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Deep learning-enhanced
radiomics for histologic
classification and grade
stratification of stage IA
lung adenocarcinoma: a
multicenter study

Guotian Pei1†, Dawei Wang2†, Kunkun Sun3, Yingshun Yang1,
Wen Tang2, Yanfeng Sun2, Siyuan Yin2, Qiang Liu1,
Shuai Wang1 and Yuqing Huang1*

1Department of Thoracic Surgery, Beijing Haidian Hospital (Haidian Section of Peking University Third
Hospital), Beijing, China, 2Institute of Advanced Research, Infervision Medical Technology Co. Ltd.,
Beijing, China, 3Department of Pathology, Peking University People’s Hospital, Beijing, China
Background: Preoperative prediction models for histologic subtype and grade of

stage IA lung adenocarcinoma (LUAD) according to the update of the WHO

Classification of Tumors of the Lung in 2021 and the 2020 new grade system are

yet to be explored. We aim to develop the noninvasive pathology and grade

evaluation approach for patients with stage IA LUAD via CT-based radiomics

approach and evaluate their performance in clinical practice.

Methods: Chest CT scans were retrospectively collected from patients who

were diagnosed with stage IA LUAD and underwent complete resection at two

hospitals. A deep learning segmentation algorithm was first applied to assist

lesion delineation. Expansion strategies such as bounding-box annotations

were further applied. Radiomics features were then extracted and selected

followed by radiomics modeling based on four classic machine learning

algorithms for histologic subtype classification and grade stratification. The

area under the receiver operating characteristic curve (AUC) was used to

evaluate model performance.

Results: The study included 294 and 145 patients with stage IA LUAD from two

hospitals for radiomics analysis, respectively. For classification of four histological

subtypes, multilayer perceptron (MLP) algorithm presented no annotation

strategy preference and achieved the average AUC of 0.855, 0.922, and 0.720

on internal, independent, and external test sets with 1-pixel expansion

annotation. Bounding-box annotation strategy also enabled MLP an

acceptable and stable accuracy among test sets. Meanwhile, logistic regression

was selected for grade stratification and achieved the average AUC of 0.928,

0.837, and 0.748 on internal, independent, and external test sets with optimal

annotation strategies.
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Abbreviations: NSCLC, non-small cell lung cancer

nodules; LUAD, lung adenocarcinoma; IAC, inv

adenocarcinoma; AUC, area under the curve; DL, deep

learning; LR, logistic regression; PCC, Pearson correl

principal component analysis.
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Conclusions: DL-enhanced radiomics models had great potential to predict the

fine histological subtypes and grades of early-stage LUADs based on CT images,

which might serve as a promising noninvasive approach for the diagnosis and

management of early LUADs.
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Introduction

Lung cancer remained the leading cause of cancer death

worldwide with annually 2.1 million new lung cancer cases and

1.8 million deaths (1). Unfortunately, approximately 70% of these

patients are diagnosed with locally advanced stages and metastatic

disease, which results in low survival rates (2). Thus, early detection

and treatment of lung cancer are essential to reduce mortality. With

the widespread development of low-dose chest CT screening

programs, the detection of ground-glass nodules (GGNs) is

rapidly increasing. Early-stage lung adenocarcinomas (LUADs)

often manifest as pure ground-glass nodules (GGNs) and part-

solid nodules (PSNs), and the prognosis is significantly related to

pathological subtypes of LUADs (3, 4). Sublobar resection

(including wedge resection and segmentectomy) could be

considered for some stage I non-small cell lung cancer (NSCLC)

patients with pre-invasive adenocarcinoma (adenocarcinoma in

situ, AIS), minimally invasive adenocarcinoma (MIA), or lepidic

predominant adenocarcinoma, owing to its favorable prognosis (5).

However, some subtypes (solid, micropapillary, and complex

glandular) of LUADs often have a poor prognosis (6), indicating

the necessity of lobectomy for these patients. Therefore, the

accurate pre-judgment of pathological subtypes and gradings

would benefit the selection of surgery type, prognosis, and

personalized postoperative follow-up of stage I LUADs.

Currently, many radiomics models have been developed to

classify main histologic subtypes of lung cancer, such as the

differentiation of non-small cell lung cancer (NSCLC) and small

cell lung cancers (SCLC) (7), the classification of lung

adenocarcinomas (ADC) and squamous cell carcinomas (SCC)

(8), the differentiation of ADC, SCC, and SCLC (9). Of note,

studies on LUADs also focused on the histologic subtype

classification, and most studies simplified the problem by dividing

LUADs into a 2-category classification (IAC; non-IAC) according

to their invasiveness (10). In addition to the invasiveness, subtypes

indicative of poor prognoses, such as the invasive mucinous

adenocarcinoma (IMA), are still rarely included in classification
; GGNs, ground-glass

asive non-mucinous

learning; ML, machine

ation coefficient; PCA,

02
studies, especially for stage IA LUADs. Additionally, although some

reports studied the identification of high-grade LUADs via

radiomics, the systematic stratification of IAC grades according to

the 2020 new grade system from the International Association for

the Study of Lung Cancer (IASLC) Pathology Committee (6) was

yet to be explored.

In this study, we focused on patients with stage IA LUADs and

aimed to develop two consecutive radiomics models for their non-

invasive histologic subtype classification and grade stratification. Of

note, Deep learning (DL)-based pre-annotation strategy and

expansion annotation strategies were utilized to study the influence

of ROIs delineation on the performance of radiomics. In combination

with multiple machine learning algorithms, stable radiomics models

were selected based on their performance on internal, independent,

and external testing sets and further underwent subgroup analysis,

validating their potential in supporting the clinical decisions in the

era of precise and personal medicine.
Materials and methods

The retrospective study was approved by the Institutional

Reviewing Board (IRB) of Beijing Haidian Hospital and Peking

University People’s Hospital and the informed consent was

waived by IRBs since patient information was anonymized to

ensure privacy.
Study population

Patients who underwent chest surgery and were diagnosed with

stage IA LUAD were enrolled from two medical centers for

radiomics model development and external validation according

to the following including and exclusion criteria. Three cohorts

were eventually included from two hospitals and constitute three

datasets, including development set, independent test set, and

external test set.

The first cohort, comprising 236 patients treated at our

institution between February 27, 2017, and May 7, 2021, included

180 primary lung cancer (PLC) patients with a single lesion and 56

multiple primary lung cancer (MPLC) patients. This dataset was used

for radiomics development and was divided into training, validation,

and internal testing subsets at a ratio of 16: 4: 5. The second cohort
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included 58 eligible patients treated between May 10, 2021, and Nov

3, 2021, and was used as an independent test set. Of note, to further

evaluate the robustness and generalization of proposed radiomics

models, 145 eligible patients who underwent treatment at the other

hospital between Sep 15, 2016, and Nov 1, 2021, were enrolled in

cohort 3 and served as the external test set. Diagrams of patient

enrollment and data partition details can be found in Figure 1.

The inclusion criteria were as follows: a) patients with stage IA

lung adenocarcinoma; b) those who underwent complete surgical

excision; c) those with preoperative thin-sliced chest CT images.

Patients were excluded if a) histological subtype or clinical

information was missing; b) their CT images were not in compliance

with the Digital Imaging and Communications in Medicine (DICOM)

standards; c) CT images were discontinuous, missing, or damaged; d)

annotating radiologists could not confidently annotate images.
CT acquisition

All the enrolled patients underwent chest CT examinations

before surgical excision. Particularly, multi-slice spiral CT low-dose

scans were performed using instruments from GE Healthcare

(Chicago, I l l , USA), Phil ips Healthcare (Amsterdam,

Netherlands), and United Imaging (Shanghai, China). The key

scanning parameters were as follows: tube voltage of 120KV;

reconstruction slice thickness from 0.625 to 2mm. All CT scans

were saved in the picture archiving and communication system.
Deep learning segmentation algorithm-
aided annotation of pulmonary nodules

Given that deep learning (DL)-based auxiliary diagnosis

systems for pulmonary nodules have been well developed and
Frontiers in Oncology 03
launched in clinical settings (11, 12), a modified Faster R-CNN

model trained on more than 11,000 chest CT scans to detect

different types of pulmonary nodules was utilized to aid the

annotation of targeted nodules (12). Briefly, the employed

modified Faster R-CNN first detected the targeted nodules and a

U-Net segmentation algorithm output the contour. Then, senior

radiologists further corrected the delineation of interested

pulmonary nodules and deleted untargeted nodule lesions. In

such a way, consumption of the medical labor force was

significantly reduced, and the annotation efficiency was greatly

improved. The credibility of the DL-based segmentation

algorithm in annotating pulmonary nodules was examined by

comparing it with manual-corrected lesion contours.
Expansion strategies for ROI annotation

Previous studies revealed that peritumoral information could

improve the model performance on invasiveness prediction of ADC

(13) and histological subtype stratification in patients with NSCLC

(14). Another previous radiomics studies reported that bounding-

box delineation of ROI could achieve equivalent performance to

precisely annotated ones (15). Considering the potential advantages

of peritumoral areas in histologic classification tasks, in addition to

the DL-aided manual-correction annotation strategy, we further

explored the pixel-expansion annotation strategy for radiomics

modeling by expanding lesion contours based on manual

corrected ones. Particularly, we performed 1-pixel, 3-pixel, 5-

pixel, and bounding-box expansions after the manual correction

was completed. The representation of annotated lesions was

presented in the Supplementary Figure 1. Summarily, we selected

different ROIs in this study, encompassing the precise lesion ROI,

the expanded ROI, and the bounding-box ROI of the designated

lesions. To ensure the accurate localization of the targeted lesion on
FIGURE 1

Diagram of patients enrollment and data partition. PLC = primary lung cancer, MPLC = multiple primary lung cancer, DICOM: Digital Imaging and
Communications in Medicine.
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CT images, a multidisciplinary team consisting of radiologists,

thoracic surgeons, and pathologists collaborated in defining the

targeted lesions. The impact of different annotation strategies on

stage IA LUAD histologic subtype classification and invasive non-

mucinous adenocarcinoma (IAC) grade stratification was analyzed

in this study by comparing the performance of radiomics models.
Feature extraction

The PyRadiomics package (version 2.2.0) was called using

Python (version 3.8.1) when performing radiomics feature

extraction. Summarily, a total of 1454 features were extracted

from the annotated ROIs, which belonged to 7 classes, including

first-order (FOS), shape, Gray Level Co-occurrence Matrix

(GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level

Size Zone Matrix (GLSZM), Neighbouring Gray Tone Difference

Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM)

features. Detailed information on extracted features was

summarized in supplementary table 1.
Dimension reduction of extracted
radiomics features

Pearson correlation coefficient (PCC) was first calculated and

used to reduce the redundancy of the primary feature set, followed by

the principal component analysis (PCA) approach which converted

potentially correlated features into principal components that are

linearly uncorrelated via orthogonal transformation (16). Features

with a PCC <0.8 were retained after the first-round examination of

feature redundancy. Subsequently, uncorrelated principal feature

components were further obtained via PCA and utilized to develop

radiomics models for histologic subtype classification and IAC grade

stratification. Feature selection was accomplished by calling the scikit-

learn (version 0.20.2) package.
Establishment of pathologic gold standard

Chest CT scans, pathological information, and clinical

information was retrospectively collected from all included

eligible patients and used to generate gold standard labels. Given

the update of the WHO Classification of Tumors of the Lung in

2021 and IASLC grading system of IAC in 2020, histologic subtypes

and IAC gradings of enrolled patients were all re-evaluated by an

experienced pathologist before being utilized as the gold standard

label in model development. In particular, histologic subtyping and

grading were performed using the largest tumor sections in all cases,

and the percentage of each histologic component was recorded in

5% increments according to the proposed IASLC grading system as

follows: Grade 1, lepidic predominant tumors with no or less than

20% high-grade patterns (solid, micropapillary, and/or complex

glandular patterns); Grade 2, acinar or papillary predominant

tumors with no or less than 20% high-grade patterns; and Grade

3, any tumor with 20% or more of high-grade patterns.
Frontiers in Oncology 04
Development and evaluation of
radiomics models

Based on the five ROI annotation strategies mentioned above,

four classic machine learning (ML) algorithms were utilized to

develop radiomics models, including support vector machine

(SVM), logistic regression (LR), and multi-layer perceptron

(MLP), and eXtreme Gradient Boosting (XGBoost). The optimal

hyper-parameters of ML algorithms were determined by the model

performance on the validation set. The stable ML algorithm and

potential practical annotation strategy were explored according to

the model performance on the test datasets.

Radiomics models’ performance was evaluated by classification

sensitivity, specificity, precision, accuracy, F1 score, G-Mean, and

area under the ROC curve (AUC). According to the study design,

the first batch radiomics models focused on the classification of

stage IA LUAD histological subtype classification, including

precursor glandular lesions (PGL), MIA, IAC, and IMA. The

second batch radiomics models were responsible for the

stratification of IAC grade (6), which ranged from grade 1 to

grade 3 (Figure 2).
Statistical analysis

Continuous variables were represented by the means ± SD while

the categorical variables were expressed in terms of frequency and

statistically analyzed by the Chi-square test. P <0.05 was considered

statistically significant. A two-sided 95% confidence interval for

AUC was constructed following the approach of Hanley and

McNeil (1982) (17). Cohen’s Kappa coefficient was calculated in a

confusion matrix to measure the agreement between pathological

gold-standard and model predictions. All statistical analyses were

performed with the R statistical package (The R Foundation for

Statistical Computing, Vienna, Austria).
Results

Patient characteristics

From the two institutions, 256, 63, and 173 patients were

initially eligible for the development set, independent test set, and

external test set, respectively. However, due to missing histological

subtype or clinical information, 20 (7.8%) and 3 (4.7%) patients

were excluded. Additionally, 2 (3.2%) patients with motion-artifact

induced poor quality CT scans and 28 (16.2%) patients with

damaged CT scans were omitted. Thus, the final sample

comprised 236, 58, and 145 patients in the development set,

independent test set, and external test set (Figure 1).

In general, most of the included patients (79.04%, n=347) were

non-smokers. Current (12.76%, n=56) and former smokers (8.20%,

n=36) just count for a small portion of the studied population. Of

note, 23.01% (n=101) of the population had a family history of

cancer while 14.12% (n=62) of them had an alcohol intake history.
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The most frequent surgical procedure was lobectomy (38.95%,

n=171), followed by segmentectomy (26.65%, n=117) and wedge

resection (21.41%, n=94); the rest of included patients (12.98%,

n=57) received hybrid surgical procedures due to the presence of

multiple primary lung cancer lesions. At adenocarcinoma lesion

level, most of them presented as PSNs (53.22%, n=322), followed by

GGN (30.58%, n=185), solid nodule (12.07%, n=73), and mass

(4.13%, n=25). With respect to histologic subtypes, IAC (57.85%,

n=350), MIA (30.91%, n=187), PGL (7.44%, n=45), and IMA

(3.80%, n=23) were included. Additionally, most IAC lesions

(84.57%, n=296) were categorized as Grade 2 according to the

latest released grading system by the IASLC Pathology Committee.

Detailed characteristics of the included population in different

datasets was summarized in Table 1. Notably, patients in the

external test set were significantly older than those in the

development set. Furthermore, family history of cancer was

significantly less common among patients in external test set. It is

also worth noting that the distribution of nodule types by density,

histologic subtypes, and IAC gradings significantly varied across

datasets due to different data collection timeframes. Notably, the

independent test set lacked PGL and IMA lesions.
Analysis of radiomics features

A total of 1454 features were extracted from the annotated

ROIs. A sum of 303 features with a Pearson correlation

coefficient <0.8 was obtained after the first-round reduction

of feature dimensionality. The correlation heatmap of selected

features was presented in Supplementary Figure 2A. Subsequently,

40 principal feature components were preserved via PCA for the
Frontiers in Oncology 05
development of radiomics models. Principal component

contribution rate was displayed in Supplementary Figure 2B.

Details information about the extracted and selected features

can be found in Supplementary Table 1.

Since PCA analysis selected feature components rather than

certain features, we analyzed the significantly distinguished

features (SDF) between each subtype based on PCC selected

features in advance before developing the four-class histologic

subtypes classification model and obtained 6 pairwise

comparisons (PCs). Of the first-round selected 303 features,

SDFs between each subtype were identified and grouped

according to their identifying frequencies. Features were

eventually divided into 7 groups, including SDFs in all PCs

(n=46), 5PCs (n=19), 4PCs (n=17), 3PCs (n=17), 2PCs (n=16),

1PC (n=19), and none of the 6 PCs (n=169). These divided feature

groups and their corresponding categories were displayed in the

feature heatmap (Figure 3), and the details of features in each

group were listed in Supplementary Table 2.
Selection of the optimal radiomics models
for histologic subtypes classification and
IAC grade stratification

DL-based nodule segmentation algorithms have enhanced the

practicality of radiomics models. In the current study, we further

employed five annotation strategies and four ML algorithms to

develop two batches of models for LUAD diagnosis, including

histologic subtype classification and IAC grade stratification. We

first selected the optimal ML algorithms for both tasks by

comparing the models’ performance under different annotation
FIGURE 2

Illustration of the radiomics models for histologic subtype classification and IAC grading (1). Pre-operative chest CT scans were collected from
enrolled patients for model development (2). Deep learning (DL)-based pulmonary nodule segmentation algorithm was utilized to pre-segment the
target nodular lesions, followed by manual correction. Based on the manually edited region of interest (ROI), expansion strategies were applied to
generate 1-pixel, 3-pixel, 5-pixel, and bounding-box masks of targeted lesions (3). PyRadiomics was utilized to extract radiomics features of different
categories, including shape, intensity, wavelet, and texture features (4). Pearson correlation coefficient (PCC) and principal component analysis (PCA)
were employed to reduce the dimensionality of extracted features (5). Classic machine learning (ML) algorithms were then used to develop
radiomics models for classifying histologic subtypes of stage IA LUADs (6). Furthermore, ML algorithms were used to develop radiomics models for
stratifying grades of invasive non-mucinous adenocarcinoma (IAC).
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TABLE 1 Clinical characteristics of enrolled patients.

Groups
Information

Model development set Independent test set External test set Test

Overall PLC MPLC Overall PLC MPLC Overall PLC MPLC
p

value

Patients* 236 180 56 58 46 12 145 104 41

Age (y)
57.0 (29 ~

83)
56.6 (29 ~

83)
58.2 (39 ~

79)
59.8 (34 ~

84)
60.2 (39 ~

84)
57.9 (34 ~

76) 61 (54~66)
61

(55~66)
61

(52~66) 0.018

Sex 0.086

Female
158

(66.95%)
119

(66.11%) 39 (69.64%) 41 (70.69%) 32 (69.57%) 9 (75%)
83

(57.24%)
62

(59.62%)
21

(51.22%)

Male 78 (33.05%) 61 (33.89%) 17 (30.36%) 17 (29.31%) 14 (30.43%) 3 (25%)
62

(42.76%)
42

(40.38%)
20

(48.78%)

Smoking history 0.849

Current 33 (13.98%) 27 (15%) 6 (10.71%) 6 (10.34%) 3 (6.52%) 3 (25%)
17

(11.72%)
11

(10.58%)
6

(14.63%)

Former 18 (7.63%) 13 (7.22%) 5 (8.93%) 4 (6.9%) 4 (8.7%) 0 (0%) 14 (9.66%)
10

(9.62%) 4 (9.76%)

Never
185

(78.39%)
140

(77.78%) 45 (80.36%) 48 (82.76%) 39 (84.78%) 9 (75%)
114

(78.62%)
83

(79.81%)
31

(75.61%)

Family history of
cancer <0.010

Yes 64 (27.12%) 46 (25.56%) 18 (32.14%) 18 (31.03%) 15 (32.61%) 3 (25%) 19 (13.1%)
13

(12.5%)
6

(14.63%)

No
172

(72.88%)
134

(74.44%) 38 (67.86%) 40 (68.97%) 31 (67.39%) 9 (75%)
126

(86.9%)
91

(87.5%)
35

(85.37%)

Alcohol intake
history 0.743

Yes 33 (13.98%) 25 (13.89%) 8 (14.29%) 10 (17.24%) 8 (17.39%) 2 (16.67%) 19 (13.1%)
15

(14.42%) 4 (9.76%)

No
203

(86.02%)
155

(86.11%) 48 (85.71%) 48 (82.76%) 38 (82.61%) 10 (83.33%)
126

(86.9%)
89

(85.58%)
37

(90.24%)

Lesion† 308 180 128 76 46 30 221 104 117

Nodule type by
density <0.010

GGN 94 (30.52%) 38 (21.11%) 56 (43.75%) 41 (53.95%) 21 (45.65%) 20 (66.67%)
50

(22.62%) 4 (3.85%)
46

(39.32%)

mGGN
175

(56.82%)
113

(62.78%) 62 (48.44%) 27 (35.53%) 21 (45.65%) 6 (20%)
120

(54.3%)
65

(62.5%)
55

(47.01%)

Solid 34 (11.04%) 25 (13.89%) 9 (7.03%) 8 (10.53%) 4 (8.7%) 4 (13.33%)
31

(14.03%)
21

(20.19%)
10

(8.55%)

mass 5 (1.62%) 4 (2.22%) 1 (0.78%) 0 (0%) 0 (0%) 0 (0%) 20 (9.05%)
14

(13.46%) 6 (5.13%)

Histologic subtypes <0.010

AIS 17 (5.52%) 5 (2.78%) 12 (9.38%) 0 (0%) 0 (0%) 0 (0%) 11 (4.98%) 1 (0.96%)
10

(8.55%)

AAH 8 (2.6%) 0 (0%) 8 (6.25%) 0 (0%) 0 (0%) 0 (0%) 9 (4.07%) 0 (0%) 9 (7.69%)

MIA
100

(32.47%) 52 (28.89%) 48 (37.50%) 36 (47.37%) 18 (39.13%) 18 (60%)
51

(23.08%) 8 (7.69%)
43

(36.75%)

IAC
169

(54.87%)
111

(61.67%) 58 (45.31%) 40 (52.63%) 28 (60.87%) 12 (40%)
141

(63.8%)
87

(83.65%)
54

(46.15%)

(Continued)
F
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strategies on three test sets. As depicted in Figures 4A–C, MLP with

1-pixel annotation exhibited optimal performance on histologic

subtype classification on the internal test set, and maintained

consistent and excellent performance on independent and

external test sets, regardless of annotation strategies. Notably, the

bounding-box annotation strategy yielded comparable results for

histologic subtype classification on the independent and external

sets. Concurrently, LR displayed an overall superior performance

on IAC grade stratification in terms of accuracy (Figures 4D–F).

However, the performance of LR varied with different annotation

strategies for IAC grade stratification.

Subsequently, impacts of annotations on selected ML

algorithms were further evaluated on three test sets in terms

of AUC, sensitivity, specificity, precision, F1-score, and G-Mean

(Supplementary Figure 3). It was observed that MLP for histologic

subtype classification had no preference for a specific annotation

strategy, while LR for IAC grade stratification showed a

preference for certain data labeling strategies. Regarding the

performance of the radiomics models on each class, we noted

inferior results for those classes with insufficient sample sizes.
Frontiers in Oncology 07
Performance evaluation of
selected radiomics model for
histologic subtypes classification

We first evaluated the performance of the radiomics model on

histologic subtype classification. The MLP with 1-pixel expansion

was selected as the representative model. This model achieved an

AUC of 0.903, 0.905, 0.951, and 0.661 for PGL, MIA, IAC, and IMA

lesions, respectively, on the internal test set. On the external test set,

it achieved an AUC of 0.929 and 0.914 for MIA and IAC lesions. On

the external test set, it achieved an AUC of 0.691, 0.841,0.747, and

0.600 for PGL, MIA, IAC, and IMA lesions, respectively

(Figures 5A–C). Notably, the performance of MLP was

compromised on the external test set. Meanwhile, the kappa

coefficient of MLP reached 0.696, 0.534, and 0.473, which

presented a substantial and moderate agreement between model-

predicted histologic subtypes and ground truth (Figures 5D–F). A

decrease in the accuracy of MLP was also observed among the

internal, independent, and external test sets (Table 2). This

discrepancy could potentially be attributed to the prevalence of
TABLE 1 Continued

Groups
Information

Model development set Independent test set External test set Test

Overall PLC MPLC Overall PLC MPLC Overall PLC MPLC
p

value

IMA 14 (4.55%) 12 (6.67%) 2 (1.56%) 0 (0%) 0 (0%) 0 (0%) 9 (4.07%) 8 (7.69%) 1 (0.85%)

IAC gradings 0.027

Grade 1 16 (9.47%) 11 (9.91%) 5 (8.62%) 9 (22.5%) 4 (14.29%) 5 (41.67%) 12 (8.51%)
11

(12.64%) 1 (1.85%)

Grade 2
148

(87.57%) 95 (85.59%) 53 (91.38%) 30 (75%) 23 (82.14%) 7 (58.33%)
118

(83.69%)
69

(79.31%)
49

(90.74%)

Grade 3 5 (2.96%) 5 (4.5%) 0 (0%) 1 (2.5%) 1 (3.57%) 0 (0%) 11 (7.8%) 7 (8.05%) 4 (7.41%)
front
Unless otherwise indicated, data are numbers of patients. AIS, adenocarcinoma in situ; AAH, atypical adenomatous hyperplasia; MIA, minimally invasive adenocarcinoma; IAC, invasive non-
mucinous adenocarcinoma; IMA, invasive mucinous adenocarcinoma; GGNs, ground-glass nodules; PLC, primary lung cancer; MPLC, multiple primary lung cancer.
*Data are the median, and data in parentheses are the interquartile range.
†Data are numbers of nodules.
FIGURE 3

The most discriminative features for each histologic subtype. Based on PCC dimensionality reduction, distinguished features in a pair-wise
comparison were analyzed to explain the potential key factors that distinguish them from each other. The detailed composition of each pair-wise
comparison in each row is indicated in the right panel. Features were color-coded according to their category and listed from left to right based on
their frequencies in pair-wise comparisons.
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challenging GGN lesions in the independent set and MPLC lesions

in the external set. Of note, the accuracy of MLP remained stable on

the external test sets (0.714 vs. 0.763 vs. 0.756) when the bounding-

box annotation strategy was applied. The detailed performance

metrics were summarized in Table 2.
Performance evaluation of
optimal radiomics model for IAC
grade stratification

We next evaluated the performance of the selected LR with

optimal annotation strategies for IAC grade stratification. The LR

model achieved an AUC of 0.911, 0.873, and 1.000 for grade 1, grade

2, and grade 3, respectively, on the internal testing set (Figure 5G),

with a corresponding kappa coefficient of 0.547 (Figure 5J). However,

on the independent test set, the LR model yielded a lower AUC of

0.771, 0.740, and 1.000 for grade 1, grade 2, and grade 3 respectively,

and on the external test set, an AUC of 0.772, 0.644, and 0.878 for

grade 1, grade 2, and grade 3, respectively. This suboptimal

performance could be attributed to the imbalanced in sample size

across the different grades (Figures 5H, I). The kappa coefficients of

the LR model on the independent and external sets were 0.562 and

0.169, respectively (Figures 5K, L). Detailed performance metrics

were summarized in Table 2.
Subgroup analysis of selected
representative ML model performance
on test sets

Notably, subgroup analyses of lesion numbers (PLC Vs MPLC),

sex, nodule types by density (GGN vs PSNs vs solid), and age range
Frontiers in Oncology 08
were further performed (Figure 6). For histologic subtype

classification, lower accuracy of MLP were observed on MPLC

patients, significantly lower level was found on external test sets.

Besides, significantly lower accuracy of MLP was also seen in GGN

lesions on independent and external test sets. For IAC grade

stratification, LR displayed significantly lower accuracy on male

patients and solid nodules on the external test set. No significant

di fference of both two models was observed among

other subgroups.
Discussion

Non-invasive preoperative prediction of pathological subtype

and grade would greatly benefit the patients with stage IA LUADs in

terms of the selection of surgery type, prognosis, and personalized

postoperative follow-up. In this current study, we proposed two

consecutive radiomics models for the diagnosis of patients with

LUADs, including histologic subtype classification (PGL, MIA,

IAC, and IMA) and IAC grade stratification (grade 1-3). Five

annotation strategies and four ML algorithms were utilized for

modeling. MLP and LR were selected as the optimal algorithms for

histologic subtype classification and IAC grading stratification

tasks, respectively, as supported by the overall better performance

on different annotations on internal, independent, and external test

sets. For histologic subtype classification, bounding-box annotation

enabled an equivalent performance of MLP. Besides, distinguishing

features between each pairwise comparison were revealed.

Additionally, subgroup analyses validated the applicability of the

radiomics models across cohorts with different sex, ages, and

number of lesions.

Radiomics has been used since 2014 to solve clinical problems

(18), and as its applications expand, efforts to streamline the process
D

A B

E F

C

FIGURE 4

Impact of different annotation strategies on radiomics model performance. The performance of radiomics models developed on features from
different annotation strategies were evaluated and compared in terms of accuracy. (A-C) displayed the accuracy of radiomics models for histologic
subtype classification on the internal, independent, and external testing sets, respectively. (D–F) demonstrated the accuracy of radiomics models for
IAC grade stratification on the internal, independent, and external testing sets.
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for clinical implementation are ongoing. Lesion annotation is often

time-consuming and labor-intensive, limiting the clinical

deployment of radiomics tools. Previous studies (19, 20) reported

that semiautomatic lesion segmentation exhibited high agreement

with manual delineations and could provide a significant reduction

in interobserver variability. Some other studies utilized certain

whole CT images (21), certain annotated slides (22), or

bounding-box annotation (15) to develop models which could

also avoid heavy annotation workload but might result in

insufficient features. Given that DL segmentation algorithms for

pulmonary nodules were well trained (11, 12), we then employed
Frontiers in Oncology 09
one to pre-segment the targeted lesions followed by a manual

edition. The employed DL algorithm achieved an averaged Dice

index of 0.94 (compared with manually edited contours), indicating

the potential of the end-to-end or enhanced radiomics models by

integrating DL segmentation algorithms into the classic radiomics

modeling pathway. However, unlike the DL-enable end-to-end

radiomics model in differentiating COVID-19 (22), we enrolled

MPLC patients with other untargeted nodules that needed to be

manually excluded before developing radiomics models. After all, as

previously reported (23, 24), our hybrid approach avoided intensive

labor force for lesion annotation.
D

A B

E F

G IH

J K L

C

FIGURE 5

Performance of radiomics models on histologic subtype classification and IAC grading stratification. For histologic subtype classification, ROC curves
were plotted to evaluate the performance of the Radiomic model in discriminating PGL, MIA, IAC, and IMA from the other three categories on
internal (A), independent (B), and external (C) testing sets, respectively. Confusion matrices for four-category classification of PGL, MIA, IAC, and IM
on internal (D), independent (E), and external (F) testing sets, respectively. For IAC grading stratification, ROC curves were plotted to evaluate the
performance of the Radiomic model on internal (G), independent (H), and external (I) testing sets, respectively. Confusion matrices for the
stratification of IAC grades (grade 1 to 3) on internal (J), independent (K), and external (L) testing sets, respectively. The exact number of true
positives, false positives, true negatives and false negatives were listed. Kappa coefficients were calculated.
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TABLE 2 Detailed diagnostic metrics of radiomics models on internal, independent, and external test datasets.

Task Test Sets Subtypes/
Grades

Accuracy
(95%CI)

AUC (95%
CI) Sensitivity Precision Specificity F1-

Score
G-

Mean

Histological
subtypes

Internal

PGL

0.825
(0.730-0.921)

0.903 (0.712-
1.000)

0.400 0.667 0.983 0.500 0.516

MIA
0.905 (0.824-

0.970)
0.900 0.692 0.814 0.783 0.789

IAC
0.951 (0.890-

0.994)
0.886 0.939 0.929 0.912 0.912

IMA
0.661 (0.049-

1.000)
0.333 1.000 1.000 0.500 0.577

Average 0.855 0.630 0.825 0.932 0.674 0.699

Independent

PGL

0.763
(0.659-0.855)

- - - 0.961 - -

MIA
0.929 (0.863-

0.978)
0.528 0.950 0.975 0.679 0.708

IAC
0.914 (0.846-

0.971)
0.975 0.736 0.611 0.839 0.847

IMA - - - 0.987 - -

Average 0.922 0.752 0.843 0.884 0.759 0.778

External

PGL

0.747
(0.688-0.805)

0.691 (0.534-
0.826)

0.350 0.538 0.970 0.424 0.434

MIA
0.841 (0.779-

0.894)
0.510 0.634 0.912 0.565 0.569

IAC
0.747 (0.676-

0.814)
0.936 0.810 0.612 0.868 0.870

IMA
0.600 (0.494-

0.712)
0.000 0.000 0.981 0.000 0.000

Average 0.720 0.449 0.496 0.869 0.464 0.468

IAC grading

Internal

Grade 1

0.829
(0.714-0.943)

0.911 (0.750-
1.000)

1.000 0.400 0.807 0.571 0.633

Grade 2
0.873 (0.735-

0.983)
0.800 1.000 1.000 0.889 0.894

Grade 3
1.000 (0.500-

1.000)
1.000 1.000 1.000 1.000 1.000

Average 0.928 0.933 0.800 0.936 0.820 0.842

Independent

Grade 1

0.825
(0.700-0.925)

0.771(0.553-
0.943)

0.667 0.600 0.871 0.632 0.633

Grade 2
0.740 (0.516-

0.935)
0.867 0.897 0.700 0.881 0.882

Grade 3
1.000 (0.500-

1.000)
1.000 1.000 1.000 1.000 1.000

Average 0.837 0.845 0.832 0.857 0.838 0.838

External

Grade 1

0.816
(0.752-0.879)

0.722 (0.566-
0.860)

0.250 0.300 0.946 0.273 0.274

Grade 2
0.644 (0.512-

0.756)
0.941 0.854 0.174 0.895 0.896

Grade 3
0.878 (0.764-

0.953)
0.090 1.000 1.000 0.167 0.302

Average 0.748 0.427 0.718 0.707 0.445 0.491
F
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Data in parentheses are 95% CIs. AUC, area under the receiver operating characteristic curve; PGL, precursor glandular lesions; MIA, minimally invasive adenocarcinoma; IAC, invasive non-
mucinous adenocarcinoma; IMA, invasive mucinous adenocarcinoma.
“-” means not applicable (N/A).
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Since the easy-to-use bounding box annotation strategy was

proved to be efficient in developing radiomics models for the

diagnoses of gastric cancer and breast lesions (15, 25), we also

examined the efficiency of an expansion strategy for the LUADs

related tasks in our study by generating 1, 3, 5-pixel expanded and

bounding-box (based on 5-pixel expansion) annotations. Notably,

the 1-pixel expansion strategy, to some extent, enabled an overall

stable performance of selected ML algorithms. An expansion

strategy on cancerous lesions seemed to be a good option to

enhance the model performance possibly by including more

peritumoral features. Of course, the degree of expansion will need

to be determined according to the situation. For histologic subtype

classification, although the 1-pixel expansion strategy enabled an

overall better performance, we also noticed the accuracy decline of

MLP algorithm from internal to external test sets. Of note, accuracy

of MLP remained acceptable and stable among test sets when

applying the bounding-box strategy, indicating the practicality of

the bounding-box strategy in this histologic subtype classification

task. In contrast, the bounding-box strategy didn’t perform well on

the three-grade classification tasks in this study, indicating its

applicability is algorithm- and context-dependent.

Another essential procedure for radiomics is dimensionality

reduction which plays a key role in alleviating ML artifacts in the

scenario of unbalanced datasets with small sample sizes (26). We

utilized two classic approaches, PCC and PCA, to perform the

dimensionality reduction in this study (27, 28). As an unsupervised

method, PCA projected features into a dimensionally reduced set of

uncorrelated variables called principal components via the linear

orthogonal transformation, and outperformed the supervised

technique in terms of generalizability capability (26). However, to

solve the main problem of the variable’s interpretation loss, we

analyzed the distinguished features in a pair-wise comparison after

PCC-based dimensional i ty reduct ion. The significant
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discriminating features between pair-wise comparisons may

explain, to some extent, the key factors that distinguish them

from each other.

Most previous related radiomics studies focused on binary

classification in distinguishing NSCLC from SCLC, ADC from

SCC, and IAC from other less invasive LUADs (7, 8). Given the

update of the WHO Classification of Tumors of the Lung in 2021

and IASLC grading system of IAC in 2020 and the unique

manifestations of IMA, we developed the first radiomics models

for identifying four-category subtypes (PGL, IMA, IAC, and IMA)

and three-category grades (grade1 to 3). We employed 4 classic ML

algorithms and found that MLP and LR displayed an overall stable

performance for four-category subtypes and three-category grades

tasks, respectively. With the respect to identifying multi-class

histologic subtypes, the selected representative MLP model in the

current study achieved an average AUC of 0.855 and 0.922 on

internal and independent testing sets, outperforming other models

with an average AUC of 0.747 (4-category of NSCLC) (29), 0.833

(3-category subtypes of central lung cancer) (9), and 0.896 (4-

category subtype of AAH, AIS, MIA, and IA) (30) in previous

studies. Notably, the multiclass histological subtype classification

model was not externally tested in previous studies, whereas the

MLP achieved a mean AUC of 0.720 on external test set in this

study. Meanwhile, few studies have reported the radiomics

approach to stratify IAC grades according to the newly updated

grading system. Instead, the radiomics approach was used to predict

the micropapillary pattern that was reported to have a poor

prognosis in a previous study (31). In comparison to

multiparametric MRI-based radiomics approach for NSCLC

grading (AUC 0.767) and contrast-enhanced CT-based radiomics

signature for prediction of tumor differentiation degree (low and

high degree, AUC 0.782) (32, 33), the selected representative LR

algorithm for IAC grade stratification in this study achieved better
FIGURE 6

Subgroup analysis of selected representative ML model performance on test sets. Subgroup analyses were performed on histologic subtype
classification and IAC grade stratification on internal, independent, and external testing sets, including target lesion numbers per patient, sex, nodule
types, and age periods.
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performance on both internal and independent testing sets

(averaged AUC 0.928 and 0.837) and equivalent performance on

external test set (averaged AUC 0.748), indicating the potential of

CT-based radiomics approach in predicting histologic grades of

IAC. Meanwhile, we noticed a dramatically decreased Kappa

coefficient of LR algorithm on external test set, which caused by

the miss classifications of grade1 and 3 into grade 2, suggesting the

need of further improvement for IAC grading stratification

algorithms by including more balanced data.

Of note, a previous study performed radiogenomic analyses of

patients with stage I LUAD by an unsupervised consensus

clustering approach to better classify patients with different

prognoses, complementing the TNM system (34). In consistent,

we developed supervised radiomic models on the patients with

stage IA LUAD (not including IB) to enable the accurate

differentiation of patients with poor prognosis at early stages

according to histologic subtypes. To address the heterogeneity of

LUAD, we further included the histologic type of IMA in the

proposed model. IMA has different characteristics than non-

mucinous adenocarcinoma in terms of histology, radiological

and clinical features. Although IMA can show a lepidic growth

pattern, invasive patterns are always present. Several studies have

shown that IMA has a poor prognosis than non-mucinous

adenocarcinoma (35–37). Additionally, IMA is commonly

detected in the advanced stage and cannot be surgically treated.

Therefore, our proposed radiomics models, to some extent, aided

the accurate pre-judgment of patients’ prognoses. Furthermore,

they validated the revealed associations between CT-based

radiomic features and known prognostic histologic factors,

genomic drivers, and patient outcomes in the solid-type

subgroup. In our subgroup analysis, the accuracy for

differentiating histologic subtypes between GGN and PSNs

lesions on both independent and external test sets were found to

be significantly different.

There are some limitations to our study. The imbalance in

histologic subtypes in the dataset compromised the performance of

our proposed classification models, especially for PGL and IMA

subtypes, and grade 3 lesions, which were less common in patients

with operable clinical stage IA lung adenocarcinoma in clinical

practice. The short follow-up of enrolled patients limited our ability

to investigate the associations between radiomics and clinical

features and the prognosis of patients with clinical stage IA

LUAD. Although it is difficult for doctors to precisely classify

those subtypes and grades, future work is also necessary to reveal

the auxiliary effect of both models in promoting the diagnostic

capabilities of these histologic subtypes, especially the identification

of IMA, and IAC grades.

Despite these limitations, our results suggest that radiomics

model, represented by MLP and LR, have great potential to predict

the fine histological subtypes and grades of early-stage LUADs

based on CT images, potentially providing a promising

noninvasive approach for the diagnosis and management of

early-stage LUADs.
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