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Introduction: The gut microbiome is directly involved in colorectal carcinogenesis,

but much of the epidemiological evidence for the effect of the gut microbiome on

colorectal cancer (CRC) risk comes from observational studies, and it is unclear

whether identified microbial alterations are the cause or consequence of CRC

development.

Methods: Univariate Mendelian randomization (MR) analysis and multivariate MR

analysis based on Bayesian model averaging were performed to

comprehensively explore the microbial risk factors associated with CRC. The

Network Module Structure Shift method was used to identify microbial

biomarkers associated with CRC. Mediation analysis was used to explore the

dietary habits-microbiota-CRC pathway.

Results: The results of the four methods showed that 9 bacteria had a robust

causal relationship with the development of CRC. Among them, Streptococcus

thermophilus reduced the risk of CRC; Eubacterium ventriosum and

Streptococcus were beneficial bacteria of malignant tumors of colon (CC);

Erysipelotrichaceae was a protective factor for malignant tumors of rectal (CR);

Bacteroides ovatus was a risk factor for benign tumors. Finally, the mediation

analysis revealed 10 pathways by which dietary regulation bacteria affected the

risk of CRC, including alcohol consumption increased the risk of CC by reducing

the abundance of Eubacterium ventriosum (mediated proportion: 43.044%), and

the mediated proportion of other pathways was 7.026%-34.22%.

Discussion: These findings will contribute to the understanding of the different

carcinogenic mechanisms of intestinal flora in the colon and rectum and the risk

of tumor transformation, thereby aiding CRC prevention, early screening, and the

development of future strategies to reduce CRC risk.

KEYWORDS

colorectal cancer, gut microbiota, Mendelian randomization analysis, dietary habit,
causal microbial biomarkers
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1 Introduction

Colorectal cancer (CRC) is the third most common cancer(1),

and it is not a single entity, colon and rectal cancers have their own

characteristics in terms of genetics, anatomy, treatment methods,

and metastasis patterns (2, 3). Most CRC tumors are thought to be

caused by precancerous changes in the adenoma-cancer pathway

(4). Screening and removal of colorectal adenomas in asymptomatic

individuals can reduce CRC morbidity and mortality (5).

The relationship between intestinal microecology and the

occurrence and development of CRC has attracted more and

more attention. First, a large number of population studies have

found significant differences in the gut microbiome between people

with CRC and healthy people (6–8). Further cohort studies showed

that gut microbiota composition is different at different stages of

CRC and that the interaction between intestinal flora gradually

complicates with the progression of the disease (6, 9, 10). These

results suggest that changes in bacteria play a driving role in the

initiation and progression of CRC. Experimental evidence also

supports the role of bacteria in CRC (11–14). In addition, the gut

microbiota can be rapidly altered by diet, and people who eat

different diets have significantly different gut microbial

compositions, which in turn are associated with different CRC

risks. For example, fat consumption and red meat intake are related

to the abundance of sulfide bacteria (15).

Most relevant studies were observational, and it was difficult to

draw causal conclusions. While animal experiments can verify the

specific mechanism by which a small number of bacteria respond to

CRC, it is difficult to screen out bacteria with truly causal effects

from tens of thousands of bacteria. Mendelian randomization (MR)

can use single nucleotide polymorphisms (SNPs) as instrumental

variables (IVs) to establish causal relationships between exposure

and outcomes (16). The two-sample multivariate MR method based

on Bayesian model averaging (MR-BMA) can detect true causal risk

factors when candidate risk factors are highly correlated (17). Gut

microbial traits are strongly correlated and high-throughput, so

MR-BMAmethod is a suitable method to find microbial risk factors

associated with disease. What’s more, a non-MR method, Network

Module Structure Shift (NetMoss) (18), can identify microbial

biomarkers associated with various diseases.

Currently, only a few bacteria have clearly demonstrated a

causal relationship with CRC (11–14). Therefore, univariate MR,

MR-BMA, and NetMoss methods were used to identify causal

bacteria for different cancer subsites (colorectal, colon, and

rectum) and stages (benign tumors and malignant tumors) of

CRC. Given that gut microbiota can be rapidly altered by diet, we

performed a two-step MR analysis to investigate the causal pathway

from dietary habits to CRC by bacteria.
2 Materials and methods

2.1 Data sources

We collected GWAS statistics related to gut microbiome from

the Netherlands, including 207 microbial taxa (5 phyla, 10 classes,
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13 orders, 26 families, 48 genera, and 105 species) and 205

functional pathways (Table 1) (19). The GWAS summary

statistics of CRC at different cancer subsites and stages (Table 1)

were obtained from the FinnGen biobank (https://r4.finngen.fi/)

(20).Colorectal cancer data include: colorectal cancer (CRC, N =

221814); malignant tumors of the colon (CC, N = 220595);

malignant tumors of the rectal (CR, N = 219870); benign tumors

of the colorectum (BCR, N = 228104); benign tumors of the colon

(BC, N = 218792); benign tumors of the rectal (BR, N = 220900)

(Table 1).The different phenotypes of colorectal cancer are defined

according to International Classification of Diseases (ICD) codes

retrieved from the Finnish National Registry. And GWAS summary

statistics for 14 dietary habits and 6 non-CRC diseases were

collected from the publicly available GWAS summary statistics

database (https://gwas.mrcieu.ac.uk/) (Table 1), published by the

Medical Research Council of the University of Bristol Medical

Research Council’s Integrated Epidemiology Unit (MRC IEU)

(21). Detailed quality control, filling, and GWAS details have

been described elsewhere previously (19–21). The above data

were mainly used for MR analysis. And we built a multi-

population cohort (Table S1) for further non-MR validation

analyses. Details on how the cohort was constructed are provided

in the Supplementary Material.
2.2 Instruments variable selection

According to the previous studies, SNPs with low significance

thresholds have the largest explanatory variance for microbial traits

(22, 23), so we set the thresholds (P < 1×10-5) to select the IVs.

Palindromic SNPs with non-derived allele frequencies (minor allele

frequency (MAF) > 0.3) were excluded. If they were correlated with

R > 0.01 within a 10,000 kb window, they were considered SNPs in

linkage disequilibrium (LD) and should be excluded. F-statistics

were computed to quantify the strength of IVs. IVs with F-

statistics < 10 were considered weak IVs and were excluded.

What’s more, we searched each SNP in the PhenoScanner GWAS

database to detect possible pleiotropy (24).
2.3 Univariable MR analysis

Univariate MR was used to assess the causal relationship between

gut microbiota and CRC at different cancer subsites and stages and 6

non-CRC diseases. MR analyses were performed and reported in

accordance with the STROBE-MR guidelines (25, 26). a list of the

STROBE-MR guidelines can be found in Supplementary File. The

inverse variance weighted (multiplicative random effects) [IVW(M)]

method is mainly used (27). For exposures for which only 1 IV could

be identified, the Wald ratio is used to estimate its causal effect (28).

We used P < 0.05 as the potential significance threshold. We also

derived false discovery rate (FDR)-corrected P-values with the

Benjamini-Hochberg (BH) method and used Pfdr < 0.2 as the FDR-

corrected significance threshold. We used a threshold of P < 5×10-8 to

select other traits-related IVs, and used the same method to explore

the causal relationship between diet and other traits.
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A series of additional analyses were conducted to assess the

reliability of the results. The MR Steiger test was used to estimate

the possible direction of causality between microbial traits and

outcome. For microbial traits that have a potential causal effect on

outcomes, we applied (“coloc”) to check whether the variation

responsible for influencing these factors was the same variation

that influences the outcome (29). If the threshold value of PP.H4 >

0.8, it is considered that MR hypothesis was violated. In addition,

Cochran Q statistics were used to assess the global heterogeneity of

the selected SNPS. MR-Egger regression was used to capture
Frontiers in Oncology 03
horizontal pleiotropy (30). Finally, we used MR-PRESSO to detect

and correct potential outliers (31).
2.4 Potential biomarkers ranking

MR-BMA is a multivariate MR method that prefers causal risk

factors from high-dimensional candidate risk factors in a Bayesian

framework (17). Like conventional MVMR (32), multiple exposures

using overlapping IVs allow adequate handling of “pleiotropism of

measurements” (17).
TABLE 1 Details of GWAS data for analysis.

Trait Sample
size GWAS ID1 Consortium Population

Malignant tumors

Colorectal cancer 221814 finn-b-C3_COLORECTAL FinnGen European

Malignant tumors of colon 220595 finn-b-C3_COLON FinnGen European

Malignant tumors of rectal 219870 finn-b-C3_RECTUM FinnGen European

Benign tumors

Benign tumors of colorectum 228104
finn-b-

CD2_BENIGN_COLORECANI
FinnGen European

Benign tumors of colon 218792 finn-b-CD2_BENIGN_COLON FinnGen European

Benign tumors of rectal 220900 finn-b-CD2_BENIGN_RECTUM FinnGen European

Gut microbiota
207 microbial tax 7738 NA2 NA European

205 microbial functional pathways 7738 NA NA European

Five non-colorectal
cancer diseases

Crohn’s disease (Large bowel, Small bowel) 211107,211268
finn-b-CHRONLARGE, finn-b-

CHRONSMALL
FinnGen European

Ulcerative colorectitis 214620 finn-b-K11_ULCER FinnGen European

Irritable bowel syndrome 187028 finn-b-K11_IBS FinnGen European

Non-alcoholic fatty liver disease 218792 finn-b-NAFLD FinnGen European

Type 2 diabetes 215654 finn-b-E4_DM2 FinnGen European

Dietary habits

Alcohol drinker status: Current 360726 ukb-d-20117_2 NA European

Bread intake 452236 ukb-b-11348 MRC-IEU European

Cereal type: Biscuit cereal (e.g. Weetabix) 299898 ukb-d-1468_2 NA European

Lamb/mutton intake 460006 ukb-b-14179 MRC-IEU European

Ferritin 23986 ieu-a-1050 GIS European

Liver intake 64944 ukb-b-6373 MRC-IEU European

Milk type used: Never/rarely have milk 360806 ukb-d-1418_6 NA European

Mineral and other dietary supplements:
Calcium

336314 ukb-a-495 Neale Lab European

Mineral and other dietary supplements:
Glucosamine

336314 ukb-a-494 Neale Lab European

Mineral and other dietary supplements: Zinc 461384 ukb-b-13891 MRC-IEU European

Single crust pastry intake 64949 ukb-b-2024 MRC-IEU European

Type of special diet followed: Gluten-free 64949 ukb-b-11189 MRC-IEU European

Vitamin and mineral supplements:
Multivitamins +/- minerals

335591 ukb-a-464 Neale Lab European

Vitamin and mineral supplements: Vitamin C 460351 ukb-b-15175 MRC-IEU European
1 ID in the MRC IEU OpenGWAS database. 2 NA, Not Applicable.
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We used MR-BMA to rank agnostic causal importance for

several microbial markers that had a potential causal relationship

with outcomes in univariate MR analysis (P < 0.05). All

independent genetic variants strongly associated with any

biomarker (P < 1×10-5) were included in the analysis (CRC: 87;

CC: 135; CR: 125; BCR: 103; BC: 101; BR: 158). Genetic associations

between biomarkers were then examined, and biomarkers with

genetic associations greater than 0.985 were deleted. The marginal

inclusion probability (MIP) (i.e., the sum of the posterior

probabilities of the model in which the risk factor exists) and the

model average causal effect (MACE) (representing a conservative

estimate of the direct causal effect of the risk factor on the average

outcome of these models) of each risk factor are calculated in the

model. For all BMA analyses, we set z to 10,000, prior probability to

0.1, and prior variance (s) to 0.5. A sensitivity analysis of this part is

provided in the Supplementary Material. Full details of the MR-

BMA method can be found elsewhere (17).
2.5 Microbial risk factors identification

The gut microbiota showed significant correlations, both

phenotypically and genetically (Figure S1). MR–BMA provides a

method that allows multiple microbial traits to be modeled together.

This approach allows related microbial traits to be disentangled to

identify which may be driving the “true” causal signal over others. MR-

BMA can adequately handle the “measured pleiotropy” as well as

traditional multivariate MR (17), but compared with traditional

MVMR (32), MR-BMA is especially suitable for high-throughput and

highly correlated data. We used MR-BMA to identify exposures that

were truly causally associated with outcomes from a high dimensional

set of related candidate risk factors, 207 the gut microbiota. The analysis

method was largely consistent with the potential biomarkers ranking

analysis, as detailed in the Supplementary Materials. The top ten

bacteria with MIP were interpreted as the strongest “true” causal

candidates of all the bacteria provided in the model. In the sensitivity

analysis, the pp threshold for Cd to identify strong influence points is

shown in Table S2.
2.6 NetMoss analysis

The ASV data processing method for multi-population cohorts is

described in the Supplementary Material. Subsequently, Sparcc was

used to analyze the correlation of ASV-level bacteria to obtain

correlation coefficient tables for different phenotypes (healthy,

adenoma, and CRC) in each cohort. Using the relative abundance

tables and correlation coefficient tables of different phenotypes in

different cohorts, we further utilize the Sparcc (33) network module-

based NetMoss2 (18) method to effectively reduce the batch effect

while assessing the importance of bacteria between colorectal

adenomas and healthy people or CRC and healthy people.
2.7 Mediation analysist

Our study used a two-step MR method to assess the mediating

role of gut microbial traits in dietary habits affecting CRC at
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different cancer subsites and stages using data from 14 dietary

habits associated with colorectal cancer and 9 microbial markers

that were considered to have robust causal relationship with

outcome. First, a two-sample MR analysis was used to assess the

total effect of dietary habits on the six disease phenotypes. IVs for

dietary habits are subsequently used to estimate the causal effect of

exposure on potential mediators. If there is evidence that dietary

habits affect the intestinal microbiota and that this dietary habit has

an impact on the risk of CRC development, we used the “coefficient

product” method to estimate the indirect effect of dietary habits on

outcomes through gut microbial traits (34), that is, the causal effect

value of dietary habits on each microbial trait is multiplied by the

causal effect value of each microbial trait on the outcome, so as to

obtain the mediating effect of each gut microbial trait. In addition,

the indirect effect was divided by the total effect of dietary habits on

the outcome to obtain the proportion mediated by each indirect

factor. Figure 1D outlines this approach. Finally, the delta method is

used to obtain the standard error of indirect effects (35). The study

design flow is shown in Figure 1.

This study used TwoSampleMR, MendelianRandomization,

MRPRESSO, ieugwasr, and NetMoss R packages, as well as the

GitHub repository for MR-BMA https://github.com/verena-zuber/,

and in R (version 4.0.5) for analysis, followed by retrieval of

secondary trait associations using Phenoscanner.
3 Results

Comprehensively evaluating univariate MR, potential

biomarkers ranking analysis, and microbial risk factors

identification analysis based on the MR-BMA and the NetMoss

method, we found 9 causal microbial markers for CRC at different

cancer subsites and stages (Table 2). In addition, mediation analysis

identified 10 pathways by which diet regulates gut bacteria to

influence disease risk (Table 3).
3.1 Univariable MR

After excluding SNPs that did not meet the criteria for IVs, 3310

SNPs were strongly associated with 412 microbial traits (Table S3).

To assess the strength of the IV, the F value of each SNP is

calculated, and the F statistic of the IV is between 408 and 797,

both greater than 10, indicating that there is no weak tool variable

bias (Table S4). Using Phenoscanner query, rs2450114 was found to

be closely related to BCR and BR (P < 1×10-5), so the SNP was

deleted and the MR analysis continued.

Using the IVW(M), Wald ratio, and MR Egger methods, we

found a potential causal relationship between 40 microbial traits

and CRC, 56 microbial traits and CC, 43 microbial traits and CR, 45

microbial traits and BCR, 40 microbial traits and BC, and 43

microbial traits and BR (P < 0.05), of which a significant causal

relationship between 12 microbial traits and CRC, 20 microbial

traits and CC, 12 microbial traits and CR, 10 microbial traits and

BCR, 9 microbial traits and BC, and 14 microbial traits and BR were

found (IVW(M) MR, Pfdr < 0.2). And there are differences in gut
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FIGURE 1

The study design of MR analysis. (A) The whole workflow of MR analysis. (B) Directed acyclic graph of instrumental variable assumptions made in
univariable Mendelian randomization. (C) Directed acyclic graph of instrumental variable assumptions made in multivariable Mendelian
randomization. (D) Directed acyclic graph of instrumental variable assumptions made in Two-step Mendelian randomization. CRC, colorectal cancer;
MR, Mendelian randomization; MR-BMA, two-sample multivariate MR method based on Bayesian model averaging; Netmoss, Network module
structure shift; SNP, single nucleotide polymorphism.
TABLE 2 Summary of comprehensive analysis results.

Exposure Outcome Univariable MR7 Potential risk factors
ranking (MIP8 > 0.1)

Microbial risk factors
identifying (Top 10)

NetMoss
analysis

Specificity9

(Y/N)

Streptococcus
thermophilus

CRC1 0.80 (0.69,0.94), P = 0.005 MIP = 0.56 MIP = 0.360 Score < 1 Y

Erysipelotrichaceae CRC 0.84 (0.73,0.97), P = 0.015 MIP < 0.1 MIP = 0.138 Score = 1 N

Eubacterium
ventriosum

CC2 0.78 (0.68,0.89), P = 0.0003 MIP < 0.17 MIP = 0.219 Score = 1 Y

Streptococcus CC 0.84 (0.77,0.93), P = 0.0003 MIP < 0.1 MIP = 0.118 Score = 1 N

Erysipelotrichaceae CR3 0.80 (0.69,0.94), P = 0.005 MIP = 0.17 MIP = 0.284 Score = 1 Y

Coprococcus
sp_ART55_1

CR 0.75 (0.59,0.96), P = 0.021 MIP = 0.45 MIP = 0.103 Score < 1 Y

Eubacterium
siraeum

CR 0.72 (0.53,0.97), P = 0.033 MIP > 0.1 MIP = 0.105 Score = 1 Y

Bacteroides ovatus BCR4 1.12 (1.01,1.23), P = 0.03 MIP = 0.23 MIP = 0.178 Score = 1 Y

Bifidobacterium
adolescentis

BCR 1.67 (1.09,2.31), P = 0.04 MIP = 0.34 MIP = 0.043 Score < 1 Y

Bacteroides ovatus BC5 1.12 (1.01,1.25), P = 0.04 MIP = 0.81 MIP = 0.032 Score = 1 Y

Bacteroides ovatus BR6 1.17 (1.02,1.35), P = 0.024 MIP < 0.1 MIP = 0.136 Score = 1 Y

Sutterellaceae
unclassified

BR 0.79 (0.64,0.97), P = 0.024 MIP = 0.15 Score = 1 N
F
rontiers in Oncology
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1 colorectal cancer; 2 malignant tumors of colon; 3 malignant tumors of rectum; 4 benign tumors of colorectum; 5 benign tumors of colon; 6 benign tumors of rectum; 7 Mendelian randomization; 8

marginal inclusion probability; 9 there is no significant causal relationship between bacteria and six other non-colorectal cancer diseases.
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microbial biomarkers in the colon and rectum. Details can be found

in Figures 2, 3.

For causal relationships between microbial traits and malignant

tumors, IVVW (M) analysis showed that Streptococcus was a

significant protective factor for CRC (OR = 0.804, 95%CI =

0.691 ~ 0.935, P = 0.005) and CC (OR = 0.844, 95%CI = 0.770 ~

0.925, P = 0.0003). In addition, Streptococcus thermophilus (OR =

0.802, 95%CI = 0.688 ~ 0.936, P = 0.005) and Erysipelotrichaceae

(OR = 0.843, 95%CI = 0.734 ~ 0.968, P = 0.015) were found to have

a negative causal relationship with CRC after FDR correction.

Eubacterium ventriosum (OR = 0.781, 95%CI = 0.684 ~ 0.892, P

= 0.0003) was a protective factor of CC; Erysipelotrichaceae (OR =

0.800, 95%CI = 0.685 ~ 0.935, P = 0.005), Coprococcus sp_ART55_1

(OR = 0.749, 95%CI = 0.586 ~ 0.956, P = 0.021) and Eubacterium

siraeum (OR = 0.716, 95%CI = 0.527 ~ 0.973, P = 0.033) had a

potential protective effect on CR.
Frontiers in Oncology 06
Results suggested a causal relationship between gut microbial

traits and benign tumors. Bacteroides ovatus showed a suggestive

causal association with BCR (OR = 1.12, 95%CI = 1.01 ~ 1.23, P =

0.03), BC (OR = 1.12, 95%CI = 1.01 ~ 1.25, P = 0.04), and BR (OR =

1.17, 95%CI = 1.02 ~ 1.35, P = 0.03). Sutterellaceae unclassified

(OR = 0.785, 95%CI = 0.636 ~ 0.969, P = 0.024) was causally

associated with BR. MR Egger analysis suggested that

Bifidobacterium adolescentis was a potentially dangerous

microorganism for BCR (OR = 1.666, 95%CI: 1.100 ~ 2.524, P =

0.043) and BC (OR = 1.584, 95% CI = 1.088 ~ 2.305, P = 0.042).

Cochran’s Q statistic showed that only GLYCOCAT PWY:

glycogen degradation I: bacterial. was heterogeneity for CC (Q =

23.412, Q_pval = 0.005). After removing SNPs showing horizontal

pleiotropy in MR-PROSSO analysis, there was no heterogeneity in

the IVs (Q_pval > 0.05) (Table S5). Although there are potential

biomarkers (e.g., Bifidobacterium adolescentis and Sutterellaceae,
TABLE 3 The results of mediation analysis.

Pathway

Exposure-
Outcome

Exposure-
Mediator

Mediator-
Outcome Two-step MR

b17 b28 b39 b10 p11 Mediated
Proportion (%)

Alcohol drinker status: Current-Eubacterium ventriosum-CC2 11.03 -19.24 -0.25 4.75 0.00 43.04

Bread intake-Bacteroides ovatus-BCR4 0.54 0.63 0.11 0.07 0.04 12.64

Cereal type: Biscuit cereal (e.g. Weetabix)-Erysipelotrichaceae-CRC1 -2.99 2.44 -0.17 -0.42 0.94 13.97

Ferritin-Streptococcus thermophilus-CRC 0.27 -0.42 -0.22 0.09 0.02 34.22

Ferritin-Sutterellaceae unclassified-BR6 0.35 0.72 -0.24 -0.18 0.97 -49.67

Lamb/mutton intake-Eubacterium siraeum-CR3 -2.19 -0.62 -0.33 0.21 0.07 -9.51

Liver intake-Eubacterium ventriosum-CC 0.84 8.90 -0.25 -2.20 0.97 -261.5

Milk type used: Never/rarely have milk-Bifidobacterium adolescentis-BCR 5.39 51.02 0.46 23.45 0.01 435.4

Milk type used: Never/rarely have milk-Streptococcus-CC 9.33 26.29 -0.17 -4.46 0.99 -47.79

Mineral and other dietary supplements: Calcium-Bacteroides ovatus-BR 4.05 2.99 0.16 0.48 0.05 11.85

Mineral and other dietary supplements: Calcium-Bacteroides ovatus-BCR 2.86 2.99 0.11 0.33 0.05 11.40

Mineral and other dietary supplements: Calcium-Bacteroides ovatus-BC5 4.69 2.99 0.11 0.34 0.06 7.23

Mineral and other dietary supplements: Glucosamine-Sutterellaceae
unclassified-BR

2.66 3.42 -0.24 -0.83 0.99 -31.11

Mineral and other dietary supplements: Zinc-Bifidobacterium adolescentis-
BCR

3.86 -8.69 0.46 -3.99 0.99 -103.5

Single crust pastry intake-Coprococcus sp_ART55_1-CR 5.57 6.66 -0.29 -1.93 0.94 -34.57

Type of special diet followed: Gluten-free-Erysipelotrichaceae-CR -6.55 -4.71 -0.22 1.05 0.05 -16.02

Type of special diet followed: Gluten-free-Streptococcus-CC 5.39 6.27 -0.17 -1.06 0.96 -19.74

Vitamin and mineral supplements: Multivitamins +/- minerals-Bacteroides
ovatus-BC

2.62 2.03 0.11 0.23 0.04 8.82

Vitamin and mineral supplements: Multivitamins +/- minerals-Bacteroides
ovatus-BCR

3.16 2.03 0.11 0.22 0.03 7.03

Vitamin and mineral supplements: Vitamin C–Coprococcus sp_ART55_1-CR 31.68 32.35 -0.29 -9.36 0.95 -29.54
1 colorectal cancer; 2 malignant tumors of colon; 3 malignant tumors of rectum; 4 benign tumors of colorectum; 5 benign tumors of colon; 6 benign tumors of rectum; 7 total effect of exposure on
outcomes; 8 effect of exposure on mediator; 9 effect of mediator on outcomes; 10 the mediator effect of exposure regulatory mediations to affect outcomes, 10 = b2*b3; 11 = b/b1 the probability of the
mediation effect.
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FIGURE 2

MR forest plots of the causal effects of microbial traits on malignant tumors. (A) MR forest plot of the causal effects of microbial traits on malignant
tumors of rectal. (B) MR forest plot of the causal effects of microbial traits on malignant tumors of colon. (C) MR forest plot of the causal effects of
microbial traits on colorectal cancer. (D) MR forest plot of the causal effects of microbial functional pathways on malignant tumors. CRC, colorectal
cancer; CC, malignant tumors of colon; CR, malignant tumors of rectal; IVW(M), Inverse variance weighted (multiplicative random effects); nsnp, the
number of IVs; 95%CI or X95.CI, OR (95% confidence interval); significance, Whether the P-value of the false discovery rate (FDR) correction is less
than 0.2 (< 0.2**, > 0.2*); p.adjust, the P-value corrected for the false discovery rate (FDR) was derived using the Benjamini-Hochberg (BH) method.
D

A B

C

FIGURE 3

MR forest plots of the causal effects of microbial traits on benign tumors. (A) MR forest plot of the causal effects of microbial traits on benign tumors of
colorectum. (B) MR forest plot of the causal effects of microbial traits on benign tumors of rectal. (C) MR forest plot of the causal effects of microbial
traits on benign tumors of colon. (D) MR forest plot of the causal effects of microbial functional pathways on benign tumors. BCR, benign tumors of
colorectum; BC, benign tumors of colon; BR, benign tumors of rectal; IVW(M), Inverse variance weighted (multiplicative random effects); nsnp, the
number of IVs; 95%CI or X95.CI, OR (95% confidence interval); significance, Whether the P-value of the false discovery rate (FDR) correction is less than
0.2 (< 0.2**, > 0.2*); p.adjust, the P-value corrected for the false discovery rate (FDR) was derived using the Benjamini-Hochberg (BH) method.
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etc.) that show no correlation in the results of IVW(M), MR-Egger

analysis showed a level of pleiotropism between genetic variants of

these biomarkers, and the results of MR-Egger and MR-PROSSO

showed a potential causal relationship with the outcome. In

addition, MR-Egger analysis showed that there was no horizontal

pleiotropy (P > 0.05) for other microbial traits (Table S5). MR-

PRESSO results showed significant levels of pleiotropy between

Sutterellaceae and CRC (P = 0.006, pleiotropic SNPs: rs2004833,

rs28517505, and rs59033852), GLYCOCAT PWY: glycogen

degradation I: bacterial. and CC (P = 0.009, multiplex SNPs:

rs115001375 and rs59657730), Bilophila wadsworthia and BCR

(P = 0.035, pleiotropic SNP: rs10276776), Bilophila wadsworthia

and BR (P = 0.007, pleiotropic SNP: rs10276776), Eubacterium

hallii and BR (P = 0.017, pleiotropic SNP: rs1330325). After

removing the outliers, the results changed greatly, there was no

causal effect between Sutterellaceae and CRC (OR = 0.85, 95% CI =

0.66 ~ 1.10, P = 0.23); Bilophila wadsworthia and CRC (OR = 0.91,

95% CI = 0.79 ~ 1.06, P = 0.243), and Eubacterium hallii and BR

(OR = 1.056, 95% CI = 0.854 ~ 1.306, P = 0.616). GLYCOCAT

PWY: glycogen degradation I: bacterial. and Bilophila wadsworthia

exhibit potential causal relationships with CC (OR = 0.929, 95%

CI = 0.551 ~ 0.966, P = 0.028, Q_pval = 0.229) and BR (OR = 0.712,

95% CI = 0.515 ~ 0.984, P = 0.040, Q_pval = 0.324), respectively.

MR-PROSSO results for other microbial traits showed no

horizontal pleiotropy (P > 0.05) or MR-PROSSO could not

identify pleiotropic SNPs. Details are provided in Table S5.

What’s more, MR Steiger analysis showed a forward causal

direction from exposure to outcome (all P < 7×10-5, Table S6),

and colocation analysis found that the variation in exposure and

outcome was not attributable to the same underlying genetic

variation (based on PP.H4.abf < 0.8, Table S7), suggesting that

the causal regression returns unbiased estimates for the causal effect.

We used a two-sample univariate MR of these microbial traits

with six non-CRC diseases to explore whether these bacteria are

specific biomarkers for colorectal cancer. The results found that

Sutterellaceae unclassified was also a significant protective

microorganism for non-alcoholic fatty liver disease (OR = 0.811,

95% CI = 0.705 ~ 0.934, P = 0.004), and Erysipelotrichaceae

significantly reduced the risk of irritable bowel syndrome (OR =

0.897, 95% CI = 0.844 ~ 0.954, P = 0.0006).
3.2 Potential biomarkers ranking

We used MR-BMA to rank the microbial biomarkers that were

nominally significantly associated with outcome in the MR according

to their MIP > 0.1. For malignant tumors: the first three biomarkers of

CRC were Pseudoflavonifractor (MIP = 0.91, MACE = 0.26),

Streptococcus thermophilus (MIP = 0.56, MACE = -0.11), and

Coprococcus catus (MIP = 0.43, MACE = -0.11) (Table S8). The

biomarkers associated with CC were Gammaproteobacteria

(MIP = 0.20, MACE = -0.03), Eubacterium ventriosum (MIP = 0.17,

MACE = -0.03),Holdemania unclassified (MIP = 0.15, MACE = -0.02),

and Sutterella wadsworthensis (MIP = 0.14, MACE = -0.02) (Table S8).

The biomarkers associated with CR were Coprococcus sp_ART55_1

(MIP = 0.45, MACE = -0.09), Desulfovibrio (MIP = 0.36, MACE =
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-0.11), and Erysipelotrichaceae (MIP = 0.17, MACE = -0.04)

(Table S8).

For benign tumors, risk factors for BCR were Bacteroidales

(MIP = 0.43, MACE = 0.063), Bifidobacterium adolescentis (MIP =

0.34, MACE = -0.05), Bacteroides ovatus (MIP = 0.23, MACE = 0.03),

and Subdoligranulum unclassified (MIP = 0.14, MACE = -0.02)

(Table S9). Risk factors for BC were only Bacteroides ovatus

(MIP = 0.81, MACE = 0.12) (Table S9). There were three risk

factors for BR: Acidaminococcaceae (MIP = 0.82, MACE = -0.17),

Eubacterium rectale (MIP = 0.35, MACE = -0.09) and Sutterellaceae

unclassified (MIP = 0.15, MACE = -0.02) (Table S9). MIP < 0.1 for all

other risk factors (Tables S8, S9). The MACE directions for these

biomarkers also exhibited consistency with our MR results. In the

preliminary analysis of CC and CR, the detection of the influence

point highlighted rs12736307 and rs76321722, respectively, which

had a greater impact on the analysis (Figure S2). The genetic variation

in the remaining results was not consistent with the large q-statistic or

Cook distance (Figure S3). Additional details can be found in the

Supplementary Material.
3.3 Microbial risk factors identification

In this section, we selected the top 10 microorganisms in terms

of MIP as the “true” causal risk factors for the outcome. Among

them, the results of MIP greater than 0.2 and cross-validation with

other analysis results are as follows: For malignancy (Table S10),

Streptococcus thermophilus (MIP = 0.36, MACE = -0.037) and

Erysipelotrichaceae (MIP = 0.138, MACE = -0.018) were risk

factors for CRC. The top risk microbial traits in CC were:

Eubacterium ventriosum (MIP = 0.219, MACE = -0.029) and

Streptococcus (MIP = 0.118, MACE = -0.017). Risk factors for CR

included Erysipelotrichaceae (MIP = 0.284, MACE = -0.064),

Eubacterium siraeum (MIP = 0.106, MACE = -0.021), and

Coprococcus sp_ART55_1 (MIP = 0.103, MACE = -0.011). For

benign tumors (Table S11), risk factors for BCR included

Bacteroides ovatus (MIP = 0.178, MACE = -0.017) and

Bifidobacterium adolescentis (MIP = 0.043, MACE = -0.003). And

the risk factors associated with BC (MIP = 0.032, MACE = 0.002)

and BR (MIP = 0.136, MACE = 0.022) had Bacteroides ovatus. The

results of the microbial risk factors identification, the detection of

the impact point of BR highlights rs9884588, which had a greater

impact on the analysis (Figure S4). None of the genetic variants in

the remaining results had a large q-statistic or consistent Cd

(Figures S4, S5), and there were no outliers or influential points

that needed to be removed. Other outcomes are presented in the

Supplementary Material.
3.4 NetMoss analysis

Using the NetMoss method, we found that Bacteroides ovatus

and Sutterellaceae unclassified were biomarkers that distinguish

adenomas from healthy people (Figure 4A). Erysipelotrichaceae,

Sutterellaceae, Streptococcus, Bacteroides ovatus, and Eubacterium

siraeum were biomarkers that distinguish CRC from healthy people
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(Figure 4D). And these biomarkers in our above method suggest a

causal relationship with the development of CRC. Meanwile, we

found some microorganisms that did not duplicate the results of

MR (Figures 4A–I). Detailed results can be found in the

Supplementary Material.
3.5 Mediation analysis

Since dietary habits are essential for the prevention and

management of CRC, and the intestinal microbiota may be a

mediator of the influence of dietary habits on CRC at different

cancer subsites and stages. Through the “coefficient product”

method, we identified a total of 20 causal pathways in which

dietary habits regulate gut bacteria and thus affect the occurrence

and development of CRC (Figure 5 and Table 3), of which the

mediating direction of 10 causal pathways is consistent with the

direction of dietary habit-outcome. Including: The effect of current

drinking status on CC was partially mediated by Eubacterium

ventriosum (indirect effects (b) = 4.748, P = 0.002, mediated

proportion: 43.044%); Cereal type: biscuit cereals (e.g. Vita) might

reduce the risk of CRC by reducing Erysipelotrichaceae abundance

(b = -0.417, P = 0.941, mediated proportion: 13.973%); Excessive

ferritin intake led to a decrease in the abundance of Streptococcus

thermophilus, which in turn resulted in an increased risk of CRC

(b = 0.09, P = 0.02, mediated proportion: 34.22%); Bacteroides

ovatus mediated the effects of minerals and other dietary

supplements: calcium (b = 0.327, P = 0.053, mediated proportion:
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11.854%) and bread intake (b = 0.068, P = 0.041, mediated

proportion: 12.639%). Finally, the indirect effect of never/rarely

drinking milk on BCR was estimated by Bifidobacterium

adolescentis, and it was found that the mediating effect of

Bifidobacterium adolescentis was 23.453, and the mediated

proportion was 435.399%.
4 Discussion

CRC has a high mortality rate when detected at an advanced

stage, so understanding the causes of CRC at different cancer

subsites and stages and identifying its risk factors are important

for early screening and prevention of CRC. In this study, a variety of

methods were used to systematically investigate microbial

biomarkers of CRC at different cancer subsites and stages in

European populations. The results showed that in the MR-based

univariate, potential biomarkers ranking, microbial risk factors

identification, and NetMoss method, 3 or 4 methods consistently

found that 9 bacteria were closely related to the development of

CRC. In the mediation analysis of diet-gut microbiota-disease, 10

diet-gut bacteria-CRC causal pathways were found.

Although two MR studies have examined the causal

relationship between gut flora and CRC (36, 37), compared to

these two MR analyses, the present study more comprehensively

examined the causal relationship between gut microbes and CRC,

and multiple validation analyses and extended analyses were

performed, including: 1) Instead of simply exploring the causal
DA
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FIGURE 4

NetMoss results plot. (A) NetMoss2 identifies specific bacterial taxa in microbial Sparcc networks between adenomas and healthy people;
(B) NetMoss2-constructed ROC plots of adenomas and healthy people; (C) Sparcc network diagram between adenomas and healthy people
constructed by NetMoss2; (D) NetMoss2 identifies specific bacterial taxa in microbial Sparcc networks between colorectal cancer and healthy
people; (E) NetMoss2-constructed ROC curves for colorectal cancer and healthy people; (F) Sparcc network diagram between colorectal cancer
and healthy people constructed by NetMoss2; (G) NetMoss2 identifies specific bacterial taxa in the microbial Sparcc network between colorectal
cancer and adenoma populations; (H) NetMoss2-constructed ROC curves of colorectal cancer and adenoma populations; (I) Sparcc network
diagram between colorectal cancer and adenoma populations constructed by NetMoss2. .
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relationship between gut flora and CRC, this study also examined

the relationship between gut flora and CRC at different cancer

subsites and stages; 2) the use of univariate MR and MR-BMA

analyses to identify and rank causal microbial markers of CRC at

different cancer subsites and stages, and the use of multi-population

cohort data for validation on the other hand; 3) after finding robust

causal microbes, this study investigates dietary habits that influence

these microbes, providing theoretical support for the dietary habits-

gut flora-colorectal cancer pathway; 4) this study conducts

corresponding analyses on smaller bacterial taxa species.

A large number of studies have reported the correlation

between gut microbiology and CRC, and intestinal microbiota is

believed to be directly involved in CRC (6, 9, 10, 38, 39). A multi-

cohort study found that Streptococcus thermophilus was

dramatically reduced in stool samples from patients with CRC

(10). Streptococcus thermophilu and a commercial probiotic,

Lactobacillus rhamnosus GG, have similar in vitro probiotic

properties as well as anticancer activity and folate production

(40). Intriguingly, a recent experiment combining cells with mice

further found that Streptococcus thermophilus was a novel

preventive measure for CRC prevention in mice (39).

Streptococcus thermophilus could secrete b-galactosidase to inhibit

cell proliferation, reduce colony formation, induce cell cycle arrest,

promote apoptosis of cultured CRC cells, and delay the growth of

CRC xenografts. And Streptococcus thermophilus can increase the

gut abundance of known probiotics, including Bifidobacterium and

Lactobacillus, through b-galactosidase (39). These conclusions are

consistent with our findings that Streptococcus thermophilus is a
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potential probiotic for CRC. This could further demonstrate the

robustness of our results.

This study also found that Eubacterium ventriosum and

Streptococcus are CC protecting microorganisms, and

Erysipelotrichaceae, Coprococcus sp_ART55_1 and Eubacterium

siraeum are protective factors for CR. Previous studies have found

that the abundance of Streptococcus and Erysipelotrichaceae is

significantly higher in adjacent tissues than in tumors (38, 41),

and that abundance in the oral cavity is associated with a reduced

risk of CRC (42). But there are also studies showing that

Streptococcus and Erysipelotrichaceae are more common in

patients with advanced colorectal adenomas or CRC (43, 44).

Erysipelotrichaceae was significantly higher in the tumor group of

1,2-dimethylhydrazine-induced colon cancer animal models (45).

Butyrate inhibits the development of CRC, and a significant

decrease in butyrate-producing bacteria in the intestine, including

Eubacterium (Eubacterium siraeum and Eubacterium ventriosum),

is generally observed in CRC patients (46). The abundance of

Eubacterium spp. was lower in the advanced colorectal adenoma

group than in the healthy control group (44). At present, there are

relatively few studies on these bacteria and colorectal cancer

proposed in this study, and more studies and experiments are

needed to verify these results and explore the specific mechanisms.

Understanding the biology of colorectal adenomas can lead to

new strategies to screen for and reduce or slow the progression of

these CRC precursors (4). Previous studies have found that

Bacteroides in familial adenoma polyp mice are enriched

compared to wild-type mice (47). Bacteroides are enriched in the
FIGURE 5

Diet-gut bacteria-colorectal cancer pathway diagram in mediated analysis.
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intestinal type of patients with adenomas, and Bacteroides ovatus

increases significantly when progressing from advanced adenomas

to cancer (6). The accumulation of Bacteroides ovatus in peripheral

blood drives the proliferation of CD27-MAIT cells that produce IL-

17, a pro-inflammatory factor (48). But some studies have also

shown that Bacteroides ovatus is a probiotic. Bacteroides ovatus

promotes IL-22 production and reduces trinitrobenzenesulfonic

acid-driven colonic inflammation (49). Since Bacteroides ovatus

has the capacity to reestablish the equilibrium between lymphocytes

and macrophages, its absence could throw the body’s natural

immune system off balance, cause inflammation, and lead to the

death of intestinal epithelial cells (50). The results of our study

suggest that Bacteroides ovatus is a new risk biomarker for early

CRC, and since this relationship has not been fully established in

prior studies, more research is required to validate and advance

early CRC prevention and treatment.

Diet is one of the most important and modifiable variables

influencing the gut microbiome. Our findings and those of earlier

research indicate that regular alcohol use alters the gut microbiota,

which raises the chance of colon cancer. First, research on both

humans and animals have demonstrated that long-term ethanol

consumption causes dysbiosis, which lowers the abundance of

Firmicutes and Bacteroidetes while increasing the abundance of

butyrate-producing taxa in Clostridiales (51). In chronic

alcoholism, the number of anaerobic bacteria decreases and the

number of Streptococcus increases (52, 53). Intriguingly, our

research revealed that alcohol consumption decreases the amount

of the anaerobic bacterium Eubacterium ventriosum, which raises

the risk of colon cancer, and that Coprococcus and Eubacterium

ventriosum can work together to create more butyric acid. This is in

line with the findings of earlier studies, which suggest that alcohol

consumption regulates a causal pathway in which Eubacterium

ventriosum increases the risk of CRC and that further mechanistic

studies are required to confirm this causal pathway.

In addition, there is strong evidence that consuming more dairy

and milk reduces the risk of CRC (51). Other ingredients in dairy

products also have antitumor activity, including conjugated linoleic

acid, lactose, butyrate, and lactic acid-producing bacteria, and a

recent intervention study in patients with irritable bowel syndrome,

a pathology associated with inflammation and CRC, showed that

consumption of fermented dairy products containing dairy starter

cultures and Bifidobacterium animalis enhanced SCFA production

and reduced the abundance of Bilophila wadsworthia, The influence

of microorganisms and other compounds in dairy products on the

composition and function of gut microbes has been shown (54).

Our study came to a similar conclusion: never drinking milk

increases the abundance of Bifidobacterium adolescentis, which

leads to an increased probability of BCR.

Bacteroides is an obligate or strictly Gram-negative anaerobic

bacteria, and its composition and metabolic activity are largely

regulated by diet. Bacteroides are associated with high fat and

protein intake. Xylan-regulated human keratinocyte growth

factor-2 is delivered to the inflammatory colon via Bacteroides

ovatus (55). Our results also found three dietary factors:

Vitamin and mineral supplements: multivitamin +/- minerals,

minerals and other dietary supplements: Calcium and bread
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intake can increase the risk of BCR by regulating the abundance

of Bacteroides ovatus.

This study has several advantages. 1) A comprehensive

assessment of the causal relationship between gut microbial traits

and CRC at different cancer subsites and stages, and the results of

multiple methods consistently demonstrate the robustness of our

findings. Most of our results support the findings of previous studies

that served as positive controls for our approach. Our study allowed

to generate hypotheses proposing some biomarkers for which there

was little previous evidence of causal association, such as

Eubacterium ventriosum and Bacteroides ovatus, among others. 2)

To further elucidate how some dietary factors may influence CRC

risk in different cancer subsites and stages by modulating the gut

microbiota. 3) Because microbial traits show strong correlations

both phenotypically and genetically, MVMR analysis may be more

appropriate to assess the causal relationship between microbes and

phenotype. However, because microbial trait data are high-

throughput, and traditional MVMR methods are designed for a

small number of risk factors, they cannot be extended to high-

throughput dimensions. Therefore, this study is the first of its kind

to use the MR-BMA method to go for causal ranking of microbial

markers to select the truly likely risk factors from a large number of

candidate risk factors, which in turn enhances the robustness of our

findings.MR-BMA (a method capable of explaining the multi-

effectiveness of measurements) largely confirms univariate

findings. Among other things, the MR-BMA approach proposes

multivariate models of combinations of microorganisms that can be

used to evaluate the role of microbial combinations for disease and

applied to the early screening of benign tumors.

The present study also has some limitations. 1) GWAS of

intestinal flora is still in its infancy in terms of sample size, the

population samples of intestinal flora we use are not large enough

and the loci identified so far are still very limited. 2) The threshold

for our screening gut microbial instrumental variables was set at P <

1 × 10-5, and although steps have been taken to ensure by

calculating the F statistic for each instrument validity of the SNP,

we cannot exclude the possibility of false negative errors due to

insufficient statistical efficacy. The efficacy of IVs is also a significant

drawback in MR-BMA analysis. 3) Our understanding of the

microbiomes of different cancer subsites (e.g. colon, rectum or

colorectum) is still limited, and easily accessible fecal material may

reflect a suitable substitute for colorectal microbiota, however, there

may be errors in going from fecal microbes to causal inquiry, but

this is a limitation of current data, and hopefully more studies will

be available in the future to fill this gap.

In conclusion, this study conducted a comprehensive

exploratory MR study that identified 6 protective bacteria for

malignancies, 2 risk bacteria and a protective bacterium for

benign tumors. The findings support the hypothesis that the gut

microbiota is the etiology of CRC and that the effects on CRC are

different for different cancer subsites and stages, suggesting that

microorganisms are specific for the prevention, treatment, and

improvement of CRC. Among them, the protective effect of

Streptococcus thermophilus on CRC has been verified by cellular

and animal experiments. At the same time, the results of the

mediation analysis provide both theoretical support and empirical
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evidence for modifying dietary habits to regulate gut bacteria and

thus influence CRC at different cancer subsites and stages,

suggesting that controlling gut flora may be a promising strategy

for colorectal cancer prevention in specific dietary populations. In

addition, these findings can provide ideas and directions for further

mechanistic studies such as animal models or biomarker-based

human trials to help guide the development and clinical translation

of potential microbiota-based cancer prevention strategies.
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