse the

regulation of apoptosis and proliferation in a study by Songjia Ni

et al. (118).Sineocolis homolog box homolog 1 (SIX1), an

evolutionarily conserved transcription factor (119), is a key

regulator of embryonic development and is associated with

tumorigenesis and development (120). In osteosarcoma cells,

overexpression of SIX1 inhibits apoptosis, promotes cell migration,

invasion and proliferation, and in-depth studies have revealed that

this function is closely related to reduced PTEN expression and

activation of the PI3K/AKT pathway (121). Glaucocalyxin A has
Frontiers in Oncology 06
properties including inhibition of platelet aggregation (122),

immunosuppressive, antioxidant and DNA damage protective

activity, and cytotoxic activity (123). Recently, it was found that

Glaucocalyxin A can induce apoptosis in osteosarcoma cells by

increasing the ratio of Bax to Bcl-2, triggering reactive oxygen

species (ROS) generation, decreasing mitochondrial membrane

potential and inducing caspase-3 and caspase-9 cleavage, as found

by using PI3K activators and inhibitors This function of

Glaucocalyxin A is mainly achieved by inhibiting the nuclear

translocation of GLI1 through the regulation of PI3K/AKT

pathway (Figure 2F) (99). Furthermore, it has been found that

inhibition of the PI3K/AKT/mTOR signaling pathway promotes

apoptosis in osteosarcoma cells induced by chemotherapeutic agents,

including DOX and methotrexate (MTX) (Figure 3A) (124). This

finding has positive implications for contributing to the current

challenge of chemoresistance.

2.2.4 Autophagy
Autophagy is an intracellular degradation process with highly

conserved characteristics. Damaged organelles and cytoplasmic

proteins are encapsulated into double-layer vesicles, which then

interact with lysosomes to form autolysosomes for degradation,
A
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FIGURE 3

(A) After being cocultured using CHE with DOX or MTX, apoptosis was measured by performing Annexin V-FITC/PI double staining followed by flow
cytometry assay (124). (B) The apoptosis ratios for each group (percentage of Annexin V+ cells) were determined by flow cytometry (125). (C) The
protein levels of the EMT markers, E-cadherin, N-cadherin, MMP-9, p-AKT, and AKT in transfected cells were detected by Western blot (126). (D)
Overexpression of AIM2 inhibits osteosarcoma cell invasion, migration and EMT. (A) Western blotting was used to assess the levels of EMT-related
proteins, including N-cadherin, Vimentin and E-cadherin. (B) Wound healing assay was utilized to detect cell migration (61). (E) ZCCHC12 promoted
OS cell EMT progression, qRT-PCR (A, B) and western blot analysis (C) were performed to examine EMT-related markers in OS cells after ZCCHC12
knockdown or overexpression (104). *p < 0.05; **p < 0. 01; ***p < 0.001; ****p < 0.0001.
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thereby renewing cytoplasmic proteins or organelles (127, 128).

Autophagy is particularly important for cells to maintain

homeostasis and adapt to nutrient deficiencies in vivo. Three

different types of autophagy include microautophagy,

macroautophagy and molecular chaperone-mediated autophagy

(129). There are multiple regulatory mechanisms of autophagy

and the most studied mechanism, PI3K/AKT/mTOR pathway, is

activated under normal nutritional conditions leading to autophagy

inhibition, however, during nutritional deficiency, PI3K/AKT/

mTOR pathway is inhibited leading to autophagy occurrence

(129, 130). It is well known that LC3-II, ATG5 and p62 protein

levels are closely related to autophagy levels, and several studies

have shown that inhibition of the PI3K/AKT/mTOR pathway in

osteosarcoma cells can increase the expression levels of LC3-II,

ATG5 and p62, which increases autophagy and decreases the

proliferative and invasive potential of osteosarcoma cells (64, 131,

132). Jinfeng Zhou et al. also found that activation of autophagic

flux induced by inhibition of PI3K/AKT/mTOR signaling pathway

sensitized OS to DOX (Figure 3B). Therefore, targeting the

CXCR4/PI3K/AKT/mTOR autophagy axis may be an effective

therapeutic strategy to overcome OS chemoresistance (125).

Unfortunately, the above studies are relatively basic, if we can use

electron microscopy and other experimental means to observe the

autophagy behavior of osteosarcoma cells wound greatly increase

the significance of the experimental results. Since the effect of

autophagy on tumors is bidirectional, the different activation

degree of PI3K/AKT pathway will lead to different degrees of

autophagy activation, which may eventually produce tumor

suppressor or carcinogenic effects. Therefore, it is not only a

challenge but also an opportunity to study the relationship

between PI3K/AKT and tumor autophagy.

2.2.5 EMT
EMT is a process of cell morphological characteristics change,

which is characterized by the loss of epithelial cell phenotype and

the transition to mesenchymal cell phenotype. The main

manifestations include the down-regulation of epithelial cell

markers, unstable cell-cell junctions, loss of basement membrane

and apical polarity, and reorganization of the cytoskeleton (133).

Although more attention has been paid to epithelial cancers, EMT

also plays an important role in the formation of non-epithelial

cancers, such as OS. EMT in OS is highly complex and regulated by

multiple signaling pathways, including the PI3K/AKT pathway. E-

calmodulin is a marker of primary epithelial tumors, and Shenyu

Wang et al. found that by affecting the PI3K/AKT pathway can

affect E-calmodulin levels and N-calmodulin levels in osteosarcoma

cells, further altering the cell viability and EMT of osteosarcoma

cells (Figure 3C) (126). Absent in melanoma 2 (AIM2) and Fer-1-

like protein 4 (FER1L4) are two osteosarcoma inhibitors, and

several studies have found that their overexpression inhibited the

PI3K/AKT/mTOR signaling pathway, with an increase in E-

calmodulin and a decrease in wave proteins and fibronectin,

inhibiting EMT (Figure 3D) (61, 134). In contrast, STEAP2

(sixtransmembrane epithelial antigen of prostate 2), zinc finger

CCHC domain containing 12 gene (ZCCHC12) (Figure 3E), and
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fibulin-4 (Figure 4A) are promoters of osteosarcoma, which can be

induced by the PI3K/AKT/mTOR pathway to induce EMT and

promote tumor growth, invasion and metastasis of osteosarcoma

cells (104, 135, 139).

2.2.6 Resistance to chemotherapy drugs
It is self-evident that chemotherapy plays an important role in

the treatment of osteosarcoma. The application of chemotherapy

has greatly improved the overall survival rate and quality of life of

OS patients (140). However, the problem of chemoresistance has

become increasingly prominent in recent years. The problem of

chemoresistance has become a major obstacle to further improve

the treatment effect of osteosarcoma patients. Chemotherapy

resistance in OS can be mediated by a variety of mechanisms,

mainly including significantly reduced intracellular drug

accumulation, accelerated drug inactivation, increased DNA

repair rate, disturbance of intracellular signal transduction

pathways, and abnormal changes in apoptosis, autophagy and

CSCs (124, 125, 141). The PI3K/AKT pathway affects

chemoresistance in osteosarcoma has been demonstrated in

several studies. Menage a trois 1 (MAT1) is a subunit in the cell

cycle protein-dependent kinase-activated kinase (CAK) complex,

and Chensheng Qiu et al. demonstrated that MAT1 is required to

regulate OS chemosensitivity to DDP and achieves its action

through the PI3K/AKT/mTOR pathway (Figure 4B) (136). A

recent study found that knockdown of Zrt and Irt-related

protein 10 (ZIP10) inhibited OS cell proliferation and

chemoresistance, and that ZIP10 promoted Zn content-induced

phosphorylation and activation of cAMP response element

binding protein (CREB), which is a key component of integrin

a10 (ITGA10) transcription and ITGA10 activation PI3K/AKT

pathway, and does not stimulate the classical FAK or SRC

pathways. It was further confirmed by in vivo experiments that

ZIP10 mediates chemotherapy resistance in OS cells via the

ITGA10-PI3K/AKT axis (Figure 4C) (54). Zoledronic acid (ZA)

is a diphosphate compound used to treat bone diseases. It inhibits

bone destruction caused by increased osteoclast activity (142).

Previous studies found ZA to inhibit a variety of tumors including

osteosarcoma, cervical and breast cancers (143–145). A recent

study by Liang Liu et al. found that ZA combined with cisplatin

significantly inhibited the malignant biological behavior of 143B

cells, and that agonists of the PI3K/AKT pathway could reverse

this result. This shows that ZA enhances the antitumor effects of

cisplatin in osteosarcoma through the PI3K/AKT pathway and

reduces chemoresistance and osteoclast activation (Figure 4D),

and this study raises the possibility of using ZA in combination

with cisplatin as a new strategy representing the fight against

osteosarcoma (65). However, these studies related to drug

resistance were supported only by cell and animal experiments

without clinical trials. For example, YU et al. found that AMD

3100 could enhance the antitumor effect of adriamycin in an in

situ OS mouse model. Decreased expression of p-PI3K, p-AKT,

and p-mTOR were also observed. These results suggest that AMD

3100 promotes the antitumor effect of adriamycin on tumor

growth in vivo (125).
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2.2.7 Angiogenesis
Angiogenesis is not only essential for normal life activities, but

is also crucial for tumors, as tumor growth also requires blood

vessels to provide them with adequate nutrients. One study reported

that Nude mice injected with human OS 3AB-OS pluripotent CSC

showed high AKT levels along with a significant increase in tumor

vascular density, and the significant increase in vascular density was

suppressed after inhibition of the PI3K/AKT pathway (146). This

experiment suggests that activation of the PI3K/AKT pathway is

important for angiogenesis in OS. Some studies found that TGF,

VEGF, PDGF and basic fibroblast growth factor (bFGF) play a pro-

angiogenic role in OS progression (147, 148). As mentioned above,

as activators, they can effectively activate the PI3K/AKT pathway.

Thus, activated PI3K/AKT pathway plays a key role in TGF, PDGF

and bFGF-induced OS angiogenesis, however, its clear mechanism

still needs further in-depth study. Recently, DEP domain-

containing mTOR interacting protein (DEPTOR) has been

identified as an endogenous mTOR inhibitor. Considering the

close relationship between DEPTOR and mTOR, DEPTOR is

thought to play an important role in the pathogenesis of many

cancers, and it was found that DEPTOR overexpression

significantly inhibits mTOR and activates the PI3K/AKT

pathway, which is required for OS cell proliferation, migration,
Frontiers in Oncology 08
invasion, angiogenic mimetic formation and survival

(Figure 4E) (97).

2.2.8 Aerobic glycolysis
Increased aerobic glycolysis (Warburg effect) has become a

hallmark of becoming cancerogenesis that can provide more

intermediates for certain biosynthetic pathways and adaptation to

hypoxic environments, a metabolic shift that leads to cancer cell

proliferation and survival (149, 150). Rho-associated coiled-coiled-

coil containing protein kinase 2 (ROCK2) is a serine-threonine

kinase. As a downstream effector of the Rho subfamily of small

gtpase, ROCK2 regulates cell morphology and migration. In

osteosarcoma cells, ROCK2 can promote OS cell growth by

inducing aerobic glycolysis. ROCK2 induces aerobic glycolysis

mainly by activating p-PI3K/AKT pathway to promote the

expression of mitochondrial hexokinase II (HKII). (Figure 4F)

(137). Glucose metabolism assays demonstrated that PDGF/

PDGFR-b effectively promoted aerobic glycolysis in osteosarcoma

cells. PI3K/AKT pathway inhibitor LY294002 was used to perform

WB assays and glucose metabolism assays. The results showed that

PDGF/PDGFR-b promoted aerobic glycolysis in osteosarcoma cells

mainly through the activation of PI3K/AKT/mTOR/c-Myc

pathway (151).
A
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FIGURE 4

(A) Effect of fibulin-4 knockdown and overexpression on the migration and invasion of the differently invasive osteosarcoma cell subclones (135).
(B) MNAT1 regulated OS chemo-sensitivity to DDP-based therapy (136). (C) Tumor weight in each group (54). (D) Cisplatin in synergy with ZA inhibited
osteoclast formation, survival, and activation. (a) The TRAP staining of BMMs treated with M-CSF and RANKL for 4 days in the presence of cisplatin/ZA
+cisplatin. (b) The mature osteoclasts were treated by cisplatin/ZA+cisplatin. (c) The bone resorption on Corning Osteo Assay 24-well plates of
osteoclasts treated by cisplatin/ZA+cisplatin (65). (E) Colony formation capacity of osteosarcoma cells (97). (F) ROCK2 affects the level of glycolysis in OS
cells. Extracellular acidification rate data revealed the glycolytic rate and capacity (137). (G) Tumor growth in mouse xenograft models. MG-63 cells
infected with NC, miR-26a, or anti-miR-26a lentivirus were injected subcutaneously into nude mice (138). *p < 0.05, **p < 0.01.
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3 MicroRNAs in the PI3K/AKT pathway

MicroRNAs are class of small molecular RNAs of 21-25

nucleotides in length, they are widely found in animals, plants and

eukaryotic microorganisms and are a novel and important factor in

regulating gene expression (19, 152). MicroRNAs were originally

identified in Cryptobacterium hidradenum (153). MicroRNAs exist

in several forms, including pri-miRNA, pre-miRNA and miRNA.

Pri-miRNA is derived from the genome of eukaryotes and is

transcribed and spliced to form pre-miRNA, then pre-miRNA is

sheared into mature double-stranded microRNA by the nucleic acid

endonuclease Dicer in the extracellular nucleus, and the mature

double-stranded microRNA is associated with Argonaute (AGO)

and forms a RNA-induced silencing complex (RISC) called the rna-

induced silencing complex, which selects one strand of the double-

stranded body to become a mature miRNA and discards the other

strand (152, 154) (Figure 5). MiRNA present a single-stranded form

structurally and, most characteristically, contain a structurally stable

base pair between the RNA and the RNA within the precursor RNA

structure. The expression of miRNA tends to be higher due to the

wide intracellular distribution of small RNAs (155).

MicroRNAs mainly regulate gene expression by targeting with

specific proteins in cooperation with specific mechanisms: miRNAs

select appropriate mRNA targets through the interaction of the

initiating RNA-mediated silencing complex (RISC) with the mRNA

3’-UTR complementary sequences of target genes, target

recognition, physical hindrance of target sequences, translation

inhibition, degradation and other steps to affect the expression of

target genes and their functions, thus participating in the regulation

of various cell biological processes, such as cell proliferation,

apoptosis, differentiation and metabolism (106, 156, 157). For

example, the interaction of miR-181a-5p with the 3’-UTR

complementary sequence of PTEN leads to a decrease in PTEN,

which results in the activation of PI3K/AKT pathway further

affecting the development of osteosarcoma (55).
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PI3K/AKT pathway is the main signaling pathway that affects

the biological behavior of tumor cells. There is a close relationship

between miRNA and PI3K/AKT pathway. On the one hand,

miRNA can affect the activation and inhibition of the signaling

pathway by targeting and regulating the expression of PI3K/AKT

pathway-related genes. For example, in osteosarcoma cells miR-

181a-5p (55) and miR-133a (158) can target PTEN genes and

inhibit their expression, thus promoting the activation of PI3K/

AKT pathway. In contrast, microRNAs such as miR-506-3p (159)

and miR-126 (160) can target genes of the PI3K/AKT pathway and

suppress their expression, thus inhibiting the activation of the

signaling pathway. On the other hand, the PI3K/AKT pathway

can also function by regulating the expression of miRNA. For

example, the activation and inhibition of AKT can also affect the

expression of miR-21, which further affects the activation of PI3K/

AKT pathway (161).

In summary, miRNA and PI3K/AKT pathway are interacting

with each other, they regulate each other, and for the occurrence

and development of some diseases, such as tumorigenesis and

metastasis, they are also related to the abnormalities of miRNA

and PI3K/AKT pathway. Therefore, studying the interaction

between miRNA and PI3K/AKT pathway in osteosarcoma is of

great significance for further systematic and in-depth

understanding of the pathogenesis of part of osteosarcoma and

the development of new and effective diagnostic, therapeutic and

prognostic strategies.
4 Role of microRNA/PI3K/AKT axis in
osteosarcoma

Many microRNAs associated with the PI3K/AKT pathway are

aberrantly expressed in osteosarcoma. A new series of studies shows

that a range of clinical features in patients with osteosarcoma are

associated with the PI3K/AKT pathway and microRNAs (Table 1).
FIGURE 5

The formation process of miRNA.
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TABLE 1 Clinical characterization of miRNAs associated with the PI3K/AKT pathway.

MicroRNA Expression Targeted Object Prognostic
indicator Clinical feature Ref

miR-3927-3p Downregulated
Integrin-
avb3

7 patients undergoing surgical resection
Clinical stages,lung

metastasis
(162)

miR-106 Upregulated PI3K
54 tumor tissues and adjacent normal tissues (35 males and 18
females with the mean age of 12.3 years, including 32 cases

with lung metastasis)

Lung metastasis,
clinical stages

(163)

miR-183-5p Downregulated AKT
40 OS patients were enrolled in this study, including 24 males
and 16 females (6-48years, mean age of 26.24 ± 6.58 years)

Overall
survival

Distant metastasis (164)

miR-130a Upregulated PTEN
Tumor specimens and the adjacent non-cancer tissues were

obtained from 86 osteosarcoma patients

Overall
survival,

disease-free
survival

Clinicopathologic
feature,TNM staging,
Distant metastasis

(56)

miR-340-5p Downregulated NRF2 47 tumor tissues and adjacent normal tissues
Overall
survival

Malignant
clinicopathologic

features
(165)

miR-21 Upregulated
PTEN,tgf-

b1

46 patients with osteosarcoma(26 males and 20 females, and
age ranged from 10 to 65 years, with an average age of 32 ± 9.2

years)

TNM staging,Late
diagnosis

(166)

miR-133b Downregulated FGFR1 30 OS patients(15 males and 15 females)
Malignant lesion,

advanced clinical stage,
distant metastasis

(167)

miR-95-3p Upregulated TGF-b Peripheral blood of OS patients and normal volunteers Clinical stage (168)

miR-506-3p Downregulated RAB3D
30 tumor tissues and adjacent normal(21 of the patients were
male,The average age of the patients was 21.21 years (range: 11

to 41 years))

Overall
survival

(159)

miR-200c Upregulated pAKT 36 cases of primary osteosarcoma
Overall
survival

(169)

miR-92a Upregulated PTEN 68 OS and 20 normal bone tissue samples were obtained
Event-free

survival,overall
survival

Clinical stage, T
classification,
histological

differentiation

(170)

miR-615 Downregulated HK2
92 paired OS tissues were collected from OS patients (60 males
and 32 females, mean age 21 years, range from 14 to 33 years)

Overall
survival

TNM stage,lymph
node metastasis

(59)

miR-1908 Upregulated PTEN
46 paraffin-embedded osteosarcoma specimens and 9 normal

muscle samples
Overall
survival

Clinical stage (60)

miR-148a Upregulated PTEN
Human osteosarcoma tumor tissues and paired adjacent normal

tissues were obtained from 92 primary osteosarcoma
Overall
survival

Clinical stage (171)

miR-449a Downregulated EZH2
48 OS and adjacent normal tissue specimens were collected by

excision biopsy from OS patients
Overall
survival

Malignant
clinicopathologic

features,
(172)

miR-373 Upregulated p53
22 paired Primary spinal OS and matched normal non-tumor

tissues
TNM stage,tumor size (173)

miR-141-3p Downregulated EGFR
Tumor tissues and adjacent normal tissues were obtained from

32 patients
Overall
survival

TNM stage (174)

miR-499a-5p Downregulated PPM1D
62 primary OS and adjacent Non-tumorous tissue samples(ratio
of male and female was 37: 25 and the average age was 19.3 ±

4.5 years.)

TNM stage,clinical
stage

(175)

miR-532-5p Upregulated PTEN
50 osteosarcoma tissue specimens and paired paratumor tissue

specimens
Overall
survival

Clinical stage,Distant
metastasis, tumor size,
Lymph node metastasis

(176)

miR-128 Upregulated PTEN
100 pairs of osteosarcoma tissue samples(The patients ranged
from 8 to 68 years of age (median 18 years, mean 22.68 years).

The study population was 68 males and 32 females)

Overall
survival,

Adverse reactions to
chemotherapy,positive

metastases
(177)

(Continued)
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In addition, the microRNA/PI3K/AKT axis promotes cancer

progression by altering various biological properties of

osteosarcoma cells. In this article, we will introduce in detail the

Status of expression, clinical features, basic functions, and
Frontiers in Oncology 11
mechanism of microRNA/PI3K/AKT axis from two parts: cancer

suppressor factors (Table 2) and cancer promoting factors (Table 3)

that act on the PI3K/AKT pathway. It provides certain directions

and ideas for further insight into the mechanisms associated with
TABLE 1 Continued

MicroRNA Expression Targeted Object Prognostic
indicator Clinical feature Ref

disease-free
survival

miR-29c -3p Downregulated TPX2
52 pairs of primary osteosarcoma and adjacent noncancerous
tissues(age range, 2-54 years; average age,19.47 ± 3.30 years)

Overall
survival

Tumor size, clinical
stage,distant metastasis

(178)

miR-520c-3p Downregulated AKT-1,P65
29 OS and 8 normal tissue samples (contain-ing 8 pairs of

samples)
Tumor metastasis,

clinical stage
(179)

miR-149-5p Downregulated Fn14
The clinicopathological and prognostic data for 191 sarcoma
patients and 66 adjacent normal samples were downloaded

from The Cancer Genome Atlas 2015 RNA sequencing database

Overall
survival

Tumor size, (180)

miR-195-5p Downregulated FGF2
55 osteosarcoma tissue samples and corre-sponding adjacent

non-tumor tissues
Overall
survival

Tumor size,clinical
stage,Distant
metastasis

(181)

miR-214 Upregulated PHLDA2
Tumor tissues and paired non-tumor tissues were obtained

from 30 patients
Lung Metastasis (182)
frontier
TABLE 2 Cancer suppressor acting on the PI3K/AKT pathway.

microRNA Role Targeted Functions Animal/Human Cell line Refs

miR-3927-3p
Tumor

suppressor
Integrin-
avb3

Proliferation, migration, invasiveness MG-63, HOS,143B (162)

miR-133a
Tumor

suppressor
IGF1R proliferation, invasion and metastasis Nude mouse

Saos-2, HOS,
U-2OS,hFOB

(158)

miR-134
Tumor

suppressor
VEGF,
VEGFR1

Proliferation, Angiogenesis
Nude mouse,11 OS tissues and 6 non-

tumor bone tissues
MG-63, U-2OS,Saos-2 (183)

miR-183-5p
Tumor

suppressor
AKT

Proliferation, metastasis, migration,
colony formation, cell viability

40 tumor tissues and adjacent normal
tissues

Saos-2,MG63,hFOB (164)

miR-340-5p
Tumor

suppressor
NRF2

EMT, Proliferation, Metastasis,
migration, invasion, cell viability

Tumor tissues and adjacent normal
tissues

U-2OS,Saos-2,MG-63,
HOS,hFOB 1.19

(165)

miR-124
Tumor

suppressor
TGF-b

Proliferation, migration, invasion,
apoptosis, Colony formation

Nude mice MG-63,MC3T3 -E1 (57)

miR-26a
Tumor

suppressor
IGF-1 Proliferation

Nude mice,32 tumor tissues and adjacent
normal

U-2OS,MG-63 (184)

miR-133b
Tumor

suppressor
FGFR1

EMT, Proliferation, migration,
invasion, apoptosis

30 tumor tissues and adjacent normal
hFOB1.19,U-2OS,MG-63,
Saos-2

(167)

miR-506-3p
Tumor

suppressor
RAB3D Proliferation, metastasis, invasion

Nude mice,30 tumor tissues and adjacent
normal

hFOB 1.19, HOS, U-2OS,
MG-63

(159)

miR-22
Tumor

suppressor
PI3K

Chemoresistance continues,
autophagy,proliferation

Nude mice
MG63,U-2OS,Saos-2,

OS9901
(185)

miR-532-3p
Tumor

suppressor
AKT3 Proliferation, migration, invasion Nude mice,30 patients hFOB 1.19,MG63,U-2OS (186)

miR-29b
Tumor

suppressor
Spin 1 Proliferation, migration U-2OS,GM-63 (187)

miR-615
Tumor

suppressor
HK2

EMT, Proliferati, Metastasis, cell
viability

92 paired OS tissues were
collected from OS patients

hFOB1.19,HOS (59)

(Continued)
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TABLE 2 Continued

microRNA Role Targeted Functions Animal/Human Cell line Refs

miR-223
Tumor

suppressor
Ect2 Proliferati, Cell cycle

15 pairs of
Osteosarcoma and adjacent

noncancerous tissue
MG-63, Saos-2, U-2OS (188)

miR-206
Tumor

suppressor
PAX3,MET

Proliferation, metastasis, migration,
invasion, apoptosis

25 pairs of
Osteosarcoma and adjacent

noncancerous tissue
OS primary cell (189)

miR-375
Tumor

suppressor
mTOR Proliferation, apoptosis, autophagy

20 pairs of
osteosarcoma and adjacent noncancerous

tissue

MG-63, HOS, U-2OS,
Saos-2,hFOB1.19

(190)

miR-101
Tumor

suppressor
ROCK1

Proliferation, Migration, invasion,
apoptosis

Human osteosarcoma tissues and the
corresponding normal osteoblast (n = 20)

MG-63,U-2OS,OS732 (191)

miR-18a
Tumor

suppressor
MED27

Migration, invasion, cell viability,
apoptosis

MG-63,Saos-2 (192)

miR-122
Tumor

suppressor
TP53 Proliferation, cell cycle

50 pairs of
osteosarcoma and adjacent noncancerous

tissue
U-2OS,MG-63 (193)

miR-100
Tumor

suppressor
IGFIR

Proliferation, migration, invasion,
chemical resistance

20 pairs of
osteosarcoma and adjacent noncancerous

tissue

HOS, U-2OS, Saos-2,
MG-63

(194)

miR-133b
Tumor

suppressor
AKT

Proliferation, migration, Cell viability,
apoptosis

MG-63 (195)

miR-144
Tumor

suppressor
mTOR Proliferation, apoptosis MG-63,u-2 OS (196)

miR-451a
Tumor

suppressor
YTHDC1

EMT, Proliferation, invasion,
apoptosis, colony formation

hFOB1.19,HOS,MG-63,
U-2OS,143B

(26)

miR-449a
Tumor

suppressor
EZH2

EMT, Proliferation, invasion,
migration

48 OS and adjacent normal tissue
specimens

were collected by excision biopsy from
OS patients

hFOB1.19,U-2OS,Saos-2,
MG-63, HOS

(172)

miR-141-3p
Tumor

suppressor
EGFR

Proliferation, migration, cell growth,
apoptosis

Tumor tissues and adjacent normal
tissues were obtained from 32 patients

hFOB1.19,HOS,MG-63 (174)

miR-139
Tumor

suppressor
ROCK1 Proliferation, migration, invasion

Nude mice,25 paired OS and 19 non-
tumor

tissue samples

HOS, Saos-2, MG-63, U-
2OS, OS732,hFOB1.19

(197)

miR-133b
Tumor

suppressor
IGF1R

Proliferation, migration, invasion,
apoptosis

23 pairs of osteosarcoma and adjacent
noncancerous tissue

U2-OS,MG-63 (198)

miR-142
Tumor

suppressor
CDK6

Proliferation, migration, invasion,
apoptosis

Nude mice,45 paired OS tissues and
matched non-tumorous tissues,

hFOB1.19,MG-63,SOSP-
9607,HOS,U-2OS,Saos-2

(199)

miR-499a-5p
Tumor

suppressor
PPM1D Proliferation

62 primary OS and adjacent
non−tumorous tissue samples

MG-63 (175)

miR-497
Tumor

suppressor
VEGFA Proliferation, Drug resistance

14 primary osteosarcoma and
corresponding noncancerous tissue

Saos-2 (200)

miR-375
Tumor

suppressor
PIK3CA Proliferation

30 paired OS and matched normal non-
tumor tissues

HOS, Saos-2,
U-2OS, and MG-63,

hFOB1.19
(201)

miR-6888-3p
Tumor

suppressor
SYK Proliferation, migration, cell viability

Nude mice,32 pairs of OS tissues and
adjacent nor

mal bone were obtained from patients

HOS,Saos-2,MG-63,
SW1353,HFOB1.19

(202)

miR-384
Tumor

suppressor
SLBP

Metastasis, migration, invasion,
apoptosis, cell viability

Human osteosarcoma tissues and the
corresponding normal tissues

hFOB1.19,MG-63,U-2OS,
OS732

(203)

miR-141,
miR-146b-5p

Tumor
suppressor

AUF1,
PDK1

EMT, Proliferation, migration,
invasion

EH1,Saos-2,U-2OS,
HOS,143B

(204)

(Continued)
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microRNA/PI3K/AKT axis-related osteosarcoma and the

development of new therapeutic strategies.
4.1 Cancer suppressor acting on the PI3K/
AKT pathway

Insulin-like growth factor-1 (IGF-1) is composed of 70 amino

acids. IGF-1 can affect the proliferation, invasion, metastasis and

drug resistance of tumor cells (238, 239). Recent studies found that

miR-26a (Figure 4G) and miR-29a-3p were lowly expressed in

osteosarcoma and negatively correlated with IGF-1 expression, and

further studies revealed that overexpression of miR-26a and miR-

29a-3p could target IGF-1 to inhibit the IGF-1R/PI3K/AKT

pathway to affect apoptosis and autophagy in OS cells, as

evidenced by a significant attenuation of invasion (138, 210).

IGF-1 can act by activating the PI3K/AKT pathway through

activation of the IGF-1R located on the cell surface, and therefore

by affecting IGF-1R can also affect activation of the PI3K/AKT
Frontiers in Oncology 13
pathway.It was found that miR-133a, miR-133b (Figure 6A), and

miR-100 can partially block this pathway, and miR-133a, miR-

133b, and miR-100 can then target IGF-1R in human osteosarcoma

cells to inhibit the activation of PI3K/AKT pathway and thus inhibit

apoptosis, proliferation, invasion, metastasis, migration, and

chemoresistance of osteosarcoma (158, 194, 198). VEGF can bind

to VEGFR1 to activate PI3K/AKT pathway thereby promoting

tumor proliferation and angiogenesis (240). MiR-134, miR-497

and miR-410 were found to be lowly expressed in osteosarcoma

cells, and functionally microRNA-134, miR-497 and miR-410 could

lead to reduced expression of VEGF and VEGFR1, thus inhibiting

the PI3K/AKT pathway leading to osteosarcoma angiogenesis,

proliferation, migration, invasion, cell growth, and drug resistance

(Figure 6B) (183, 200, 206). MiR-124 and miR-21 are lowly

expressed in osteosarcoma, and overexpression can act on TGF-b
to affect the activation of PI3K/AKT pathway. As a result, the

malignant degree of osteosarcoma cells decreased significantly. in

addition miRNA -21 is also strongly associated with TNM staging

in osteosarcoma patients (Figure 6C) (57, 166). Bingsheng Yang
TABLE 2 Continued

microRNA Role Targeted Functions Animal/Human Cell line Refs

miR-223
Tumor

suppressor
Hsp90B1

Proliferation, apoptosis, cell cycle,cell
growth

Nude mice MG-63 (205)

miR-410
Tumor

suppressor
VEGF

Proliferation, migration, invasion,
apoptosis, cell growth

Nude mice, OS specimens
and paired adjacent specimens (n = 15)

Saos-2,MG-63 (206)

miR-29c -3p
Tumor

suppressor
TPX2 Proliferation

52 pairs of primary osteosarcoma
and adjacent noncancerous tissues

MG-63,U-2OS,hFOB (178)

miR-520c-3p
Tumor

suppressor
AKT-1,P65 Proliferation,metastasis

Nude mice,29 OS and 8 normal tissue
samples

143B (179)

miR-152
Tumor

suppressor
c-MET

Proliferation, cell growth, apoptosis,
drug resistance

Nude mice MG-63 (207)

miR-340-5p
Tumor

suppressor
PI3K Drug resistance Nude mice mg63-cr,Saos-2-cr (208)

miR-141-3p
Tumor

suppressor
SIX1

Proliferation, migration, invasion,
apoptosis

25 osteosarcoma tissue samples and
corresponding adjacent non-tumor

tissues

HOS,Saos-2,143B,U-2OS,
MG63

(209)

miR-29a-3p
Tumor

suppressor
IGF1

Proliferation, migration, invasion,
apoptosis, autophagy, colony

formation

The OS tissues and adjacent non-tumor
tissues

143B,MG-63,HOS,SJSA-1,
hFOB1.19

(210)

miR-122-5p
Tumor

suppressor
TP53 Proliferation, apoptosis, cell cycle

50 cases
of osteosarcoma tissue samples

Hs888T,U-2OS,MG-63 (193)

miR-149-5p
Tumor

suppressor
Fn14

Proliferation, cell growth, colony
formation

U-2OS,Saos-2,MG-63,
SW-1353,HOS,143B

(180)

miR-485-5p
Tumor

suppressor
AKT1,
HSP90

Proliferation, migration 20 paired adjacent normal tissues HOB,C-12720,U-2OS (211)

miR-652
Tumor

suppressor
HOXA9 Proliferation, migration, invasion

30 osteosarcoma
tissue samples obtained from

osteosarcoma surgery

hFOB1.19,HOS,U-2OS,
SJSA1,Saos-2,MG-63

(212)

miR-1224-5p
Tumor

suppressor
PLK1

Apoptosis, autophagy, proliferation,
invasion

hFOB1.19,MG-63,U-2OS,
Saos-2,HOS,143B,

(213)

miR-195-5p
Tumor

suppressor
FGF2 Apoptosis, metastasis, proliferation,

Nude mice,55 osteosarcoma tissue
samples and corre-

sponding adjacent non−tumor tissues

hFOB1.19,143B,U-2OS,
MG-63,MNNG,Saos-2

(181)
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TABLE 3 Oncogenic factors acting on PI3K/AKT pathway.

microRNA Role Targeted Functions Animal/Human Cell line Ref

miR-181a-5p Oncogene PTEN

Proliferation, colony
formation, migration, invasion, and cell cycle

progression of osteosarcoma cells,
Chemotherapy drug sensitivity

Saos-2, MG-63,
HOS, 143B,U-2OS,

hFOB1.19
(55)

miR-19a-3p Oncogene PTEN
Osteoclast differentiation and bone destruction

through
Mouse

K7M2, MG-63,
HOS, RAW264.7

(214)

miR-216 Oncogene PTEN
Cell proliferation, cell cycle, cell invasion,

migration, cell apoptosis
Tumor tissues and adjacent normal
tissues(n=10)

MG-63 (215)

miR-208a-3p Oncogene PTEN Proliferation, migration, and invasiveness
OS tissue specimens (n=10) and

adjacent normal tissues
Saos-2, U-2OS,

MG-63
(216)

miR-214 Oncogene PTEN
invasion, metastasis, Drug sensitivity, tumor

volume growth, apoptosis
Nude mouse U-2OS,MG-63 (58)

miR-524 Oncogene PTEN Proliferation,apoptosis

MG-63, 143B,
Saos-2 and

UMR-106,hFOB
1.19

(217)

miR-9-5p Oncogene PTEN Proliferation, Cell viability, apoptosis
17 tumor tissues and adjacent normal
tissues

MG-63,U-2OS,
143B,hFOB1.19

(218)

miR-106 Oncogene PI3K
Proliferation, cell cycle, invasion, metastasis,

cell cycle
54 tumor tissues and adjacent normal
tissues

U2-OS (163)

miR-620 Oncogene PTEN Proliferation, migration, apoptosis Nude mice
MG-63,KHOS,
hFOB1.19

(219)

miR-130a Oncogene PTEN EMT, Metastasis, migration, invasion
86 tumor tissues and adjacent normal

tissues
HOS58,Saos-2,

MG-63
(56)

miR-17 Oncogene SASH1 Proliferation, migration, invasion, apoptosis U-2OS,MG-63 (220)

miR-21 Oncogene
PTEN,tgf-

b1
Proliferation

46 tumor tissues and adjacent normal
tissues

U-2OS,MG-63 (166)

miR-23b-3p Oncogene VEPH1 Proliferation, migration, cell viability 24 tumor tissues and adjacent normal
HOS,hFOB1.19,

SJSA-1, Saos-2, U-
2OS

(184)

miR-199a-5p Oncogene PIAS3,p27
Proliferation and tumour

growth
Nude mice,8 tumor tissues and adjacent

normal
Saos-2,MNNG,

HOS
(221)

miR-95-3p Oncogene TGF-b Cell growth, apoptosis
Peripheral blood

of OS patients and normal volunteers
F5M2 (168)

miR-196a Oncogene PTEN Proliferation,apoptosis,cell cycle
MG-63,HOS,Saos-
2,U-2OS,hFOB1.

19
(222)

miR-21 Oncogene PTEN Proliferation, metastasis, invasion MG-63, hFOB1.19 (223)

miR-221 Oncogene PTEN
Proliferation, cell cycle, Cell viability, apoptosis,

Drug sensitivity

36 primary and 24 recurrent human
osteosarcoma tissues

and 25 normal adjacent tissues

MG63,Saos-2,U-
2OS,hFOB1.19

(94)

miR-214 Oncogene PTEN Proliferation, apoptosis
Nude mice,15 human primary OS
and matched adjacent noncancerous

tissues
Saos-2,hFOB1.19 (224)

miR-802 Oncogene P27 Migration, intrusion, and EMT
68 paired of OS tissues and adjacent

non-
OS tissues

143B, HOS, MG-
63, U-2OS,Saos-

2,hFOB
(225)

miR-92a Oncogene PTEN Proliferation, cell cycle, apoptosis
Nude mice,68 OS and

20 normal bone tissue samples were
obtained

MG-63,U-2OS (170)

miR-214-3p Oncogene PTEN Proliferati, cell viability, apoptosis MG-63 (226)

(Continued)
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et al. found that miR-195-5p expression was significantly reduced in

OS and negatively correlated with fibroblast growth factor-2 (FGF-

2) expression. MiR-195-5p/FGF2/PI3K/AKT axis can affect the

occurrence and metastasis of osteosarcoma (181). Fibroblast

growth factor receptor-1 (FGFR-1) can mediate the activation of

PI3K/AKT pathway. MiR-133b can target FGFR-1 in OS to inhibit

PI3K/AKT pathway and thus inhibit the progression of

osteosarcoma. MiR-195-5p and miR-133b were found by studying
Frontiers in Oncology 15
clinical samples 5p and miRNA-133b were also found to be closely

associated with tumor size, distant metastasis and the clinical stage

of the patients in OS patients, thus it is important to continue in-

depth studies on miR-195-5p and miR-133b (167).

There are also many microRNAs whose effects on the PI3K/

AKT pathway are directly on PI3K and AKT molecules, for

example, miR-340-5p is under-expressed in osteosarcoma as an

oncogenic factor, and thus as a direct target gene of miR-340-5p,
TABLE 3 Continued

microRNA Role Targeted Functions Animal/Human Cell line Ref

miR-93 Oncogene PTEN Proliferati, cell viability, apoptosis, Cell cycle Nude mice
HOS,Saos-2,MG-
63,NY,Hu09,

hMSCs
(227)

miR-1908 Oncogene PTEN Proliferation, invasion, colony formation
Nude mice,46 paraffinembedded

osteosarcoma specimens and 9 normal
muscle samples

143B,U-2 OS,MG-
63,Saos-2,hFOB

1.19
(60)

miR-21 Oncogene PTEN Proliferation, apoptosis Saos-2,MG- 63 (228)

miR-17 Oncogene PTEN Proliferation, Migration, invasion,
28 pairs of osteosarcoma and adjacent
noncancerous tissue

U-2OS,Saos-2,MG-
63

(95)

miR-181a Oncogene PTEN Cell viability, apoptosis, invasion
Primary OS tissues and the adjacent
non-tumor tissues were obtained from

20 patients treated
Saos-2,U-2OS (229)

miR-148a Oncogene PTEN Cell growth
92 pairs of OS and their matched

adjacent
normal tissues

hFOB1.19,MG-63,
U-2OS

(171)

miR-181b Oncogene PTEN Proliferation
22 pairs of OS and their matched

adjacent
normal tissues

Saos-2, U-2OS,
MG63,hFOB

(230)

miR-21 Oncogene PTEN Proliferation, invasion, Cell viability, MG-63,saos-2 (231)

miR-214 Oncogene PTEN Proliferation, migration, invasion, cell viability
22 paired OS and

matched normal non-tumor tissues
U-2OS,saos-2,mg-

63
(232)

miR-373 Oncogene p53
Proliferation, migration, invasion, cell viability,

colony formation
22 paired Primary spinal OS and
matched normal non-tumor tissues

hFOB1.19,Saos-2,
MG-63,U-2OS

(173)

miR-18a-5p Oncogene SOCS5 EMT, Proliferation, apoptosis
25 paired OS tissues and matched non-

tumorous tissues
hFOB1.19,MG-63,
U-2OS,HOS,Saos-2

(233)

miR-532-5p Oncogene PTEN Proliferation, migration
Nude mice,50 osteosarcoma tissue

specimens and paired paratumor tissue
specimens

hFOB 1.19,MG-63,
U-2OS, MNNG/
HOS, 143B,

(176)

miR-25 Oncogene p27 Proliferation
Nude mice,25 osteosarcoma tissue
specimens and paired paratumor

tissue specimens
Saos-2,U-2OS (234)

miR-128 Oncogene pten Invasion
100 paired OS tissues and matched non-

tumorous tissues
(177)

miR-106b-5p Oncogene P27 Proliferation, migration, cell cycle
18 pairs of fresh

surgically resected OS tissue and
adjacent bone tissue

Saos-2,MG-63,
SW1353,U-2OS,

hFOB 1.19
(235)

miR-21 Oncogene PTEN Proliferation, invasion and apoptosis MG-63,hFOB1.19 (236)

miR-744 Oncogene PTEN Proliferation
25 osteosarcoma tissue samples and

corre-
sponding adjacent non-tumor tissues

MG-63,U-2OS,
Saos-2,hFOB1.19

(237)

miR-214 Oncogene PHLDA2 Apoptosis, radiosensitivity
Nude mice,Tumor tissues and paired
non-tumor tissues were obtained from

30 patients

HEK293,MG-63,U-
2OS,HOS,Saos-2

(182)
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PI3K receives significantly less direct inhibition, leading to

abnormal PI3K/AKT pathway and a OS development with a

significant contribution (208). MiR-22 significantly inhibits the

proliferation of MG63 cell line and MG63/CDDP cells, and

enhanced the anti-proliferation ability of CDDP in vitro and in

vivo. In addition, miR-22 can also reduce CDDP-induced

autophagy and mediate the resistance of osteosarcoma cell lines

to CDDP (185). AKT has an extremely important position in the

PI3K/AKT pathway (241).Several studies found that miR-183-5p,

miR-532-3p, miR-133b, miR-520c-3p and miR-485-5p were

overexpressed in osteosarcoma, and overexpression would directly

affect the formation of AKT leading to abnormal PI3K/AKT

pathway, and the proliferation, migration, cell viability, and

apoptosis of osteosarcoma cells would be affected (164, 179, 186,

195, 211). In addition, miR-183-5p and miR-520c-3p are also

associated with clinical characteristics and prognosis of OS

patients, including distant metastasis of tumors and overall

survival of patients at clinical stage. Therefore the interaction

mechanism of miR-183-5p and miR-520c-3p with PI3K/AKT

pathway should be investigated in depth (164, 179). PI3K and

Akt molecules are the core of PI3K/Akt pathway and are the most

important signaling molecules. Therefore, mirnas directly acting on

PI3K and Akt molecules can more directly affect the abnormal

activation of PI3K/Akt pathway, which may have a more significant
Frontiers in Oncology 16
effect on osteosarcoma cells, and reduce the influence of the whole

criss-crossing signal network, which is worthy of our study.

Luciferase assay and bioinformatic analysis confirmed that

mTOR is a direct target gene of miR-375-3p and miR-144.

mTOR is a key regulator of various life activities of cells and

performs its various functions mainly by participating in the

PI3K/AKT pathway. Reduced expression of miR-144 miR-375-3p

in osteosarcoma cells leads to PI3K/AKT/mTOR pathway aberrant

activation, which affects OS cell proliferation, apoptosis and

autophagy (190, 196). ROCK1 is a serine/threonine kinase

belonging to the Rho family that promotes the reorganization of

the actin cytoskeleton (242). It has been found that microRNA

interaction with ROCK1 may be related to the formation and

progression of osteosarcoma, where miR-101 and miR-139 have

been demonstrated as osteosarcoma suppressors by targeting rock1.

It was found that by overexpressing miR-101 and miR-139

(Figure 6D) can downregulate rock1 while causing PI3K/AKT

and JAK/STAT signaling pathway inactivation, ultimately leading

to the malignant behavior of osteosarcoma cells can be partially

suppressed, including biological behaviors such as abnormal

proliferation, migration and invasion (191, 197). MiR-340-5p

(165), miR-506-3p (159), miR-615 (59), miR-18a (192), miR-122-

5p (193), miR-451a (26), miR-449a (172), miR-142 (199), miR-

499a-5p (175), miR-6888-3p (202), miR-384 (203), and miR-223
A

B

D

E
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FIGURE 6

(A) Roles of miR-133b in invasion and migration of osteosarcoma cell lines. Over-expression of miR-133b suppressed cell invasion and migration in
U2-OS cells. Cell invasion and migration were visualized and examined by inverted phase contrast microscope (198). (B) MiR-134 overexpression
inhibits the proliferation of Saos-2 cells and their secretion of angiogenesis factors in vitro, but promotes Saos-2 cell apoptosis (183). (C) Serum
levels of miR-21 increase as the T stage of osteosarcoma increases (166). (D) ROCK1 rescues cell proliferation and invasion in miR-139
overexpression OS cells. Representative images of transwell invasion assay (197). (E) Representative results of cell migration and invasion assays (189).
(F) MG-63 (a) and 143 (b) cells are transfected with Control +miR-NC, miR-524 mimic + Control, PTEN +miR-NC or miR-524 mimic + PTEN, and
cell proliferation in each group is detected by CCK-8 (217). †P < 0.05; *P < 0.01; **P < 0.001, #P < 0.0001.
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(205), miR-29c-3p (178), miR-152 (207), miR-149-5p (180), miR-

652 (212), miR-1224-5p (213), miR-146b-5p (204), miR-141-3p

(209), miR-141 [198], miR-29b (187), and miR-223 (188) are all

lowly expressed in osteosarcoma cells as tumor suppressors, and

they can act directly on NRF2, RAB3D, HK2, MED27, TP53,

YTHDC1, EZH2, CDK6, PPM1D, SYK, SLBP, Hsp90B1, TPX2,

c-MET, Fn14, HOXA9, PLK1, PDK1, SIX1, AUF1, Spin 1, Ect2 and

thus inhibit the PI3K/AKT pathway, which ultimately leads to the

impact of osteosarcoma cells in proliferation, migration, invasion,

apoptosis, autophagy, cell cycle, cell growth, etc., and inhibits the

development of osteosarcoma and progression of osteosarcoma. In

addition, miR-206 can also act on both PAX3 and MET target genes

to achieve the inhibition of PI3K/AKT pathway through two

pathways, so the inhibitory effect of miR-206 on osteosarcoma

may be more obvious (Figure 6E) (189). Systematic in-depth

analysis of clinical data from multiple osteosarcoma patients

found a significant correlation between the expression of miR-

506-3p in osteosarcoma tissues and patient prognosis. Specifically,

lower expression levels of miR-506-3p were associated with worse

prognoses (159). And the expression of miR-499a-5p was

significantly correlated with TNM staging, showing that the lower

the expression of miR-499a-5p, the higher the grade of TNM

staging (175). In contrast, low expression of miR-340-5p (165),

miR-615 (59), miR-449a (172), miR-29c-3p (178), and miR-149-5p

(180) not only predicted a poorer prognosis for patients, but also

correlated with osteosarcoma TNM stage, clinical stage, tumor size,

distant metastasis and other clinical features are significantly

correlated. Therefore, this part of MicroRNA that has been shown

to correlate with patient prognosis and clinical characteristics

deserves further in-depth study and hopefully can be applied to

clinical practice.
4.2 Oncogenic factors acting on PI3K/AKT
pathway

PTEN is a member of the protein tyrosine phosphatase gene

family and represents the first identified tumor suppressor with

bispecific phosphatase activity to date. In the PI3K/AKT pathway,

PTEN plays a crucial role in the regulation of cellular signaling

pathways by dephosphorylating phosphatidylinositol-3,4,5-

trisphosphate (PIP3), the second messenger produced by PI3K,

thereby negatively modulating the activity of serine/threonine

protein kinase AKT (243, 244). Thus PTEN has been shown to act

as a tumor suppressor gene by inactivating the PI3K/AKT pathway

(198), ultimately participating in the regulation of proliferation, cell

cycle, apoptosis, migration, invasion and metastasis during cancer

development (245). In osteosarcoma, a number of studies have

shown that abnormalities in the PI3K/AKT pathway can be caused

by the interaction of microRNA with PTEN, which is basically in a

high expression state in osteosarcoma and is generally considered as

a pro-oncogenic factor. For example, Chen Sun et al. found that

miR-181a-5p, which is highly expressed in osteosarcoma cells, could

bind to the 3-URT of PTEN and reduce its protein expression, thus

activating the PI3K/AKT pathway. Overexpression of PTEN or

inhibition of AKT significantly inhibited the tumor-promoting
Frontiers in Oncology 17
effect of miR-181a-5p (55). Ming Zhuang et al. found that miR-

524 was significantly upregulated in osteosarcoma tissues and

osteosarcoma cell lines, miR-524 knockdown inhibited

proliferation and promoted apoptosis in osteosarcoma cells, and

bioinformatics analysis and luciferase analysis confirmed that PTEN

was a direct target gene of miR-524. miR-524 activated PPI3K/AKT

signaling by inhibiting PTEN pathway to induce osteosarcoma cell

proliferation (Figure 6F) (217). miR-196a transfection also decreased

PTEN expression in osteosarcoma cells and led to enhanced

phosphorylation of PI3K and AKT. miR-196a should therefore be

an oncogene in osteosarcoma. miR-196a overexpression affected

MG63 and U-2OS by regulating the PTEN/PI3K/AKT pathway

cell apoptosis, cell cycle, and proliferation (222). In osteosarcoma,

there are many other microRNAs with similar mechanisms of action

to the above microRNAs, including miR-19a-3p (214), miR-216

(215), miR-208a-3p (216), miR-214 (58), miR-9-5p (218), miR-620

(219), miR-130a (56), miR-21 (166), miR-21 (223), miR-221 (94),

miR-214 (224), miR-92a (170), miR-214-3p (226), miR-93 (227),

miR-1908 (60), miR-21 (228), miR-17 (95), miR-148a (171), miR-

181b (230), miR-21 (231), miR-214 (232), miR-532-5p (176), miR-

21 (236), miR-744 (237), which were found to be highly expressed in

osteosarcoma tissues and osteosarcoma cell lines, all of which can

target PTEN, bind to the 3,URT of PTEN and reduce its protein

expression. Therefore, the aberrant activation of the PI3K/AKT

pathway ultimately results in the facilitation of malignant

biological processes such as proliferation, migration, invasion, cell

cycle regulation, autophagy and apoptosis in osteosarcoma. In

addition, overexpression of miR-181a-5p (55), miR-214 (58) and

miR-221 (94) also significantly increased the sensitivity of

osteosarcoma cells to some chemotherapeutic drugs, such as ADR

and CDDP, which provides new hope to address the current

problem of drug resistance in osteosarcoma. In terms of clinical

characteristics and patient prognosis, miR-130a (56), miRNA-21

(166), miR-92a (170), miR-148a (171) and miR-532-5p (176) were

significantly correlated with the clinical characteristics of patients,

and the analysis of clinical and pathological data of patients with

osteosarcoma revealed that The high expression of miR-148a (171)

correlated with the clinical stage of patients, and the high expression

of miR-130a (56)and miR-532-5p (176) correlated with the

clinicopathological characteristics, TNM stage, and distant

metastasis of patients. The high expression of miR-21 (166)

correlated with the TNM stage and late diagnosis of patients, and

miR-92a (170) high expression was not only correlated with clinical

staging but also with T staging and histological differentiation. In

terms of prognosis, high expression of miR-130a (56), miR-21 (166),

miR-148a (171) and miR-532-5p (176) was found to lead to

significantly lower overall and disease-free survival of patients, and

these findings are sufficient to suggest that miR and PTEN/PI3K/

AKT signaling pathway interactions lead to patient prognosis. The

overall point is that higher microRNA expression of these oncogenic

factors that directly target PTEN in osteosarcoma has a greater

impact on the PI3K/AKT pathway, which ultimately leads to higher

malignancy and worse prognosis for patients with osteosarcoma.

P27 (also known as CDKN1B) is a cyclin-dependent kinase

inhibitor. As a downstream molecule of PI3K/AKT pathway, P27 is

regulated by PI3K/AKT pathway, and the abnormal change of p27
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significantly affects cell proliferation and cell cycle, making it a

target to be considered in cancer therapy (246, 247). Several studies

have confirmed that microRNAs can affect the function of PI3K/

AKT pathway by influencing P27 and thus, for example, miR-199a-

5p (Figure 7A) (221), miR-802 (225) and miR-25 (234) can act on

P27 to affect its expression by the mechanism of miR-199a-5p, miR-

802 and miR-25 can directly P27 the 3-UTR binding of mRNA and

mediate a decrease in P27 protein levels, thus stimulating OS cell

cycle progression. MiR-106b-5p was found by Chuan He et al. to

cause a significant increase in the percentage of G0/G1 phase cells

and a decrease in S and G2/M phase cells The number decreased,

suggesting that miR-106b-5p blocks cell cycle progression by

blocking osteosarcoma cells in G0/G1 phase.

CDKN1A is a direct target gene of miR-106b-5p, and the

expression of miR-106b-5p exhibits a negative correlation with

that of CDKN1A. CDKN1A is a key protein that can interact with

CDK and is involved in the regulation of cell cycle progression,

proliferation, survival, motility and senescence by binding to CDK

and/or its subunits (248) (249).. In addition, the oncogenic effect

of miR-95-3p can also be achieved by acting on CDKN1A. In

terms of clinical features, the high expression of miR-95-3p is

positively correlated with the clinical stage of patients (168). MiR-

17 is highly expressed in osteosarcoma cells, and Dajiang Wu et al.

have demonstrated miR-17 was involved in the development of

osteosarcoma by targeting the SASH1/PI3K/AKT pathway leading

to OS cells proliferation, migration and inhibition of apoptosis

(Figure 7B) (220). As an oncogenic factor in osteosarcoma, miR-

23b-3p is highly expressed in osteosarcoma tissues and OS cell
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lines. MiR-23b-3p directly targets VEPH1 to inhibit the activation

of PI3K/AKT pathway and significantly promoted the viability,

proliferation and migration of OS cells (Figure 7C) (184). miR-

18a-5p overexpression expression inhibits SOCS5 attenuated the

effects of FER1L4 overexpression on OS cell apoptosis and the

expression levels of PI3K, AKT, Twist1, N-cadherin and

Vimentin. Downregulation of miR-18a-5p promotes SOCS5 can

PI3K/AKT pathway activation (233). MiR-214 was shown to

downregulate PHLDA2 expression by targeting 3’-UTR, by Yi Li

et al. High levels of miR-214 were found in osteosarcoma tissues

by qPCR analysis and positively correlated with lung metastasis.

Knockdown of miR-214 s ignificant ly augmented the

radiosensitivity of osteosarcoma cells both in vitro and in vivo.

Further investigation revealed that PHLDA2 expression was

markedly suppressed, which was significantly associated with

the experimental outcomes. MiR-214 modulates PHLDA2

expression to activate the PI3K/AKT pathway. Collectively, our

findings suggest that the miR-214/PHLDA2/AKT axis (182).

Yufeng Liu et al. found that miR-373 was significantly

overexpressed in spinal cord OS tissues and OS cell lines.

Overexpression of miR-373 can enhance the malignant degree

of osteosarcoma cell lines, which is due to its ability to affect the

expression of p53 and its downstream target genes, leading to

abnormal activation of PI3K/AKT-Rac1-JNK signaling pathway.

In addition, miR-373 expression was also significantly correlated

with TNM stage and size of osteosarcoma. The cancer-promoting

mechanism and clinical characteristics of miR-373 are expected to

provide new ideas for the treatment of spinal osteosarcoma (173).
A

B

C

FIGURE 7

(A) Cell cycle analysis of Saos-2 and MNNG/HOS cells after transfection with pre/anti-miR-199a-5p or the corresponding control (221). (B) Knockdown
of miR-17 inhibited cell proliferation, migration and invasion in OS cells.(a) Cell migration was detected using Transwell assay. (b) Flow cytometry
demonstrated that knockdown of miR-17 induced cell apoptosis (220). (C) MiR-23b-3p promoted the cell viability, proliferation and migration in OS.
(A) Cell viability was detected by CCK-8 assay. (B) The effect of miR-23b-3p on cell proliferation was detected by BrdU-ELISA. (C) Wound healing assays
(184). *p < 0.05, **p < 0.01.
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5 Potential biomarkers in the
microRNA/PI3K/AKT axis

Despite recent advances in medical technology, early diagnosis,

further effective treatment and prognosis of OS remain a serious

challenge, and finding new OS biomarkers may be a feasible

approach. There is increasing evidence that PI3K/AKT pathway-

associated microRNAs are closely associated with OS progression.

Micrornas related to PI3K/AKT pathway may be of great

significance in the early diagnosis, effective treatment and
Frontiers in Oncology 19
prognosis of osteosarcoma, and are expected to become potential

biomarkers (Table 4). In this section, we will discuss in detail the

possible potential applications of microRNAs related to PI3K/AKT

pathway in clinical practice.
5.1 Diagnosis

It is well known that timely and accurate diagnosis of

osteosarcoma is the key to the treatment of osteosarcoma, and
TABLE 4 Potential biomarkers in the microRNA/PI3K/AKT pathway in OS.

MicroRNA Expression Clinical relevance Ref

miR-3927-3p Downregulated Diagnostic (162)

miR-181a-5p Upregulated Treatment (55)

miR-106 Upregulated Diagnostic (163)

miR-183-5p Downregulated Diagnostic, Prognosis (164)

miR-130a Upregulated Diagnostic, Prognosis (56)

miRA-340-5p Downregulated Diagnostic, Prognosis, Treatment (165)

miR-21 Upregulated Diagnostic (166)

miR-133b Downregulated Diagnostic (167)

miR-95-3p Upregulated Diagnostic (168)

miR-506-3p Downregulated Prognosis (159)

miR-22 Downregulated Treatment (185)

miR-200c Upregulated Prognosis (169)

miR-221 Upregulated Treatment (94)

miR-29b Downregulated Treatment (187)

miR-92a Upregulated Diagnostic, Prognosis (170)

miR-615 Downregulated Diagnostic, Prognosis (59)

miR-1908 Upregulated Diagnostic, Prognosis (60)

miR-100 Downregulated Treatment (194)

miR-148a Upregulated Diagnostic, Prognosis (171)

miR-449a Downregulated Diagnostic, Prognosis (172)

miR-373 Upregulated Diagnostic (173)

miR-141-3p Downregulated Diagnostic, Prognosis (174)

miR-142 Downregulated Treatment (199)

miR-499a-5p Downregulated Diagnostic (175)

miR-532-5p Upregulated Diagnostic, Prognosis (176)

miR-128 Upregulated Treatment (177)

miR-29c-3p Downregulated Diagnostic, Prognosis (178)

miR-520c-3p Downregulated Diagnostic (179)

miR-149-5p Downregulated Prognosis (180)

miR-195-5p Downregulated Diagnostic, Prognosis (181)

miR-214 Upregulated Diagnostic, Treatment (182)
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also an important guarantee to improve the prognosis of patients

with osteosarcoma. Identifying appropriate biomarkers has been a

challenge in OS research. MicroRNAs related to the PI3K/AKT

pathway have been reported to be used to aid in the diagnosis of

many cancers. A comparison of tumor tissues from patients with

osteosarcoma and the corresponding paracancerous tissues revealed

that miR-106 (163), miR-130a (56), miR-21 (166), miR-95-3p

(168), miR-92a (170), miR-1908 (60), and miR-148a (171), miR-

373 (173), miR-532-5p (176), miR-128 (177) and other PI3K/AKT

pathway-related microRNAs all showed high expression in

osteosarcoma, and then the clinical and pathological data of these

patients were analyzed and studied in depth, and their expression

was correlated with clinical stage and TNM stage were positively

correlated. While miR-183-5p (164), miR-133b (167), miR-615

(59), miR-499a-5p (175), miR-29c -3p (178), miR-520c-3p (179),

miR-195-5p (181), miR 141-3p (174) and other PI3K/AKT

pathway-related microRNAs all showed low expression in

osteosarcoma, and their expression was negatively correlated with

clinical stage and TNM stage. Therefore, these microRNAs can be

used as valuable biomarkers for diagnosing the clinical stage and

TNM stage of OS patients. In addition, miR-615 (59), miR-532-5p

(176), also correlated with lymph node metastasis, and the low

expression of miR-615 in osteosarcoma or high expression of miR-

532-5p suggested the possibility of lymph node metastasis, so miR-

615 and miR-532-5p are useful for diagnosing lymph node

metastasis Therefore, miR-615 and miR-532-5p are meaningful

for diagnosing lymph node metastasis. In terms of pathological

diagnosis, it was found that low expression of miR-130a (56) and

miR-449a (172) or high expression of miR-340-5p (165) suggested

the possibility of malignant pathological features, so this kind of

PI3K/AKT pathway-related miRNA has a certain supporting role

for pathological diagnosis. However, we found that due to the

insufficient stability of micrornas related to PI3K/AKT pathway,

poor correlation between micrornas and the early stage of

osteosarcoma, few clinical studies and other reasons, their use as

biomarkers for the early diagnosis of osteosarcoma is limited.

Therefore, more in-depth studies are needed to solve

these problems.
5.2 Treatment

Currently, the treatment of OS mainly includes aggressive

surgical resection, systemic chemotherapy and targeted radiation

therapy. Although such a comprehensive treatment approach has

achieved certain results, the resistance to chemotherapy and the

insensitivity to targeted radiation therapy also lead to unsatisfactory

treatment results and prognosis for many patients. microRNA-based

targeted therapeutic strategies may provide new ideas for the

development of OS therapy. Several studies have shown that

microRNAs can modulate the chemosensitivity and radiosensitivity

of OS by directly or indirectly interacting with PI3K/AKT pathway.

Cisplatin is the traditional first-line chemotherapeutic agent for OS

(250). Therefore, increasing the sensitivity of osteosarcoma cells to

cisplatin is very meaningful for the treatment of osteosarcoma, and it
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was found that miR-181a-5p (55), miR-214 (58), miR-221 (94), miR-

128 (177) and other microRNAs related to the PI3K/AKT pathway in

osteosarcoma cells They are pro-oncogenic factors, and by inhibiting

their expression, the sensitivity of osteosarcoma cells to CDDP can be

improved. In contrast, miR-22 (185), miR-29b (187), miR-100 (194),

miR-142 (199), miR-497 (200), miR-340-5p (208) and other

microRNAs related to PI3K/AKT pathway showed bottom

expression, and by promoting their expression, the sensitivity of

osteosarcoma cells to CDDP could be improved. In addition, Ze-Yu

Sun found that promotingmiR-152 overexpression also improved OS

sensitivity to gemcitabine (207). These findings are very important

guidelines for our in-depth understanding and study of

chemotherapeutic drug resistance in microRNA/PI3K/AKT

pathway osteosarcoma cells, and we can target these microRNAs to

find possible solutions to the resistance of osteosarcoma cells to

pharmacotherapeutic drugs. In radiation therapy, Yi Li et al.

demonstrated that upregulation of miR-214 significantly reduced

the radioresistance of osteosarcoma cells, while upregulation of miR-

214 increased its targeted binding to the 3’-UTR region of PHLDA2,

resulting in decreased PHLDA2 expression and enhanced the

radiosensitivity of osteosarcoma cells and a mouse xenograft model.

This study suggests that it is feasible to enhance the radiosensitivity of

sarcomas via the microRNA/PI3K/AKT axis (182). The treatment of

osteosarcoma with mirnas associated with PI3K/Akt signaling

pathway can be conducted from two aspects. One is to design

drugs for new targets. For example, Formononetin (FN) can induce

apoptosis of osteosarcoma cells by targeting miR-214-3 p and inhibit

proliferation of osteosarcoma cells (226). The second is to conduct

research on existing anti-osteosarcoma drugs to find miRNAs that

can promote the effect of existing anti-osteosarcoma drugs, improve

the sensitivity of existing drugs and toxicity against tumor cells.
5.3 Prognosis prediction

Early prognostic information is important in making

treatment decisions for patients with osteosarcoma. In recent

years, there has been increasing evidence that microRNAs

associated with the PI3K/AKT pathway may have important

prognostic value. miR-130a (56), miR-200c (169), miR-92a

(251), miR-148a (171), miR-532-5p (176) and miR-128 (177)

are promoters of osteosarcoma, and their high expression was

found to be negatively correlated with the overall survival of

patients. While miR-183-5p (164), miR-340-5p (165), miR-506-

3p (159), miR-615 (59), miR-449a (172), miR-141-3p (174), miR-

29c-3p (178), miR-149-5p (180) and miR-195-5p (181) low

expression was negatively correlated with overall survival of

Patients with Osteosarcoma. Among them, high expression of

miR-130a (56), miR-92a (170) and miR-128 (177) also showed a

negative correlation with the disease-free survival of patients. The

expression profiles of these microRNAs associated with the

PI3K/AKT pathway are of great interest as early prognostic

information.Therefore, efforts need to be made to identify PI3K/

AKT related miRNAs that are prognostic early in the development

of osteosarcoma, which would be of great benefit to patients.
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6 Conclusions and future perspectives

The PI3K/AKT pathway is heavily involved in the development

of osteosarcoma and involved in various cellular functions of

osteosarcoma cells, including the regulation of proliferation,

migration, invasion, apoptosis, autophagy, angiogenesis, EMT,

chemotherapy resistance and aerobic glycolysis during OS

progression. MiRNAs are also involved in osteosarcoma caused

by abnormal PI3K/AKT pathway. Identification and utilization of

aberrant expression patterns of miRNAs associated with the PI3K/

AKT pathway will facilitate clinical applications, including

diagnosis, treatment, and prognosis of patients with osteosarcoma.

However, the current understanding of miRNA and PI3K/AKT

pathway in the academic community is limited. The research on the

mechanism of miRNA in osteosarcoma is mostly limited to a single

or a few miRNA, and most of the related experiments are carried

out in animals, human tissues and osteosarcoma cell lines, and the

clinical practice research is relatively rare. This has limited our

understanding of the miRNA/PI3K/AKT pathway. It also limits our

knowledge and understanding of the interrelationship between

miRNA/PI3K/AKT pathway and osteosarcoma development. In

addition, MiRNA related to PI3K/AKT pathway are also potential

therapeutic biomarkers for osteosarcoma. However, there are still

many problems with miRNA as biomarkers for diagnosis, treatment

and prognosis of osteosarcoma patients. For example, there are no

drugs related to miRNA used for large-scale clinical treatment of

osteosarcoma. As diagnostic biomarkers for osteosarcoma, most

mirnas cannot be used as diagnostic markers for early

osteosarcoma, such as miR-130a (56), miR-133b (167), miR-499a-

5p (175) etc., which can only show diagnostic role in the late stage of

osteosarcoma. Therefore, the significance of miRNA as biomarkers

is limited at present.

MiRNA negatively or positively regulate the progression of

osteosarcoma by directly or indirectly interacting with PI3K/AKT

pathway. We can enhance the expression of repressor microRNA in

osteosarcoma cells or inhibit the expression of pro-cancer

microRNA in osteosarcoma cells to control cancer progression.

For example, overexpression of MicroRNA-26a and miR-29a-3p

can significantly reduce the proliferation, migration and invasion

ability of OS (138, 210). MiR-524 knockdown can significantly

inhibit the proliferation of osteosarcoma cells (245). MiRNA also

affect the resistance of osteosarcoma cells to chemotherapeutic

drugs. By inhibiting the expression of miR-181a-5p (55), miR-214

(58), miR-221 (94) and miR-128 (163), the sensitivity of

osteosarcoma cells to cisplatin (CDDP) can be improved.
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Promoting the expression of mirnas such as miR-22 (208) can

improve the sensitivity of osteosarcoma cells to cisplatin (CDDP)

and enhance the therapeutic effect of chemotherapy drugs.

Therefore, strengthening the research and investigation of the

mechanism of miRNA involved in anti-tumor drug resistance will

provide clinical support for strategies to overcome drug resistance,

and should provide more effective new insights into the

development of therapeutic methods involving miRNA. Further

understanding of the structure and function of miRNA associated

with PI3K/AKT signaling is also needed. In addition, further studies

are needed to confirm the interaction between miRNA involved in

the PI3K/AKT pathway and their related mechanisms. In the

clinical application and dissemination of new therapies targeting

miRNA/PI3K/AKT pathway, there are problems such as unclear

indications and contraindications, unclear side effects, and

imperfect coping strategies. For diagnosis and prognosis, we

wanted to find a stable, easy to detect, sensitive, and specific

expression of PI3K/AKT pathway related miRNA in the early

stage of osteosarcoma. The ultimate goal is to translate the

research results of miRNA/PI3K/AKT pathway in osteosarcoma

into clinical practice, and to use these targets to develop various

effective antitumor drugs.
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