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Exploring the cell-free total RNA
transcriptome in diffuse large
B-cell lymphoma and primary
mediastinal B-cell lymphoma
patients as biomarker source in
blood plasma liquid biopsies
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Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium, 3Department of Biomolecular
Medicine, Ghent University, Ghent, Belgium, 4Interuniversity Institute of Bioinformatics in Brussels
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Introduction:Diffuse large B-cell lymphoma (DLBCL) and primary mediastinal B-

cell lymphoma (PMBCL) are aggressive histological subtypes of non-Hodgkin’s

lymphoma. Improved understanding of the underlying molecular pathogenesis

has led to new classification and risk stratification tools, including the

development of cell-free biomarkers through liquid biopsies. The goal of this

study was to investigate cell-free RNA (cfRNA) biomarkers in DLBCL and PMBCL

patients.

Materials and methods: Blood plasma samples (n=168) and matched diagnostic

formalin-fixed paraffin-embedded (FFPE) tissue samples (n=69) of DLBCL

patients, PMBCL patients and healthy controls were collected between 2016-

2021. Plasma samples were collected at diagnosis, at interim evaluation, after

treatment, and in case of refractory or relapsed disease. RNA was extracted from

200 µl plasma using the miRNeasy serum/plasma kit and from FFPE tissue using

the miRNeasy FFPE kit. RNA was subsequently sequenced on a NovaSeq 6000

instrument using the SMARTer Stranded Total RNA-seq pico v3 library

preparation kit.

Results: Higher cfRNA concentrations were demonstrated in lymphoma patients

compared to healthy controls. A large number of differentially abundant genes

were identified between the cell-free transcriptomes of DLBCL patients, PMBCL

patients, and healthy controls. Overlap analyses with matched FFPE samples

showed that blood plasma has a unique transcriptomic profile that significantly

differs from that of the tumor tissue. As a good concordance between tissue-
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derived gene expression and the immunohistochemistry Hans algorithm for cell-

of-origin (COO) classification was demonstrated in the FFPE samples, but not in

the plasma samples, a 64-gene cfRNA classifier was developed that can

accurately determine COO in plasma. High plasma levels of a 9-gene signature

(BECN1, PRKCB, COPA, TSC22D3, MAP2K3, UQCRHL, PTMAP4, EHD1, NAP1L1

pseudogene) and a 5-gene signature (FTH1P7, PTMAP4, ATF4, FTH1P8, ARMC7)

were significantly associated with inferior progression-free and overall survival in

DLBCL patients, respectively, independent of the NCCN-IPI score.

Conclusion: Total RNA sequencing of blood plasma samples allows the analysis

of the cell-free transcriptome in DLBCL and PMBCL patients and demonstrates

its unexplored potential in identifying diagnostic, cell-of-origin, and prognostic

cfRNA biomarkers.
KEYWORDS

cell-free RNA, liquid biopsy, blood plasma, biomarkers, DLBCL, diffuse large B-cell
lymphoma, PMBCL, primary mediastinal B-cell lymphoma
1 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most common

histological subtype of non-Hodgkin’s lymphomas (NHL),

representing approximately 25% of new diagnoses. DLBCL can

occur de novo or because of transformation from low-grade B-cell

lymphomas (1). Although a sustained complete response (CR) can

be obtained in most patients with first-l ine R-CHOP

immunochemotherapy (rituximab, cyclophosphamide, vincristine,

doxorubicin, and prednisone), patients with refractory or relapsed

(R/R) disease have a poor prognosis, despite second-line

treatments (2).

Two decades ago, gene expression profiling (GEP) was used to

discriminate between different cell-of-origin (COO) DLBCL

subgroups, germinal center B-cell–like (GCB) and activated B-

cell–like (ABC), which was clinically implemented through the

use of surrogate immunohistochemistry (IHC) algorithms (3, 4).

Since then, DLBCL has increasingly been recognized as a highly

heterogeneous disease with respect to morphology, genetics, and

biological behavior. This evolution was exemplified by recognizing

primary mediastinal B-cell lymphoma (PMBCL) as a separate entity

by the World Health Organization (WHO) in 2008 based on

clinicopathologic features and a distinct molecular signature that

overlapped with nodular sclerosis classical Hodgkin lymphoma (5–

7). PMBCL accounts for 2-4% of NHL, and although outcomes have

improved in the modern rituximab era, standard treatment is still a

topic of debate and refractory disease correlates with poor outcome.

Moreover, approximately 5% of DLBCL patients show a molecular

PMBCL phenotype in the absence of mediastinal involvement,

demonstrating the overlap, complexity, and challenges of current

classifications (8). More recent evolutions include the identification

of the double expressor (DEL) DLBCL subtype, characterized by an

overexpression of MYC and BCL2 proteins not related to
02
underlying chromosomal rearrangement, and double-hit

lymphomas (DHL), a separate entity defined as a dual

rearrangement of MYC and BCL2 and/or BCL6, both associated

with poor prognosis (1, 9). The increasing number of subtypes

highlights that, although major progress has been made, further in-

depth molecular analyses are needed to identify and characterize

high-risk patients, to elucidate the biological pathways involved and

reveal therapeutic targets, and to ultimately improve outcomes. In

this setting, profiling through massively parallel sequencing has

proven to be a powerful tool.

A liquid biopsy is the process of investigating tumor-derived

cells or biomaterials like cell-free nucleic acids, metabolites,

proteins, or extracellular vesicles through biofluid sampling,

without the need of a tissue biopsy. Potential advantages include

its non-invasive nature, its ability to reflect inter- and intra-tumor

heterogeneity, and the possibility of repeated measurements

through longitudinal profiling during disease course or treatment

(10). Although most studies have focused on the use of cell-free or

circulating tumor DNA fragments (cfDNA/ctDNA), there has been

increased interest in different forms of coding and non-coding

cfRNA, both circulating and extracellular vesicle/platelet-

encapsulated, including messenger RNA (mRNA), microRNA

(miRNA), long non-coding RNA (lncRNA), and circular RNA

(circRNA) (11). Higher circulating transcript levels have been

found in patients with solid and hematological malignancies, in

which these are considered to play crucial roles in intercellular

communication and to contribute to proliferation, malignant

transformation, angiogenesis, and immune response escape (12,

13). The goal of this study was to explore the cell-free transcriptome

of DLBCL and PMBCL patients using longitudinally collected

plasma and matched formalin-fixed paraffin-embedded (FFPE)

tissue samples, and to identify diagnostic, COO, and prognostic

biomarkers, complementary to current risk stratification tools.
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2 Materials and methods

2.1 Sample collection and processing

2.1.1 Sample collection
A total of 168 longitudinally collected plasma samples derived

from 41 DLBCL NOS (hereinafter referred to as DLBCL) and 14

PMBCL patients were collected during the period 06/2016 and 09/

2021 at Ghent University Hospital in Ghent (Belgium) and AZ Delta

hospital in Roeselare (Belgium). Plasma samples were drawn at the

time of diagnosis, at interim evaluation (after 4 cycles of

immunochemotherapy), at final evaluation, and in the case of R/R

disease. An overview of the collected plasma samples at each

timepoint can be found in Supplementary Figure 1. Diagnostic

FFPE samples were obtained from all patients that had a diagnostic

plasma sample, except for 2 DLBCL and 1 PMBCL patient, of which

insufficient FFPE material was available for RNA extraction. The

study also included plasma samples from 22 healthy controls, as well

as 29 FFPE samples derived from non-malignant lymph node tissue.

Blood samples were drawn using PAXgene blood ccfDNA tubes (BD

Biosciences, 768165) and processed to plasma within 4 hours after

blood draw. Immunohistochemical staining was routinely performed

on each DLBCL FFPE tissue sample for the markers CD10, BCL6,

MUM1, BCL2 andMYC to determine COO classification and double

expressor status. Fluorescence in situ hybridization (FISH) was

performed for MYC and BCL2 rearrangements to identify DHL.

Therapy response was assessed by F-fluorodeoxyglucose Positron

Emission Tomography/computerized tomography (FDG-PET/CT)

according to the Lugano guidelines (14). Response to first-line

therapy was defined as obtaining a sustained complete remission

(CR) without evidence of relapsed disease within the follow-up period

(mean follow-up of 1018 and 1049 days for the DLBCL and PMBCL

patients, respectively).

2.1.2 Preparation of plasma and FFPE scrolls
Plasma was obtained by using a one-step centrifugation

protocol (1900g x 15min without brake at room temperature) and

subsequently frozen and stored at -80°C. FFPE samples were

obtained from the Pathology Department of Ghent University

Hospital and were re-examined by an experienced pathologist to

confirm the correct diagnosis, to determine the percentage of tumor

invasion, and to select adequate tumor blocks. Five scrolls of 10 µm

were cut from FFPE blocks on a Leica RM2125 RTS manual rotary

microtome (Leica Microsystems, Germany) and put into RNase-

free Eppendorf tubes (Eppendorf, Germany). If the FFPE also

included non-malignant tissue, macrodissection was performed to

enrich lymphoma invaded tissue. The FFPE scrolls were processed

within 4 hours after preparation.

2.1.3 RNA extraction
RNA extraction was performed on 200 µl of plasma and on 5

scrolls of 10 µm using the miRNeasy serum/plasma kit and

miRNeasy FFPE kit, respectively. In each plasma sample, 2 µL of

Sequin spike-in controls were added to the sample lysates (1/5,000

of stock solution mix A; Garvan Institute of Medical Research), as

well as 2 µL of External RNA Control Consortium (ERCC) spike-in
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controls (1/12,500; ThermoFisher Scientific, 4456740) were added

to the RNA eluate. Genomic DNAwas removed by adding 1 mL HL-

dsDNase (ArcticZymes, 70800-202) and 1.6 µL reaction buffer

(ArcticZymes, 66001) to 12 µL RNA eluate, followed by 10 min

incubation at 37°C, and 10 min incubation at 55°C to inactivate the

DNase. RNA was subsequently stored at -80°C and thawed on ice

immediately before library preparation.

2.1.4 Library preparation and sequencing
Total RNA sequencing libraries were prepared starting from 8

µL of RNA eluate (plasma) or 40 ng total RNA (FFPE) using the

SMARTer Stranded Total RNA-Seq Kit v3 – Pico Input

Mammalian (Takara, 634487) according to the manufacturer’s

protocol. Equimolar library pools were prepared based on qPCR

quantification with KAPA Library Quantification Kit (Roche

Diagnostics, Belgium, KK4854). The libraries were paired-end

sequenced (2x100 nucleotides) on a NovaSeq 6000 instrument

using a NovaSeq S2 kit (Illumina, 20028315) with standard

workflow loading of 0.65 nM (2% PhiX). BCL files generated by

the Illumina sequencing system were processed using the Illumina

Bcl2fastq (v. 2.20) software to generate and demultiplex fastq files.

Raw reads were assessed for quality using FastQC (v. 0.11.9) (15).

The unique molecular identifier (UMI) sequences in the Pico v3

SMART UMI adapters were first extracted and added to the read

name with UMI-tools (v. 1.0.0) (16). Next, the sequencing data were

processed with an in-house developed and validated pipeline using

cutadapt (v. 1.16) (17), SAMtools (v. 1.9) (18), and STAR (v. 2.7.3a)

(19) to obtain deduplicated, high-quality and aligned RNA counts

against the human genome (hg38). Ribosomal contamination was

assessed using the BBMap tool (v. 38.87) (20). Duplicate reads were

identified using the Picard tool (v. 2.21.6) (21). Additional QC

statistics were generated by using multiQC (v. 1.9) software package

(22). Gene counts were determined with HTSeq (v. 0.11.0) in

reverse stranded mode, only considering uniquely mapping reads

(23). Ensembl release 91 was used to annotate reads within human

genes (24). Circtools (v. 1.2.0) was used to identify, annotate, and

quantify back-spliced junction (BSJ) reads from circRNAs (25).
2.2 Data analysis

2.2.1 RNA concentration
Blood plasma RNA concentration was determined as previously

described (26). Briefly, the mass of the top abundant spike-in

control (ERCC00130) was calculated based on the input

concentration and volume of spike-in mix added to the sample.

The corresponding RNA concentration was then estimated by

multiplying the ERCC00130 spike mass by the ratio of total reads

mapped to the endogenous human genome and the number of

reads mapped to the specific ERCC00130 spike, and finally dividing

the obtained mass by the plasma volume of the sample.

2.2.2 Differential abundance analysis
Differential abundance analysis on normalized counts was

performed using DESeq2 (v. 1.36.0) (27). Counts were pre-filtered

by requiring a minimum of 10 counts in at least half of the samples
frontiersin.org
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in one of the compared groups. CircRNA counts were pre-filtered

by requiring a minimum of 4 back-splice junction counts in at least

half of the samples in one of the compared groups. In the DESeq2

result table, genes with a Benjamini-Hochberg corrected p-value (q-

value) below 0.05 were considered differentially abundant. Volcano

plots were visualized using EnhancedVolcano (v. 1.14.0) and Venn

diagrams were made using VennDiagramm (v. 1.7.3) (28, 29).

Concerning the longitudinal differential abundance analysis, the

ImpulseDE2 algorithm (v. 1.6.1) was applied on all patients for

which all plasma samples during first-line therapy (diagnosis,

interim evaluation, and final evaluation) were available using a q-

value below 0.05. ImpulseDE2 models the gene-wise abundance

trajectories over time with a descriptive single-pulse function, which

is based on a negative binomial noise model with dispersion trend

smoothing by DESeq2 (30).

2.2.3 COO classification using GEP and IHC
To investigate the performance of a tissue-derived GEP to

correctly classify FFPE and plasma samples based on COO as

predicted by IHC, both a normalized rank and a standardized

abundance procedure were applied (for more details, cfr.

Supplementary Table 1). The tissue-derived GEP was constructed

starting from the 100 best COO class-predicting genes as initially

identified in the Lymphochip microarray data by Alizadeh et al., of

which 59 genes were retained following the removal of clone

duplicates and uncertain clones (3). For the diagnostic plasma

samples, besides the tissue-derived GEP, the same procedures

were performed using a plasma-derived GEP as input, i.e. the

differential abundant genes (DAG) identified between non-GCB

and GCB samples in our cohort.

2.2.4 Survival analysis
To determine which genes best correlated with the different

prognostic outcomes studied, a univariate Cox model was run for

each gene, and only those genes with a LogRank p-value <=0.01 and

absolute beta coefficient >=2 were retained. The significant genes

were then categorized as favorable and unfavorable genes according

to the beta coefficients (a negative beta coefficient represented a

hazard ratio <1, meaning that a gene correlated with a favorable

outcome; and vice versa for the positive beta coefficients).

Subsequently, a hierarchical clustering was performed on the

selected genes using a Euclidean distance and average

agglomeration method (“stats” R library v. 3.6.2). Next, the

clusters were detected using the Dynamic Tree Cut (v. 1.63-1) R

library to avoid the arbitrary choice of the dissimilarity cut-off

between clusters when performing a fixed height tree cut (31). For

each of the clusters, a gene signature was calculated, which was

computed as the average expression value of the genes present in the

corresponding cluster. The gene signatures together with NCCN-

IPI score were used as covariates of a multivariable Cox regression

model. Finally, the samples of each prognostic subgroup were

divided into a high-risk group and low-risk group according to

the gene signatures. High abundance of the unfavorable gene

signature defined a high-risk group, while a low abundance

defined a low-risk subgroup and vice versa for favorable
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signatures. Optimal cutoff point analyses were performed with

maximally selected rank statistics using the maxstat package (v.

0.7-25) (32). Progression-free survival (PFS) was evaluated from the

date of enrollment to the date of disease progression, relapse, death

from any cause, or date of last follow-up in case of no event. Overall

survival (OS) was evaluated from the date of enrollment to the date

of death from any cause or date of last follow-up in case of no event.

LogRank tests were used to assess differences in the OS and PFS

rates calculated by Kaplan–Meier estimates.

2.2.5 Gene set enrichment analysis
A pre-ranked gene set enrichment analysis using GSEA (v.

4.2.3) was performed to explore the functionally enriched pathways

and hallmark gene sets related to subgroups, based on the log2
transformed fold changes between the different groups obtained

from DESeq2 differential abundance analysis (33). Significant

enrichment was defined by a false discovery rate ≤ 0.05. Hallmark

and Canonical Pathways gene sets were obtained via the Molecular

Signatures Database MSigDB (v. 7.5.1) (34). Pathways were up- or

downregulated according to the enrichment score (ES) which

represents the degree to which a set was overrepresented at the

top or bottom of the ranked list.

2.2.6 Statistical analysis
All analyses were conducted using the R statistical software

package (v. 4.0.5) (35). Kruskal-Wallis tests were used to compare

multiple groups, followed by Wilcoxon rank-sum tests for pairwise

comparisons with Bonferroni-Holm multiple testing correction.

Significance was defined as q-values smaller than 0.05. Using

GeneOverlap (v. 1.32.0), significance of overlap between gene sets

was determined by Fisher’s exact test with the odds ratio

representing the strength of the association. The universe

consisted of all genes obtained in the corresponding differential

abundance analysis. A Jaccard index was calculated to assess

similarity between the gene sets, with 0 indicating no similarity

and 1 indicating identical sets (36). Correlation analysis was carried

out using the Pearson correlation coefficient (R) between

different metrics.
3 Results

3.1 Clinical characteristics

A total of 41 DLBCL and 14 PMBCL patients were included.

The mean age at inclusion was 65.3 and 37.0 years, respectively

(Table 1). Most patients had stage IV disease at time of diagnosis, as

defined by the Ann Arbor criteria (61% and 57.1%, respectively).

Bulky disease was more common in PMBCL compared to DLBCL

patients (50% and 22%, respectively). The National Comprehensive

Cancer Network International Prognostic Index score (NCCN-IPI)

score was low, low-intermediate, high-intermediate, and high in

2.4%, 39.0%, 39.0%, and 19.5% and in 21.4%, 71.4%, 7.1% and 0% of

DLBCL and PMBCL patients, respectively (37). Based on the Hans

algorithm, 20/41 and 21/41 DLBCL patients were classified as GCB
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TABLE 1 Demographics, clinical characteristics, first-line treatments, and outcomes of DLBCL patients, PMBCL patients, and healthy controls included
in this study.

DLBCL NOS PMBCL healthy controls

clinical characteristics

sex (m/v)

male 17/41 (41.5%) 8/14 (57.1%) 13/22 (59%)

female 24/41 (58.5%) 6/14 (42.9%) 9/22 (41%)

age at diagnosis (yr) 65.41 (+/- 14.94) 37.00 (+/- 14.35) 58.2 (+/- 20.61)

Ann Arbor stage

I 4/41 (9.8%) 1/14 (7.14%)

II 7/41 (17.1%) 4/14 (28.57%)

III 5/41 (12.2%) 1/14 (7.14%)

IV 25/41 (61.0%) 8/14 (57.14%)

bulky disease 9/41 (22.0%) 7/14 (50.0%)

NCCN-IPI score

low (0–1) 1/41 (2.4%) 3/14 (21.4%)

low-intermediate (2–3) 16/41 (39.0%) 10/14 (71.4%)

high-intermediate (4–5) 16/41 (39.0%) 1/14 (7.1%)

high (>=6) 8/41 (19.5%) 0/14 (0%)

tumor characteristics

COO: GCB 20/41 (48.8%) NA

COO: non-GCB 21/41 (51.2%) NA

DEL 17/41 (41.5%) NA

MYC expression 23/41 (56.1%) 3/14 (21.4%)

BCL2 expression 28/41 (68.3%) 6/14 (42.9%)

MYC rearrangement 3/41 (7.3%) NA

BCL2 rearrangement 8/41 (19.5%) NA

first-line treatment

R-(mini)CHOP 41/41 (100%) 0/14 (0%)

DA-EPOCH-R NA 3/14 (21.4%)

R-ACVBP NA 11/14 (78.6%)

intrathecal chemotherapy 23/41 (56.1%) 14/14 (100%)

laboratory values

mean LDH (IU/L) 428.15 (+/- 406.25) 424.57 (+/- 258.50)

mean ß2 microglobulin (mg/l) 2.44 (+/- 0.95) 1.92 (+/- 0.42)

mean igG (g/l) 9.66 (+/- 5.43) 11.53 (+/- 2.68)

outcome after first-line therapy

CR 21/41 (51.2%) 12/14 (85.7%)

R/R 19/41 (46.3%) 2/14 (14.3%)

death 1/41 (2.4%) 0/14 (0%)

(Continued)
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and non-GCB, respectively (4). Double expression for MYC and

BCL2 was demonstrated in 17/41 patients. MYC and BCL2

rearrangements were present in 3/41 and 8/41 of DLBCL cases,

respectively, without the presence of a DHL. The mean serum

lactate dehydrogenase (LDH) value (reference interval 105-250 IU/

L) was 428.2 IU/L and 424.6 IU/L and the mean ß2-microglobulin

(reference interval 1.09-2.53 mg/l) was 2.4 mg/l and 1.9 mg/l for the

DLBCL and PMBCL patients, respectively.

The DLBCL patients were treated with first-line R-(mini)

CHOP and the PMBCL patients with dose-intensive rituximab,

doxorubicin, cyclophosphamide, vindesine, bleomycin, and

prednisone (R-ACVBP) with subsequent consolidation or

dose-adjusted EPOCH-rituximab therapy (DA-EPOCH-R) (38,

39). After first-line therapy, 21/41 of DLBCL patients obtained a

sustained complete remission (CR), 19/41 had R/R disease, and

1/41 died during first-line treatment. With second- and third-

line treatments, CR could be obtained in 8/19 of R/R DLBCL

patients. All treatments combined, 29/41 DLBCL patients

obtained a CR and 12/41 died. In the PMBCL patients, CR

could be obtained in 12/14 of patients after first-line treatment

and in 2/2 of R/R patients with second-line treatments. Lastly, a

total of 22 healthy age and gender matched controls

were included.
3.2 cfRNA concentration in blood plasma

The blood plasma cfRNA concentration was higher in the

lymphoma patients at the time of diagnosis compared to healthy

controls (p = 0.0098; Figure 1A). A LDH value above normal

reference level at diagnosis was associated with increased cfRNA

levels (p=0.025; Figure 1B). The correlation between cfRNA

concentration and LDH levels was, however, weak in the DLBCL

samples (r = 0.4; p = 0.029) with low predictive value (AUC of 0.65)

and not significant in the PMBCL samples (r = -0.28; p = 0.36)

(Supplementary Figure 2). Within the DLBCL samples, a significant

decrease in cfRNA concentration was demonstrated between the

diagnostic and the post-treatment timepoint in first-line therapy

responders (p=0.02), as opposed to non-responders (Figures 1C,

D). The individual cfRNA evolution of several patients during

therapy is visualized in Supplementary Figure 3.
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3.3 cfRNA biomarkers in DLBCL and
PMBCL patients

3.3.1 Diagnostic markers
A large number of plasma-derived DAG were identified

between DLBCL patients, PMBCL patients and healthy controls

in the diagnostic samples. A total of 604, 4076, and 2925 genes were

differentially abundant between DLBCL and healthy control

samples, between PMBCL and healthy control samples, and

between PMBCL and DLBCL samples, respectively. The majority

of DAG were protein-coding, but other RNA biotypes included

lncRNAs, pseudogenes, snRNAs, snoRNAs, mt-tRNAs, rRNAs, and

circRNAs (Supplementary Figures 4, 5 and Supplementary Table 2).

Of the differentially abundant circRNAs, 40.2% of their linear

counterparts were also significantly differentially abundant. When

both the circRNA and the linear counterpart were significantly

differentially abundant, the direction corresponded in 93.9% of

the cases.

GSEA between the lymphoma samples and healthy controls

showed enrichment of several hallmark gene sets, including

interferon type I and II response, interleukin-6/Janus Kinase 2/

Signal Transducer and Activator of Transcription 3 (IL-6/JAK/

STAT3) signaling, Tumor Necrosis Factor (TNF) alpha signaling

via Nuclear factor kappa-light-chain-enhancer of activated B-cells

(NF-kB), epithelial mesenchymal transition, inflammatory

response, and organization/degradation of the extracellular matrix

(ECM). Moreover, compared to PMBCL samples, DLBCL samples

showed enrichment for oxidative phosphorylation, KRAS signaling,

G2M checkpoint signaling, NOTCH signaling, stabilization of p53,

and regulation of Phosphatase and Tensin homolog (PTEN)

stability and activity. Compared to the DLBCL samples, the

PMBCL samples demonstrated enrichment for coagulation,

epithelial mesenchymal transition, MAPK activation, as well as

ECM organization and regulation. (Supplementary Figure 6).

To investigate the differences between the plasma and tissue

compartment, the overlap was assessed between the DAG obtained

in the diagnostic plasma samples and the matched FFPE samples.

(Figure 2 and Supplementary Tables 2, 3) A total of 335 DAG were

shared for DLBCL versus controls (p<0.001; Jaccard Index (JI)

0.051; odds ratio (OR) 3.4), 1579 DAG for PMBCL versus controls

(p<0.001; JI 0.21; OR 2.7), and 174 DAG for PMBCL versus DLBCL
TABLE 1 Continued

DLBCL NOS PMBCL healthy controls

outcome of R/R patients after second- and third-line treatments

CR 8/19 (42.1%) 2/2 (100%)

death 11/19 (57.9%) 0/2 (0%)

outcome after any therapy

CR 29/41 (70.73%) 14/14 (100%)

death 12/41 (29.27%) 0/14 (0%)
Percentages and standard deviations are written in parentheses. COO, cell-of-origin; CR, complete remission; DEL, double-expressor lymphoma; DLBCL NOS, diffuse large B-cell lymphoma not
otherwise specified; GCB, germinal center B-cell type; LDH, serum lactate dehydrogenase; NCCN-IPI, National Comprehensive Cancer Network International Prognostic Index score; PMBCL,
primary mediastinal B-cell lymphoma; R/R, refractory/relapsed disease.
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(p<0.001; JI 0.048; OR 1.8), respectively. This corresponds with

5.30%, 30.42%, and 19.95% of the FFPE DAG also present in the

blood plasma, respectively. Of these shared DAG, 52.5%, 51.4%, and

40.2% had the same direction of dysregulation, respectively. The top

10 genes that had the highest Log2FC in FFPE tissue that were also

significantly dysregulated in the same direction in the plasma were

identified for DLBCL versus controls (upregulated: LAT2, SEMA4A,

LOX, ADAM8, PTAFR; downregulated: FABP4, FAM107A, LIFR,
Frontiers in Oncology 07
LPL, FMO2), for PMBCL versus controls (upregulated: PTGIR,

CLIP2, ANKRD33B, ZNF185, TREM1; downregulated: IGLC2,

LIFR, PDK4, PLAC8, IGKC), and for PMBCL versus DLBCL

(upregulated: ANK1, PTGIR, ANKRD33B, SPINT2, UNC13B;

downregulated: PLEKHG1, PLAC8, FOXP1, CCND2, PRDX2).

Secondly, normalized mRNA counts of lymphoma-related

genes were compared between DLBCL patients, PMBCL patients,

and controls in both the tissue and blood plasma samples, including
B

C D

A

FIGURE 1

cfRNA concentration (ng RNA/mL plasma) in diagnostic plasma samples. Higher cfRNA concentrations were found in lymphoma patients compared
to healthy controls (A). Total cfRNA concentrations were increased in plasma samples with elevated LDH levels compared to normal levels (105-250
IU/L) (B). A decrease in cfRNA concentration was observed in DLBCL patients successfully treated with R-CHOP (C), whereas concentrations
remained unchanged in non-responders (D). LDH, serum lactate dehydrogenase; CR, complete response; PD, progressive disease.
FIGURE 2

Venn diagrams depicting the overlap between differentially abundant transcripts from matched FFPE and diagnostic plasma samples for DLBCL
versus controls, PMBCL versus controls, and PMBCL versus DLBCL. DLBCL, diffuse large B-cell lymphoma; FFPE, formalin-fixed paraffin-embedded
tissue; PMBCL, primary mediastinal B-cell lymphoma.
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markers of B-cell differentiation (CD19, CD20, PAX5, IRF4, BCL6),

T-cell differentiation (CD3, CD4, CD5, CD8), thymic B-cell

differentiation (CD23, MAL), NF-kB (REL, TRAF1), cell

proliferation (MKI67), activation (CD30), and apoptosis (BCL2).

As expected, many of these genes were differentially abundant

between the lymphoma subtypes and healthy controls in tissue

samples. These differences were, however, not significant for most

markers in the matched plasma samples. Moreover, when

comparing DLBCL to control samples, discordant results were

seen for PAX5 (GCB p=0.98, non-GCB p=0.043) and BCL2 (GCB

p=0.61, non-GCB p=0.021) compared to the findings in the FFPE

samples. When comparing PMBCL to control samples, concordant

results were seen for BCL2 (p=0.0025) and CD3 (p=0.0018) and

discordant results were noted for CD20 (p=0.0095), IRF4

(p=0.0011), and PAX5 (p=0.041). (Supplementary Figures 7, 8).
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Lastly, a differential abundance analysis was performed for

cfRNA biomarkers that were previously reported in liquid biopsy

studies involving DLBCL and/or PMBCL patients (40–45). For each

of these genes, results are shown for both the plasma and FFPE

samples (Table 2).

3.3.2 COO and DEL status
In clinical practice, IHC markers are used to discern the COO

subtypes of DLBCL (e.g., CD10, BCL6, and MUM1 in the Hans

algorithm), as well as DEL status (MYC and BCL2) (4, 9). To

compare IHC protein expression with the gene abundance profiles

in the tissue or blood plasma, normalized mRNA counts for these

markers were compared between IHC positive and negative DLBCL

patients. Our results showed increased gene counts in the FFPE

samples for which there was also positive IHC staining for the
TABLE 2 Differential abundance analysis for cfRNA markers that have previously been reported for DLBCL or PMBCL patients.

RNA marker biotype sample DLBCL vs control non-GCB vs GCB PMBCL vs control PMBCL vs DLBCL

CCND2 (40) mRNA FFPE (q=0.026) (q=0.0061) (q<0.001) NS

plasma (q=0.003) NS (q<0.001) (q=0.0018)

BCL2 (40) mRNA FFPE NS NS (q<0.001) NS

plasma (q=0.038) NS (q=0.0012) NS

MYC (40) mRNA FFPE NS NS (q=0.0042) (q=0.0093)

plasma NS NS (q=0.002) NS

BCL6 (40, 42) mRNA FFPE (q<0.001) (q=0.033) (q<0.001) NS

plasma NS NS NS NS

FN1 (40) mRNA FFPE (q<0.001) (q=0.02) (q<0.001) (q=0.012)

plasma NS (q=0.037) NS NS

PTEN (42) mRNA FFPE NS NS (q=0.0011) NS

plasma NS NS NS NS

CREBBP (41) mRNA FFPE (q<0.001) NS (q<0.001) NS

plasma NS NS NS NS

LMO2 (40) mRNA FFPE NS (q=0.033) (q<0.001) (q<0.001)

plasma NS NS NS NS

TUG1 (43) lncRNA FFPE NS NS NS NS

plasma NS (q=0.013) NS NS

GAS5 (44) lncRNA FFPE (q<0.001) NS (q=0.0055) NS

plasma NS NS (q=0.0053) (q=0.033)

XIST (44) lncRNA FFPE NS NS NS NS

plasma (q=0.011)

NS when sex matched

NS NS NS

circAPC (45) circRNA plasma NS NS NS NS
Genes with q-values >0.05 are labeled as NS. CircRNA, circular RNA; DLBCL, diffuse large B-cell lymphoma; lncRNA, long non-coding RNA; mRNA, messenger RNA; NS, not significant;
PMBCL, primary mediastinal B-cell lymphoma.
arrow up means upregulated.
arrow down means downregulated.
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corresponding protein. For the plasma samples, however, no

significant difference in mRNA counts was observed. (Figure 3).

Next, we checked if a tissue-derived GEP, containing the best

COO class-predicting genes as initially identified in the

Lymphochip microarray data by Alizadeh et al., could correctly

classify the DLBCL samples (using the Hans algorithm as ground

truth) (3). When applied on the FFPE samples, a good concordance

with the Hans algorithm could be demonstrated with an accuracy
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over 85% and an AUC of 0.93 using both a normalized rank and a

standardized abundance approach (Figure 4A). When applied on

the diagnostic plasma samples, however, this tissue-derived

classifier failed (accuracy of 0.6 and 0.53 with an AUC 0.56 and

0.48 using a normalized rank and standardized abundance

approach, respectively) (Figure 4B). Differential abundance

analysis on the plasma samples identified a total of 64 DAG

between non-GCB and GCB DLBCL cases, as determined by the

Hans algorithm (Supplementary Table 2). A plasma-derived GEP

based on these DAG was able to differentiate GCB from non-GCB

patients with high accuracy (accuracy of 92% and 86% with an AUC

of 0.97 and 0.92 using a normalized rank and standardized

abundance approach, respectively) (Figure 4C). Notably, there

was no overlap between the tissue- and plasma-derived GEP.

Lastly, no DAG could be identified between DEL and non-DEL

samples, illustrating that the transcriptional differences of these

subgroups are not clearly reflected in the plasma compartment. This

is in line with the observation of only 3 DAG between the matched

FFPE samples. (Supplementary Table 3).

3.3.3 Prognostic markers in DLBCL
3.3.3.1 Survival analysis

When comparing the diagnostic plasma samples of DLBCL

responders to non-responders after first line R-CHOP

immunochemotherapy, a total of 24 genes were significantly

associated with PFS after R-CHOP in univariate cox regression

analysis. (Supplementary Table 4) The significant genes were

clustered according to the beta coefficients (a negative coefficient

represented a hazard ratio <1, meaning that a gene correlated with a

favorable outcome; and vice versa for a positive beta coefficient). For

both the favorable and unfavorable cluster, a gene signature was

computed as the average expression value of its genes. A higher

abundance of the unfavorable 9-gene signature (BECN1, PRKCB,

COPA, TSC22D3, MAP2K3, UQCRHL, PTMAP4, EHD1, NAP1L1

pseudogene) was significantly associated with decreased PFS, both in

univariate (p<0.001) and inmultivariable regression analysis (p<0.001),

the latter independent of the NCCN-IPI score. (Figure 5 and

Supplementary Figure 9) A similar analysis was performed for the

CR versus death groups after any treatment for OS analysis. A total of

10 genes were significantly associated with OS after any therapy in

univariate cox regression analysis, of which five were categorized as

unfavorable and five as favorable. (Supplementary Table 4) A higher

abundance of the unfavorable 5-gene signature (FTH1P7, PTMAP4,

ATF4, FTH1P8, ARMC7) was significantly associated with worse OS in

both univariate (p<0.001) and multivariable regression analysis

(p=0.004). (Figure 5 and Supplementary Figure 9).

3.3.3.2 Longitudinal gene abundance analysis during first
line therapy

When comparing matched pre- and post-therapy samples in

DLBCL responder patients after successful R-CHOP therapy, a total

of 184 DAG were identified. (Supplementary Table 4) Among the

downregulated genes with the highest log2FC were B-cell related

markers, including MS4A1 (CD20), PAX5, IGHD, FCRL1, CD79A,

TNFRSF13C, IGHM, FCER2, CD72, CD22, CARD11, IRF4, EBF1,

BLK, BLNK, STAP1, FAM129C, BACH2, TCL1A, POU2AF1 and
FIGURE 3

Normalized mRNA counts of MYC, BCL2, CD10, BCL6, and MUM1
within IHC positive and negative DLBCL patients. DLBCL, diffuse
large B-cell lymphoma; FFPE, formalin-fixed paraffin-embedded;
IHC, immunohistochemistry; mRNA, messenger RNA.
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FOXP1. Four of these DAG (JAK3, LRP1, PHYKPL, and PLXNB2)

were also upregulated at pre-therapy timepoint compared to control

samples, but decreased significantly during therapy below healthy

control levels, with the opposite being true for IGF2. When

analyzing the interim time point during therapy, a clear decrease

in the aforementioned B-cell related markers was already noted to

similar levels as the post-therapy time point. Additionally, a

transient increase in neutrophil and inflammation associated

markers, including CD177, MMP8, CEACAM8, OLFM4, BPI,
Frontiers in Oncology 10
MS4A3, and MPO, was demonstrated at the interim timepoint. In

contrast, within the DLBCL non-responders, only a transient

decrease of several B-cell related markers (IGHM, PAX5, CD22,

POU2AF1) was noted when comparing the diagnostic samples to

the interim samples, no DAG could be identified between the

diagnostic and the R/R samples, and no transient increase in

inflammation associated markers was noted.

Finally, a longitudinal analysis using impulseDE2 was

performed to identify gene abundance trajectories that
B CA

FIGURE 4

ROC curve showing the performance of the tissue-derived GEP, containing the best COO class-predicting genes as initially identified in the
Lymphochip microarray data, to classify DLBCL samples by COO as predicted by the Hans algorithm for FFPE (A) and plasma samples (B) using both
a normalized rank and a standardized abundance approach. Panel (C) shows the ROC curve depicting the performance of our plasma-derived GEP
to classify DLBCL samples by COO as predicted by the Hans Algorithm using both a normalized rank and a standardized abundance approach (C).
AUC, area under the ROC curve; COO, cell-of-origin; DLBCL, diffuse large B-cell lymphoma; FFPE, formalin-fixed paraffin-embedded; GEP, gene
expression profiling; ROC, Receiver Operating Characteristic.
B

A

FIGURE 5

Heatmaps clustering DLBCL responders versus non-responders after first-line R-CHOP therapy (A, left) and patients that obtain CR versus death
after any therapy (A, right) based on the abundance of the corresponding favorable and unfavorable gene signatures. Kaplan-Meier survival curves
depicting poorer PFS (B, left) and OS (B, right) in patients with higher plasma levels of the unfavorable 9- and 5-gene signature, respectively. CR,
complete remission; DLBCL, diffuse large B-cell lymphoma; OS, overall survival; PFS, progression-free survival.
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significantly differ between DLBCL responders and non-responders

during therapy course (30). A total of 504 cfRNA transcripts were

found to be differentially longitudinally abundant between both

groups, including PTMAP4 and NAP1L1 pseudogene, which were

also significantly associated with PFS at diagnostic timepoint

(Supplementary Table 4 and Supplementary Figure 10). As their

abundance trajectory patterns differ between responders and non-

responders over the course of R-CHOP, this could indicate that

these transcripts could potentially serve as longitudinal prognostic

markers beyond the diagnostic timepoint.
4 Discussion

Cell-free nucleic acids have increasingly been recognized as

valuable precision medicine biomarkers in cancer research,

including lymphoproliferative malignancies (10, 46–51). Although

the origin of cfRNA remains largely unknown, both human and

xenograft studies have illustrated its potential to reflect intra- and

intertumoral heterogeneity, as well as functional changes during

disease course and treatment, both of the tumor and the non-

malignant compartment (11, 52, 53). We present the first study to

longitudinally explore the total cell-free transcriptome in a cohort of

DLBCL and PMBCL patients.

Higher ctDNA levels have been demonstrated in DLBCL

patients compared to healthy controls (54, 55). Concordantly, our

results showed a higher cfRNA concentration in the DLBCL and

PMBCL samples. A significant decrease was observed after

successful R-CHOP treatment, potentially indicating that a

decline in cfRNA concentration levels by itself may reflect

therapy response. CtDNA levels at diagnosis have been shown to

correlate with LDH levels, a surrogate marker of tumor burden that

is incorporated in the NCCN-IPI score due to its correlation with

prognosis in NHL (37, 47, 50, 56–58). No firm correlation could,

however, be demonstrated between cfRNA concentration and LDH

levels in this study.

A large number of DAG were identified between DLBCL

patients, PMBCL patients, and healthy controls. Considering

mRNA, multiple widely used lymphoma markers were well

reflected in the FFPE tissue, but poorly in the cell-free RNA

compartment. Similarly, the majority of FFPE-derived DAG were

not differential in the matched blood plasma, and only

approximately half of the shared DAG showed the same direction

of dysregulation. This finding is in concordance with a previous

study in which extracellular mRNA of CCND2, BCL2,MYC, LMO2,

and BCL6 was detected in only 14%, 10%, 10%, 10%, and 5% of

DLBCL plasma samples, respectively, but in all of the matched

tissue samples (40). Similar discrepancies have been reported for

non-coding RNAs, in which no correlation between the EV-derived

and the tissue derived miRNA repertoire, or even an opposite

miRNA expression profile in serum versus matched tumor tissues

was demonstrated (59, 60). Potential reasons include variability in

(vesicle-mediated) secretion or passive release of RNA molecules in

the bloodstream, differences in the rate and manner of degradation,

and the shedding of these markers from other tissues besides the

tumor compartment. Our overlap analysis pinpointed multiple
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differentially abundant genes in the same direction in both

compartments, likely representing tumor-specific cfRNA markers.

Several diagnostic cfRNA markers have been reported in

DLBCL. In contrast to a previous study, decreased G1/S-specific

cyclin-D2 (CCND2) and B-cell lymphoma 2 (BCL2) plasma levels

were shown in DLBCL patients compared to healthy controls (40).

More specifically CCND2 levels were decreased in both GCB and

non-GCB samples compared to controls, and BCL2 levels were only

significantly lower in the non-GCB samples compared to controls.

In the tissue samples, higher CCND2 levels were found in the non-

GCB compared to the GCB tissue samples, which has been reported

and associated with an inferior prognosis within this COO subtype

(3, 61). Similar to previous findings, B-cell lymphoma 6 (BCL6) and

Fibronectin 1 (FN1) levels were not differentially abundant in the

DLBCL plasma samples as opposed to control samples, although

our results revealed higher levels in the FFPE samples (40).

Concerning lncRNAs, decreased Growth Arrest Specific 5 (GAS5),

as well as increased Taurine Up-Regulated 1 (TUG1) and increased

X-inactive specific transcript (XIST) plasma levels have been

demonstrated in DLBCL compared to control plasma samples

(43, 44). In our cohort, GAS5 levels were found significantly

decreased in DLBCL FPPE tissue, but not in blood plasma. TUG1

levels were found to be upregulated in the plasma of non-GCB

DLBCL, compared to GCB DLBCL and control samples. Our

results showed higher plasma levels of XIST, located on the long

arm of the X chromosome, in the DLBCL patients. When

comparing sex-matched samples, however, no significant result

could be retained, indicating that the difference is sex-based and

not disease-driven in our cohort. Lastly, circAPC, derived from the

host gene adenomatous polyposis coli (APC), has been reported as

downregulated in DLBCL patients (45). Although a similar trend

was visible, statistical significance was not reached.

The COO classification provided a framework on which our

current understanding of DLBCL biology is built, classifying tumors

based on distinct patterns of GEP into GCB and ABC subtypes that

have significant differences in survival (3, 62). Our results showed a

good concordance between IHC staining and corresponding mRNA

abundance of CD10, BCL6, andMUM1 for the DLBCL FFPE tissue,

but not the plasma samples. Moreover, a good performance of a

tissue-derived GEP, containing the best class-predicting genes as

initially identified in the Lymphochip microarray data, to classify

FFPE samples according to Hans algorithm COO was

demonstrated, comparable with what was previously reported (4,

63). This tissue classifier, however failed for the diagnostic plasma

samples. Besides miR-21 and miR-155, no cfRNA markers have

been described for COO classification (11, 64, 65). Therefore, a

plasma-derived COO classifier was developed, based on the DAG

identified in our cohort, which demonstrated a high concordance

with the Hans algorithm. Notably, there was no overlap between

our plasma-derived and the tissue-derived GEP. Potential reasons

include that the latter is mainly based on mRNA and the former

also incorporated the non-coding transcriptome, including

lncRNA, mt-RNA and pseudogenes, as well as the use of distinct

RNA characterization methods. The lack of overlap supports the

observation that cfRNA abundance does not necessarily reflect the

transcriptomic differences found in the tissue but has a unique
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abundance profile that besides tumor-derived transcripts also

contains healthy tissue-derived signals and exhibits its

own dynamics.

Pretreatment ctDNA levels have been shown as independent

prognostic marker for event-free survival (EFS), PFS, and OS in

DLBCL patients (46, 51, 54, 58, 66). Here, we have established a 9-

gene and a 5-gene cfRNA signature, whose increased abundance

was negatively associated with PFS and OS, respectively,

independent of the NCCN-IPI score. The majority of the protein-

coding genes in these signatures have been attributed an oncogenic

role and have been associated with adverse prognostic outcomes

(67–76). FTH1P7/8, PTMAP4, and NAP1L1 pseudogene are

pseudogenes of Ferritin Heavy Chain 1 (FTH1), Prothymosin

Alpha (PTMA), and Nucleosome Assembly Protein 1 Like 1

(NAP1L1), respectively, which have been found dysregulated in

various malignancies (77–79). Pseudogenes are being increasingly

recognized as regulators of essential biological processes as they can

compete with their parental gene for binding to miRNAs, while

others generate small interference RNAs to dampen gene

expression or encode functional mutated proteins (78). Protein

Kinase C Beta (PRKCB) is an integral component of signaling via

the B-cell receptor in DLBCL, activating NF-kB and VEGF–

mediated angiogenesis, and its tissue expression was shown to be

an independent predictor of poor OS (68, 69). Decreased Activating

Transcription Factor 4 (ATF4) levels have been associated with

improved survival probability in DLBCL patients (70). A recent

study identified a Sirtuin 3 (SIRT3)–ATF4 axis required to maintain

survival of DLBCL cells, regardless of subtype, by enabling them to

optimize amino acid uptake and utilization. Targeting ATF4

translation may, therefore, potentiate the cytotoxic effect of SIRT3

inhibition and serve as a potential therapeutic target (80).

PET-guided treatment of DLBCL remains debatable as direct

evidence of improved patient outcomes is still lacking. Outside of a

clinical trial, biopsy confirmation of an abnormal interim PET-CT

scan is still recommended before switching therapy (81–83). In

recent years, serial cell-free nucleic acids analyses have

demonstrated potential to complement the predictive value of

imaging results, as ctDNA monitoring has shown to facilitate

(minimal) residual disease assessment and early relapse detection

(46, 47, 56, 58, 66, 84–86). Only few studies have, however,

investigated longitudinal abundance of (EV-derived) cfRNA

markers (87, 88). When comparing pre- to interim-, and to post-

therapy samples in DLBCL responders, a clear decrease in cell-free

mRNA of B-cell related markers was noted, many of which have

been proposed as potential diagnostic and/or prognostic

biomarkers in DLBCL tissue (89–98). Moreover, the interim

timepoint showed a clear, transient increase in neutrophil- and

inflammation-related markers, reflecting an acute-phase reaction

during therapy. In the R/R patients, only a transient decrease at

interim timepoint of several B-cell markers was noted, and no acute

phase response was discerned, potentially reflecting the poorer

response to R-CHOP, and illustrating that repetitive sampling

may allow to discern dynamic transcriptomic changes in relation

to therapy response.

Our study has several limitations. Our findings have been

compared with previous studies that have mainly used RT-qPCR
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processed samples using other blood collection tubes and protocols,

which may hamper direct comparison of results. Moreover, specific

genes can be differentially enriched in EVs compared to the

circulating-free compartment, underlining that caution should be

applied when comparing the results of studies investigating different

biofluid fractions (11, 88). The impact of these pre-analytical

variables on cfRNA abundance results has been increasingly

reported (99, 100). Secondly, because of the total RNA

sequencing library preparation method, the miRNA fraction is

underrepresented in our analyses as compared to the protein-

coding and other non-coding RNA classes. Third, although the

control samples were relatively equally distributed by sex and age,

other variables may influence the cfRNA profile, including

comorbidities, lifestyle conditions and medication intake, which

may affect differential abundance analysis. Lastly, the gene

signatures identified in this study need validation in an

independent cohort. Currently, no other dataset with plasma-

derived (long) RNA-seq data from a cohort of DLBCL and/or

PMBCL patients is publicly available. A cohort is being

prospectively collected for validation purposes of the results

obtained in this study.

In conclusion, we present the first study to longitudinally

explore the total cell-free transcriptome in DLBCL and PMBCL

patients using blood plasma samples. A large number of

differentially abundant genes were identified and compared

against previous cfRNA biomarker studies. Overall, overlap

analyses with matched FFPE samples showed that blood plasma

has a unique transcriptomic profile, that significantly differs from

that of the tissue. Our results demonstrated a good concordance

between tissue-derived gene expression and the Hans algorithm for

COO classification in FFPE samples, but not in the plasma samples.

Therefore, a cfRNA classifier was developed that can accurately

determine COO in plasma. Lastly, high plasma levels of a 9-gene

signature and a 5-gene signature were associated with inferior PFS

and OS in DLBCL patients, respectively, independent of the NCCN-

IPI score. Our results may serve as a reference point for future

cfRNA studies, and the biomarkers identified may represent

potential targets for in-depth functional analysis.
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SUPPLEMENTARY FIGURE 1

Overview of the blood plasma samples included per time point in the study

(total of 168 samples). Response at each timepoint was assessed by PET-CT.
CR: complete remission; PD: progressive disease; PET-CT: positron emission

tomography/computerized tomography.

SUPPLEMENTARY FIGURE 2

Correlation between LDH (IU/L) and cfRNA concentration (ng/ml blood
plasma) in diagnostic plasma samples of DLBCL (red) and PMBCL (green)

samples (A). ROC curve of cfRNA concentration for predicting abnormal LDH
levels in diagnostic plasma samples of DLBCL patients (AUC=0.65) (B). AUC:
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area under the ROC curve; DLBCL: diffuse large B-cell lymphoma; LDH:
lactate dehydrogenase; PMBCL: primary mediastinal B-cell lymphoma; ROC:

Receiver Operating Characteristic.

SUPPLEMENTARY FIGURE 3

Evolution of cfRNA concentrations in two responders to first-line treatment
(A) and two non-responders to first-line treatment (B). CR: complete

remission; DLBCL: diffuse large B-cell lymphoma; PD: progressive disease;
PMBCL: primary mediastinal B-cell lymphoma; PR: partial response.

SUPPLEMENTARY FIGURE 4

Differentially abundant genes in the diagnostic plasma samples between

different groups for each RNA subclass. CircRNA: circular RNA; DLBCL:
diffuse large B-cell lymphoma; GCB: germinal center B-cell; lncRNA: long

non-coding RNA; misc_RNA: miscellaneous RNA; mt-tRNA: mitochondrial
tRNA; PMBCL: primary mediastinal B-cell lymphoma; rRNA: ribosomal RNA;

snRNA: small nuclear RNA; snoRNA: small nucleolar RNA; TEC: To be

Experimentally Confirmed.

SUPPLEMENTARY FIGURE 5

Volcano plots of the differentially abundant genes for the DLBCL versus control,

PMBCL versus control, and PMBCL versus DLBCL comparisons in the diagnostic
plasma samples (cutoff q-value =<0.05 and |log2FC|>=1) (A). Venn diagram

illustrating the overlap of significantly differentially abundant transcripts between

the different comparisons. Separate diagrams are shown for all genes, for mRNAs,
lncRNAs, and circRNAs subtypes. (B) circRNA: circular RNA; DLBCL: diffuse large

B-cell lymphoma; lncRNA: long non-coding RNA; log2FC: log2 fold change;
mRNA: messenger RNA; PMBCL: primary mediastinal B-cell lymphoma.

SUPPLEMENTARY FIGURE 6

Gene set enrichment analysis (GSEA) on the diagnostic plasma samples for

DLBCL patients versus healthy controls (A), PMBCL patients versus healthy
controls (B), and PBMCL versus DLBCL patients (C). DLBCL: diffuse large B-

cell lymphoma; PMBCL: primary mediastinal B-cell lymphoma.

SUPPLEMENTARY FIGURE 7

Normalized mRNA counts for CD3, CD4, CD5, CD8, CD19, CD20, CD23,

CD30, PAX5, BCL2, BCL6, MKI67, IRF4, MAL, REL, and TRAF1 within the FFPE

samples of healthy controls, GCB-DLBCL patients, non-GCB-DLBCL
patients, and PMBCL patients. Multiple testing corrected p-values are

shown for pairwise comparisons. DLBCL: diffuse large B-cell lymphoma;
GCB: germinal center derived B-cell lymphoma; PMBCL: primary

mediastinal B-cell lymphoma.

SUPPLEMENTARY FIGURE 8

Normalized mRNA counts of CD3, CD4, CD5, CD8, CD19, CD20, CD23,
CD30, PAX5, BCL2, BCL6, MKI67, IRF4, MAL, REL, and TRAF1 within the

diagnostic plasma samples of healthy controls, GCB-DLBCL patients, non-
GCB-DLBCL patients, and PMBCL patients. Multiple testing corrected p-

values are shown for pairwise comparisons. DLBCL: diffuse large B-cell
lymphoma; GCB: germinal center derived B-cell lymphoma; PMBCL:

primary mediastinal B-cell lymphoma.

SUPPLEMENTARY FIGURE 9

The genes in the unfavorable gene signatures (A) that are significantly
associated with PFS (left) and OS (right), respectively, in univariate (B) and
multivariable analysis (C), the latter also including the NCCN-IPI score. CI:
confidence interval; HR: hazard ratio; NCCN-IPI: National Comprehensive

Cancer Network International Prognostic Index score; OS: overall survival;

PFS: progression-free survival.

SUPPLEMENTARY FIGURE 10

Abundance trajectories of PTMAP4 and NAP1L1 pseudogene between

DLBCL responder and non-responder patients (n=27 per timepoint) in
matched samples at diagnosis, at interim evaluation and at final

evaluation after R-CHOP therapy. Multiple testing corrected p-values are
shown for pairwise comparisons. DLBCL: diffuse large B-cell lymphoma; R-

CHOP: rituximab, cyclophosphamide, vincr ist ine, doxorubicin,

and prednisone.

SUPPLEMENTARY TABLE 1

Procedure to evaluate the performance of a tissue- and plasma-derived GEP

for IHC COO classification.
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SUPPLEMENTARY TABLE 2

Overview of plasma-derived DAGs for DLBCL versus healthy controls, PMBCL
versus healthy controls, PMBCL versus DLBCL patients, and GCB versus non-

GCB samples. For each comparison, the top 500 DAG are shown according

to the absolute log2FC. DAGs: differentially abundant genes; DLBCL: diffuse
large B-cell lymphoma; GCB: germinal center B-cell type; log2FC: log2 fold

change; PMBCL: primary mediastinal B-cell lymphoma.

SUPPLEMENTARY TABLE 3

Overview of FFPE-derived DAGs for DLBCL versus healthy controls, PMBCL

versus healthy controls, PMBCL versus DLBCL patients, non-GCB versus GCB
samples, and non-DEL versus DEL samples. For each comparison, the top
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500 DAG are shown according to the absolute log2FC. DAGs: differentially
abundant genes; DEL: double expressor lymphoma; DLBCL: diffuse large B-

cell lymphoma; log2FC: log2 fold change; GCB: germinal center B-cell type;

PMBCL: primary mediastinal B-cell lymphoma.

SUPPLEMENTARY TABLE 4

Overviewof thegenes in thediagnostic plasmasamples ofDLBCLpatients thatwere

significantly associated with PFS and OS in univariate cox regression analysis,
overview of the plasma-derived DAGs between the diagnostic, interim evaluation,

and final evaluation timepoints for DLBCL responders and non-responders, as well

as an overview of the DAG identified in the ImpulseDE2 analysis. DAGs: differentially
abundant genes; DLBCL: diffuse large B-cell lymphoma; log2FC: log2 fold change.
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Glossary

ABC activated B-cell lymphoma

APC adenomatous polyposis coli

ATF4 Decreased Activating Transcription Factor 4

BCL2 B-cell lymphoma 2

BCL6 B-cell lymphoma 6

CCND2 G1/S-specific cyclin-D2

CD10 Membrane Metalloendopeptidase

CREBBP CREB Binding Protein

cfDNA cell-free DNA

cfRNA cell-free RNA

circRNA circular RNA

COO cell-of-origin

CR complete remission

ctDNA circulating tumor DNA

DA-
EPOCH-R

dose-adjusted EPOCH-rituximab therapy

DAG differentially abundant gene

DEL double-expressor lymphoma

DFS disease-free survival

DHL double-hit lymphoma

DLBCL diffuse large B-cell lymphoma

ECM extracellular matrix

EFS event-free survival

ES enrichment score

EV extracellular vesicle

FDG-PET/
CT

F-fluorodeoxyglucose Positron Emission Tomography/
Computerized Tomography

FFPE formalin-fixed paraffin-embedded tissue

FISH Fluorescence in situ hybridization

FN1 Fibronectin 1

GAS5 Growth Arrest Specific 5

GEP gene expression profiling

GSEA gene set enrichment analysis

IGF Insulin-like Growth Factor

IHC immunohistochemistry

IL2 interleukin-2

IL6 interleukin-6

IRF4 Interferon Regulatory Factor 4

JAK Janus kinase

(Continued)
F
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JI Jaccard Index

LDH lactate dehydrogenase

LMO2 LIM domain only 2

lncRNA long non-coding RNA

Log2FC log2 fold change

misc_RNA miscellaneous RNA

mRNA messenger RNA

mt-tRNA mitochondrial transfer RNA

MYC MYC proto-oncogene protein

NCCN-IPI National Comprehensive Cancer Network International
Prognostic Index score

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B-cells

NHL non-Hodgkin’s lymphoma

OS overall survival

PD progressive disease

PFS progression-free survival

PMBCL primary mediastinal B-cell lymphoma

PR partial response

PTEN Phosphatase and Tensin homolog

R-ACVBP dose-intensive rituximab, doxorubicin, cyclophosphamide,
vindesine, bleomycin, and prednisone

R-CHOP rituximab, cyclophosphamide, vincristine, doxorubicin, and
prednisone

ROC Receiver Operating Characteristic

R/R relapse/refractory disease

rRNA ribosomal RNA

RT-qPCR reverse transcription quantitative real-time PCR

SD stable disease

SIRT3 Sirtuin 3

snRNA small nuclear RNA

snoRNA small nucleolar RNA

STAT3 signal transducer and activator of transcription 3

TGF-b Transforming Growth Factor Beta

TNF Tumor Necrosis Factor

TUG1 Taurine Up-Regulated 1

UMI Unique Molecular Identifier

VEGF vascular endothelial growth factor

WHO World Health Organization

XIST X-inactive specific transcript.
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