
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Weici Zhang,
University of California, Davis, United States

REVIEWED BY

Hardeep Singh Tuli,
Maharishi Markandeshwar University, Mullana,
India
Qianqian Song,
University of Florida, United States
Sankar Bhattacharyya,
Sidho Kanho Birsha University, India

*CORRESPONDENCE

Hyun Jung Park

hyp15@pitt.edu

Soyeon Kim

soyeon.kim21@chp.edu

RECEIVED 18 May 2023

ACCEPTED 28 November 2023
PUBLISHED 21 December 2023

CITATION

Bai Y, Li Y, Qin Y, Yang X, Tseng GC, Kim S
and Park HJ (2023) The microRNA target site
profile is a novel biomarker in the
immunotherapy response.
Front. Oncol. 13:1225221.
doi: 10.3389/fonc.2023.1225221

COPYRIGHT

© 2023 Bai, Li, Qin, Yang, Tseng, Kim and
Park. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 21 December 2023

DOI 10.3389/fonc.2023.1225221
The microRNA target site
profile is a novel biomarker in
the immunotherapy response
Yulong Bai1, Yujia Li2, Yidi Qin1, Xinshuo Yang3,
George C. Tseng4, Soyeon Kim5* and Hyun Jung Park1*

1Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States,
2Statistics-Oncology, Eli Lilly and Company, Indianapolis, IN, United States, 3Department of
Operations Research and Financial Engineering, Princeton University, Princeton, NJ, United
States, 4Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States,
5Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United
States
MicroRNAs (miRNAs) bind on the 3′ untranslated region (3′UTR) of

messenger RNAs (mRNAs) and regulate mRNA expression in physiological

and pathological conditions, including cancer. Thus, studies have identified

miRNAs as potential biomarkers by correlating the miRNA expression with

the expression of important mRNAs and/or clinical outcomes in cancers.

However, tumors undergo pervasive 3′UTR shortening/lengthening events

through alternative polyadenylation (APA), which varies the number of miRNA

target sites in mRNA, raising the number of miRNA target sites (numTS) as

another important regulatory axis of the miRNA binding effects. In this study,

we developed the first statistical method, BIOMATA-APA, to identify

predictive miRNAs based on numTS features. Running BIOMATA-APA on

The Cancer Genome Atlas (TCGA) and independent cohort data both with

immunotherapy and no immunotherapy, we demonstrated for the first time

that the numTS feature 1) distinguishes different cancer types, 2) predicts

tumor proliferation and immune infiltration status, 3) explains more variation

in the proportion of tumor-infiltrating immune cells, 4) predicts response to

immune checkpoint blockade (ICB) therapy, and 5) adds prognostic power

beyond clinical and miRNA expression. To the best of our knowledge, this is

the first pan-cancer study to systematically demonstrate numTS as a novel

type of biomarker representing the miRNA binding effects underlying

tumorigenesis and pave the way to incorporate miRNA target sites for

miRNA biomarker identification. Another advantage of examining the

miRNA binding effect using numTS is that it requires only RNA-Seq data,

no t m iRNAs , t hu s re su l t i ng i n h i gh power i n the m iRNA

biomarker identification.
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Introduction

MicroRNAs (miRNAs) are non-coding RNAs that bind their

target sequences in messenger RNAs (mRNAs), known as miRNA

response elements (MREs). Although somemiRNAs can bind to the

5′ untranslated region (1–3) (5′ UTR) or open reading frames (4–6)

of mRNAs, it has been a general consensus that miRNAs mainly

target 3′UTRs of mRNA, as a functional MRE in 3′UTR loses its

ability to mediate miRNA binding affinity when moved to the

protein coding sequence (CDS) (7). During tumor initiation and

progression, molecular mechanisms, including the miRNA-

mediated mRNA binding mechanism on the 3′UTRs, evolve into

a neoplastic state characterized by cancer hallmarks. Thus, studies

have identified miRNAs as potential biomarkers for various cancer

hallmarks by correlating the miRNA expression with the expression

of important mRNAs and/or clinical outcomes (8, 9). Despite

substantial progress in this direction, miRNA biomarkers still

suffer from poor reproducibility and thus have difficulty

translating (10). The poor reproducibility is mainly attributable to

the failure to consider another important regulatory axis, the

miRNA target sites on mRNAs. The miRNA target sites play

important roles in determining the binding effect, as the binding

can be viewed as a stoichiometry process between miRNA

molecules and the target sites (11, 12). For example, by

conducting experiments on the miRNA-induced silencing

complexes (miRISCs), Mayya and Duchaine experimentally

identified miRNA target sites that help explain the binding effect

of particular mRNAs, among several parameters (13).

Explicit modeling of miRNA target sites is even more critical to

studying cancer mechanisms and cancer patients’ responses to

immunotherapy. Tumors undergo pervasive 3′UTR shortening/

lengthening events through alternative polyadenylation (APA) (14–

16). APA can produce mRNA transcripts of varying 3′UTR lengths

derived for the same genes by polyadenylating on one of the multiple

polyadenylation sites (polyA sites) (17). Since miRNA target sites are

enriched in the 3′UTR of mRNAs, APA consequently varies the

number of miRNA target sites in mRNA (Figure 1B). Previously, we

demonstrated that APA drives tumorigenesis by redirecting

microRNA bindings to repress tumor suppressors (18). In addition,

APA-mediated miRNA binding site modification may also play an

important role in eliciting responses to immune checkpoint blockade

(ICB) therapy. Previously, we reported that the global APA events

collectively modify the binding sites of the miRNAs that not only are

enriched for cancer development and treatments but also indicate

immune cell infiltration to the tumor microenvironment, which is an

important indicator to predict patients’ response to ICB therapy (19).

Specifically, miRNA binding mechanisms are involved in inducing

immune response in cancer patients by recruiting and activating

immune cells within the tumor microenvironment and targeting

particular cancer-related pathways in the immune cells, leading to the

secretion of immunosuppressive or immunostimulating factors by

either cancer cells or immune cells (20). However, existing

approaches potentially lead to an incorrect estimation of the

miRNA binding effect in such cases since they identify miRNA

biomarkers based mostly on the expression without considering the

number of miRNA target sites (21, 22). For example, a miRNA
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expression-based approach could identify some miRNAs as

biomarkers by correlating the expression levels with immune cell

infiltration in the tumor microenvironment. However, mRNAs

important for immune cells may shorten the 3′UTRs and thus

cannot be regulated by the miRNAs. Then, some of the highly

expressed miRNAs may not play a role in the infiltration,

questioning the validity of the expression-based miRNA

biomarker identification.

Based on this novel concept, we propose the number of miRNA

target sites (numTS) as an important biomarker in cancer. NumTS

was first identified in breast tumor samples in our previous work

using a computational framework and probabilistic inference of

microRNA target site modification through APA (PRIMATA-

APA). Although the actual miRNA binding mechanism is

determined by multiple parameters (13), PRIMATA-APA analysis

demonstrated that the large-scale behavior of the miRNA binding

effect can be largely estimated by two main factors, miRNA

expression information and the corresponding numTS values (18,

19). By evaluating the large-scale miRNA binding effect changes

from normal to tumor, PRIMATA-APA showed that the pervasive

APA events modify the binding effect of the miRNAs enriched for

cancer development and treatments. However, PRIMATA-APA has

several limitations to systematically identify miRNA numTS

features as a biomarker. First, it requires both tumor and

matched normal samples. Since many cancer types either do not

provide matched normal samples or provide a smaller set of normal

samples, this limitation reduces statistical power and the number of

cancer types to analyze. Second, due to the high dimensionality of

the data compared to small numbers of available samples (often

referred to as the p >> n problem), the previous PRIMATA-APA

association analysis suffered from a large number of uninformative

or highly correlated numTS features, making it challenging to build

a predictive model. Third, the previous model does not directly

demonstrate the prognostic value of numTS, which is important to

show clinical applicability.

To address these limitations and expand the analysis to a

broader range of cancer types, we developed the first statistical

method, a biomarker of microRNA target site modification through

APA (BIOMATA-APA), to train predictive signatures based on

numTS features (Figure 1A). First, by allowing a multi-direction

comparison of the miRNA binding effect in the equation (see

Materials and Methods), BIOMATA-APA can estimate the

binding effect in tumor samples of different cancer types as well

as tumor vs. normal samples. Second, using bootstrapping,

BIOMATA-APA can select stable numTS features that constantly

predict response through and filter out uninformative and highly

correlated features. Finally, we evaluated the numTS features’

potential prognostic value in addition to common clinical

variables using the Cox proportional-hazards model and least

absolute shrinkage and selection operator (LASSO) regression.

Collectively, by running BIOMATA-APA on 10 cancer types in

The Cancer Genome Atlas (TCGA) and independent cohort data

both with immunotherapy and no immunotherapy, we

demonstrated that the numTS-based predictive signatures

outperform the miRNA expression features in differentiating

cancer types and predicting tumor proliferation, immune
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infiltration status, and abundance score of six immune cell types.

Also, BIOMATA-APA revealed that the numTS features of specific

miRNAs enhance the prognostic power of clinical features, while

the expression of these miRNAs does not have the same advantage.

Altogether, we proposed a statistical method BIOMATA-APA to

reveal that the dynamics of miRNA target sites could be a better and

more effective biomarker than miRNA expression to reflect the
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miRNA-mediated regulation underlying tumor progression and

tumor response to immunotherapies.

Another advantage of BIOMATA-APA and numTS is that it

allows us to estimate the miRNA binding effect using RNA-Seq data

without having to sequence miRNAs since numTS features are

estimated from the RNA-Seq data. Since miRNA sequencing

(miRNA-Seq) is often considered an extra step to regular RNA
B C

D E

A

FIGURE 1

Number of miRNA target sites (numTS) is a novel biomarker independent of miRNA expression. (A) Representative figure showing the BIOMATA-APA
steps and application scenarios. (B) Regardless of miRNA abundance, 3′UTR in tumors causes the loss of miRNA target sites and disrupts the
competitive binding activity of different types of miRNAs. (C) The squared correlations between miRNA expression and numTS in normal samples are
higher than in tumor samples. Wilcoxon test p-values are indicated above boxes. (D) Percentage of miRNAs with significant correlation between
miRNA expression and numTS. The number above each bar indicates the exact number of miRNAs. (E) Overlap of miRNAs with the significant
correlation between miRNA expression and numTS across cancer types. miRNA, microRNA. Created with Biorender.com.
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sequencing, RNA-Seq data are more available, usually with a larger

sample size than miRNA-Seq data. Thus, BIOMATA-APA enables

us to analyze the miRNA binding activity with a larger sample size

than with miRNA expression, resulting in higher power. Indeed,

this advantage enables us to demonstrate the reproducibility of

numTS features in another independent LUAD cohort [Seo et al.

(23)] and to represent the treatment effect of ICB therapy, showing

a separation between responder post-treatment samples and

responder pre-treatment samples, although the cohorts did not

have the miRNA expression sequencing data.
Materials and methods

Datasets

Gene expression matrices, survival information, and clinical

features were downloaded from The Cancer Genome Atlas data

portal (GDC portal, https://portal.gdc.cancer.gov). MiRNA

expression matrices were downloaded from UCSC Cancer

Genomics Hub (Xena Browser, https://xenabrowser.net/hub/).

The miRNA family with aggregated (by miRNA family) average

expression ≥0.01 TPM was kept in the analyses. The APA

estimations, percentage of distal polyA site usage index (PDUI)

(15), of TCGA tumor samples were downloaded from The Cancer

3′UTR Atlas (TC3A, http://tc3a.org/) (24). The APA estimations of

TCGA tumor and normal sample pairs, Seo et al. cohort (23), and

Riaz et al. cohort (25) were obtained from previous publication (16).

The proliferation and immune infiltration scores were obtained

from previous publication (26). The Tumor Immune Estimation

Resource (TIMER) scores were downloaded from TIMER2.0

(http://timer.cistrome.org/) (27).

For the tumor-only analyses, we focused on BRCA, LGG, OV,

LUAD, UCEC, HNSC, SKCM, KIRC, STAD, and LUSC, as these

cancer types have >150 samples with all types of features available

(mRNA expression, miRNA expression, APA estimation, immune

and proliferation scores, and TIMER score) (Supplementary

Table 1). For the paired tumor–normal analyses, we focused on

BRCA, KIRC, HNSC, STAD, LUAD, and LUSC, as these cancer

types have >5 sample pairs. For the survival analysis, we kept only

BRCA, KIRC, and HNSC, as these cancers have a sample size

of ≥40.
Estimation of the number of miRNA target
sites at transcriptome scale by
PRIMATA-APA

To estimate the number of miRNA target sites at the

transcriptome scale, we utilized our previously published

bioinformatics tool, PRIMATA-APA, to calculate the numTS for

each miRNA family. PRIMATA-APA takes mRNA abundance,

estimated 3′UTR length dynamics, and annotated genome

location of miRNA target site into consideration to infer the

number of miRNA target sites by the following equations:
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miRPDUI(x, miRj) = (pUTR(x,miRj) + dUTR(x,miRj)*PDUI(x))   *FPKM(x)

(1)

miRPDUI(miRj) =o
x
miRs(x,miRj) (2)

In Equation 1, we estimated the number of target sites of miRj
carried by the transcripts of gene x. To quantify this, we first

assumed that transcript x has a constitutive proximal 3′UTR
(pUTR) and a distal 3′UTR (dUTR). The genomic coordinate

where pUTR ends and the PDUI(x) were estimated by one of the

widely used tools, DaPars (18). Then, based on TargetScan

prediction and the estimated end of pUTR, we defined pUTR(x,m

iRj) and dUTR(x,miRj) as the number of miRj target sites in pUTR

and dUTR, respectively (15). Finally, the weighted abundance of

miRj target sites on gene x was multiplied by the transcript

abundance of gene x, FPKM(x). In Equation 2, we added up the

number ofmiRj target sites carried by each gene x over all expressed

genes to derive the global abundance of the target site ofmiRj, which

was denoted as numTS in the paper. A more detailed description of

the tool can be found in the method paper (19).

To make fair comparisons between miRNA numTS and

expression, we matched numTS features and expression features

by miRNA family in the run of PRIMATA-APA so that miRNA

numTS and miRNA expression would have the same number of

features in all the downstream analyses, including the correlation

analysis, dimension reduction, and patient clustering analysis, and

all cancer hallmark predictive models.
Correlation analyses between miRNA
numTS and expression

To test the hypothesis that the miRNA binding activity is

disrupted in tumors, we first matched tumor samples and normal

samples from the same patients. Then, we calculated the squared

Spearman’s correlation coefficient between miRNA numTS and

expression in tumor and normal samples separately. To assess the

difference, we conducted a Wilcoxon rank-sum test on the

squared correlation.

Due to the relatively small numbers of patients who have all

types of measurements available in both tumor and matched

normal samples, we enlarged the sample size of correlation

analysis by focusing on only tumor samples. Similarly,

Spearman’s correlation test was conducted to assess if a miRNA

has significantly (Benjamini–Hochberg (BH)-corrected p< 0.05)

correlated miRNA numTS and expression.
MiRNA predictive model training and
external validation

To comprehensively evaluate the potentials of miRNA numTS

as a biomarker for cancer hallmarks, for each tumor sample, we

obtained a series of signature scores from literature characterizing

different aspects of cancer status, including immune and
frontiersin.org
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proliferation scores (26), and TIMER scores estimating the

abundance of CD4 T cell, CD8 T cell, B cell, macrophage,

neutrophil, and myeloid dendritic cell (27).

Then, with each of these scores as the outcome, miRNA

numTS-based and miRNA expression-based predictive models

were trained separately using elastic net regression conjugated

with nested cross-validation. In the outer loop of the nested

cross-validation, the whole dataset was split into a train set (75%)

and a test set (15%). In the inner loop, the optimization was

performed by 10-fold cross-validation on the train set where the

optimal a (weight of L1 and L2 norm parameter, 10 possible values

from 0 to 1, by 0.1) and b (penalty parameter) that lead to the most

parsimonious model whose error is no more than one standard

error above the lowest cross-validation error (1se) were selected.

This procedure was repeated 300 times and root-mean-square error

(RMSE) was calculated as the performance metric. The glmnet 4.1.4

R package was used to build the model (28).

To verify that the performance assessment results hold when

models are trained by different statistical learning methods, three

training methods widely adopted in the field were employed to

replicate the performance assessment: random forest [rf from

randomForest 4.7-1 R package (29)], support vector machine

with polynomial kernel [svmPoly from kernel 0.9-30 R package

(30)], and elastic net regression [glmnet from glmnet 4.1.4 R

package (28) as control]. The assessment procedure was

conducted using caret 6.0 R package (31).

To evaluate if the selected predictive miRNAs are generalizable,

we conducted elastic net regression conjugated with bootstrapping

to select stable sets of predictive miRNAs from two independent

cohorts, TCGA LUAD and Seo et al. cohort (23). For each cohort,

we first created 200 bootstrap samples from the original dataset by

resampling with replacement. Then, with each bootstrap sample, we

selected miRNAs using elastic net regression. We chose the optimal

model by 10-fold cross-validation. This step would generate 200 sets

of selected miRNAs from 200 bootstrap samples. Then, we

calculated the frequency of being selected for each miRNA across

200 sets of selected miRNAs. The miRNAs with the top 50%

frequency were considered predictive miRNAs for each cohort.

Finally, we used a hypergeometric test to test if the predictive

miRNAs from two cohorts were significantly overlapped.
NumTS analysis on immunotherapy-
treated melanoma cohort

To explore the potential of numTS features in distinguishing

responders and non-responders to immunotherapies, we

downloaded the RNA-Seq data of 105 advanced melanoma

samples published by Riaz et al. (25). We conducted principal

component analysis (PCA) dimension reduction on numTS

features of miRNAs that were identified to be associated with the

TIMER score of six cell types. We used the same elastic net

regression conjugated with the bootstrapping approach (as

described in the previous section) to identify such TIMER score-

associated miRNAs on TCGA SKCM data. We used 70% frequency

of being selected as the cutoff. The PCA with 95% confidence
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ellipses was drawn using stats 4.2.0 R package factoextra 1.0.7 R

package (31). To quantify the separation of each pair of groups, we

calculated the Mahalanobis distance between every two groups.
Survival analyses

To assess the prognostic value of clinical features, we first used a

Cox proportional-hazards model to associate survival time with

clinical features, including age, gender (except for BRCA), and

pathological stage (clinical-only model). Then, we estimated the

change of numTS of the tumor vs. normal (DnumTS). To determine

which miRNA DnumTS features contribute to the model, we fit a

Cox model conjugated with LASSO feature selection using

glmnet4.1.4 R package (28). In the feature selection, the clinical

features were not penalized and always selected. We chose the

optimal miRNAs by 10-fold cross-validation. Then, we added them

to the clinical-only model and obtained the numTS-clinical model.

To assess if the expression level of the selected miRNAs can also

contribute to the model, we also added the expression level of the

selected miRNAs into the clinical-only model and obtained the

expr-clinical model.

Then, we sought to assess the performance of three models.

Based on the predicted hazard estimation of each model, we

classified patients into low- and high-risk groups, which were

then visualized using the Kaplan–Meier plots and compared using

the log-rank test. To further compare the three models, we used a

likelihood ratio test (LRT) and compared the improvements made

by numTS-clinical models and expr-clinical models on top of the

clinical-only models.
Results

The correlation between miRNA expression
and the number of putative miRNA target
sites is disrupted in tumors

To examine numTS as an independent feature from miRNA

expression, we first analyzed the correlation between numTS and

miRNA expression in normal and tumor samples separately using

four cancer types in TCGA, which have at least 20 tumor–normal

sample pairs in both RNA-Seq and miRNA-Seq data

(Supplementary Table 1) (see Materials and Methods). As

miRNA binding can be viewed as a stoichiometry between the

two features, the correlation can represent the miRNA binding

homeostasis that helps maintain a stable level of mRNA and protein

production in normal conditions. In all four cancer types, we found

that strong correlations in normal samples are significantly

disrupted in tumor samples (Figure 1C). This result suggests that

normal miRNA binding regulation is disrupted in tumors,

indicating miRNA numTS as a potentially independent feature

from miRNA expression in cancer.

To further confirm numTS as an independent feature from

miRNA expression, we estimated Spearman’s correlation coefficient

between the features in the 10 TCGA cancer types that provide the
frontiersin.org
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RNA-Seq data for more than 180 tumor samples (Supplementary

Table 1) (see Materials and Methods). In each of the cancer types,

we divided the miRNAs into those whose expression level and

numTS are correlated (BH-adjusted p-value<0.05) and not

correlated in tumors. The results confirm that numTS is an

independent measure of miRNA expression as follows. First, most

miRNAs (on average 86.7%) do not have a significant (false

discovery rate (FDR) p-value<0.05) correlation across the 10

cancer types (Figure 1D), consistent with the finding in

Figure 1B. The number of miRNAs with a significant correlation

is not related to the number of samples in each cancer type

(Supplementary Figures 1A, B), suggesting that the lack of a

significant correlation can be a biological signal, not due to the

lack of power related to the small sample size. Second, the miRNAs

with a significant correlation lowly overlap among three or more

cancer types (Figure 1E), showing that these correlations are not

meaningful to study biological mechanisms common to multiple

cancer types. We will investigate their roles in cancer-specific

mechanisms in the next section. Altogether, since the miRNA

binding activity lost the homeostasis status between miRNA

expression and numTS in tumors, the results suggest numTS as

an independent molecular feature to study the miRNA binding

activity in tumors.
MiRNA numTS distinguishes cancer type-
specific molecular mechanisms better than
mRNA expression, miRNA expression, or
APA degree

To investigate how numTS represents cancer type-specific

molecular mechanisms better than miRNA expression, we applied

hierarchical clustering on the miRNA numTS or expression of 588

moderately expressed miRNAs from tumor samples across the 10

cancer types (see Materials and Methods). While the clustering

using miRNA expression does not separate the samples by cancer

type, miRNA numTS clearly groups the samples by cancer type

(Figure 2A). This result demonstrates that miRNA numTS reflects

the cancer type-specific miRNA-mediated mRNA regulation. Given

that the miRNA expression generally varies more than numTS

across tumor samples (Supplementary Figure 2), this result further

supports that numTS holds more signal in a cancer type-specific

manner and thus a more effective molecular feature than miRNA

expression to study the cancer type-specific miRNA-mediated

mRNA regulation.

To further show the strength of numTS to represent cancer

type-specific biology, we compared numTS with other well-known

molecular features: miRNA and mRNA expressions and PDUI of

12,717 expressed genes (see Materials and Methods). PDUI is an

important molecular feature to estimate the degree of genes’ APA.

Since APA is a major cause to change numTS across tumor samples,

a comparison to the PDUI feature will indicate how specific numTS

is to represent the putative miRNA binding affinity. Since the

numbers of features in each feature type are different (304, 304,

12,717, and 225 for numTS, miRNA expression, mRNA expression,

and PDUI, respectively), we preprocessed the data (see Materials
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and Methods) for a fair comparison. First, for each molecular

feature, we projected samples to two principal component (PC)

dimensions and annotated their cancer types in the figure

(Figure 2B). Visual inspection of the PCA plot extends our

observation from Figure 2A: the separation among cancer types is

much clearer in the numTS features than miRNA expression,

mRNA expression, or PDUI. To quantify the cancer-type

separability using all features (not only PCs), we estimated the

percentage of feature variance explained by cancer type (between-

group rate) (Figure 2C). MiRNA numTS differentiates cancer types

far better (82.9%) than all the other features (44%, 53.8%, and 57.9%

in mRNA, PDUI, and miRNA expressions, respectively).

Altogether, numTS is a novel molecular feature that differentiates

cancer type-specific biology better than miRNA expression, mRNA

expression, and PDUI.
MiRNA numTS predicts tumor proliferation
and cytotoxic immune infiltration status
significantly better than miRNA expression
in tumor microenvironment

To compare the variations of important biomarkers explained

by numTS vs. miRNA expression, we obtained two scores that

indicated fundamental tumor-associated properties: tumor cell

proliferation and immune cell infiltration. That is, tumor cell

proliferation measures how quickly a cancer cell copies its DNA

and divides into two cells, and immune cell infiltration measures the

degree of immune cells infiltrating tumor sites. In particular, we

downloaded the scores estimated for the tumor samples of the 10

cancer types based on the genes characterizing the biological

processes (26). Then, with each score as the outcome, we built

regression-based prediction models for each cancer type with either

miRNA expression or numTS features as predictors (see Materials

and Methods). NumTS predicts both the proliferation and immune

score far better than miRNA expression in all cancer types

(Figure 3A; Supplementary Figure 3A), on average 42.7% decrease

for the proliferation and 5.14% decrease for the immune score in

RMSE across the 10 cancer types. Since both proliferation and

immune score successfully indicated fundamental processes in

tumor formation, progression, and response to immunotherapies

(26, 32–34), the results demonstrate a superb performance of the

numTS feature to represent the important aspects of the tumor

microenvironment. To verify that this outperformance holds true in

models trained by different statistical learning methods, we

employed three training methods widely adopted in the field to

replicate the performance assessment: random forest, support

vector machine with polynomial kernel, and elastic net regression

(as control). All predictive models performed better with numTS

features, regardless of the training method (Figure 3B;

Supplementary Figure 3B). Altogether, the results indicate that

the improvement in predictive accuracy is due to the

outperformance of the numTS feature rather than a training

method.To assess the reproducibility of the numTS features, we

performed the following experiments. First, we identified 10

miRNAs that are commonly associated with immune infiltration
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scores in the 10 cancer types we investigated (intersection of the

miRNAs selected for miRNA numTS across Figure 3A boxplots).

We found extensive evidence from previous studies supporting

their role in various cancer types (Supplementary Table 2). Second,

we compared the miRNAs whose numTS value predicts the

proliferation and immune infiltration scores between two

independent lung adenocarcinoma datasets: TCGA LUAD (n =

326) and Seo et al. cohort (n = 83). Due to the relatively small

sample size of the Seo et al. cohort, we conducted stability analysis

to select the top 50% predictive miRNAs based on how frequently

the miRNAs are selected across 200 bootstrap samples (see

Materials and Methods). The comparison showed a significant
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overlap between the predictive miRNAs selected from two

cohorts for both proliferation and immune infiltration scores. For

proliferation score prediction, a significant number (105, 56.4%, p-

value = 0.01, see Materials and Methods) of the selected miRNAs

were identified commonly in the cohorts (Figure 3C). For immune

infiltration score prediction, a similarly significant number (114,

59.5% on average, p-value = 0.001, see Materials and Methods) of

the selected miRNAs were commonly identified (Supplementary

Figure 3C). Between the 105 and 113 miRNAs predictive for

proliferation and immune infiltration scores, respectively, we

identified 26 miRNAs whose numTS are predictive for both

immune and proliferation scores in TCGA LUAD cohort and the
B

A

C

FIGURE 2

MiRNA numTS classifies cancer types better than other features. (A) Tumor samples from 10 cancer types were clustered based on miRNA numTS
(left panel) or expression (right panel) using hierarchical clustering on Euclidean distance (see Materials and Methods). MiRNAs are in rows. Samples
are in columns with the cancer type annotated on the top color bar. Values are log2 transformed, centered, and scaled by rows. (B) PCA dimension
reduction based on miRNA numTS, miRNA expression, mRNA expression, and PDUI (see Materials and Methods). The distance metrics are shown in
(C). miRNA, microRNA; numTS, number of miRNA target sites; PCA, principal component analysis; PDUI, percentage of distal polyA site usage index.
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independent Seo et al. cohort. Among the 26 miRNAs, 18 (75%)

miRNAs have been reported to be biomarkers for cancer hallmarks

(Supplementary Table 2). This result suggests that the numTS

feature explains the variability of two important hallmarks of

cancer in an accurate and reproducible fashion for all cancer

types, thereby promoting its potential as a novel biomarker for

prospective studies.

To examine the biological implication of the numTS features

selected above, we investigated the 26 miRNAs whose numTS

strongly predict both proliferation and immune infiltration scores

in TCGA lung cancer cohort and the Seo et al. cohort. Among the

26 miRNAs, 18 (75%) miRNAs have been reported to be

biomarkers for cancer hallmarks, including proliferation,

migration, invasion, and suppression, as well as DNA damage,

cell apoptosis, immune system regulation, and long-term survival

for diverse types of cancer (Supplementary Table 2). Among these

miRNAs, miR-346 is of particular interest. In addition to being

identified as a biomarker for prostate and liver cancers (35, 36), it
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has been found to compete with miRNA-138 for binding to 3′UTR
of human telomerase reverse transcriptase (hTERT) mRNA (37).

The binding of miR-346 promotes the translation of hTERT

mRNAs, while the binding of the competitor miRNA suppresses

hTERT translation. This highlights the importance of considering

the miRNA target sites, as it reveals which miRNA is more likely to

function and consequently predict the fate of the mRNA transcripts.

Altogether, our results demonstrate that the numTS profile predicts

tumor proliferation/immune infiltrating scores in a reproducible

and biologically meaningful fashion.
MiRNA numTS reveals cell type-specific
miRNA targeting activities in immune cells
in the tumor microenvironment

Since the immune infiltration score is measured based on the

genes characterizing cytotoxic effector immune cells (CD8+ T cells
B C

A

FIGURE 3

MiRNA numTS-based models outperform miRNA expression-based models in predicting tumor proliferation status. (A) Root-mean-square error
(RMSE) as metric measuring the performance of numTS-based models and expression-based models predicting proliferation score. (B) RMSE of
numTS-based models and expression-based models trained by three statistical learning methods (RF, random forest; svmPoly, support vector
machine with polynomial kernel; glmnet, elastic net). (C) The overlap of miRNAs selected in TCGA LUAD cohort and Seo et al. LUAD cohort.
Hypergeometric p-value measuring the significance of enrichment is indicated. miRNA, microRNA; numTS, number of miRNA target sites; TCGA,
The Cancer Genome Atlas.
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and NK cells), we further hypothesized that the numTS features

may reflect the cell type-specific miRNA binding profiles expected

from cell type-specific APA patterns (38). To test this hypothesis,

we utilized a well-known immune cell abundance score in various

cancer types, called TIMER score (27, 39), which was pre-calculated

and made available for six immune cell types (B cell, macrophage,

dendritic cell, neutrophil, CD4+ T cell, and CD8+ T cell) for TCGA

data (see Materials and Methods). To predict the TIMER score for

each immune cell type in each cancer type, we again built elastic net

regression models conjugated with nested cross-validation (CV)

using either miRNA numTS or expression as predictors. The

numTS models predicted the TIMER score of six immune cells

constantly better than miRNA expression in 59 comparisons

(Figure 4A; Supplementary Figures 4A, B) except for one, CD4+

T cell in UCEC, where the miRNA numTS and expression models

showed similar performance. In general, across all immune cell

types and cancer types, the outperformance was shown in ranges

from 0.7% (macrophage in LUSC) to 45.2% (neutrophil cell in

LGG) in RMSE, with an overall 16% decrease. The results suggest

that numTS reveals the miRNA binding profile specific to each

cell type.

To demonstrate the role of the cell type-specific miRNA binding

profile in immune regulation, we further analyzed ICB therapy trial

data (25), where tumor-infiltrating immune cells play important

roles in eliciting response. Since numTS features successfully

predicted the miRNA binding profile of tumor-infiltrating

immune cells, we examined if the numTS features can represent

the treatment effect of immunotherapies. To answer this question,

we selected the miRNA numTS features associated with the

abundance of six immune cell types in TCGA skin cutaneous

melanoma (SKCM) samples described in the previous paragraph.

Then, we calculated the numTS values for the selected miRNAs

using the RNA-Seq data of 105 advanced melanoma samples
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collected from patients before and after nivolumab (anti-PD-1

agent) and ipilimumab (anti-CTLA-4) administration (pre- and

post-treatment, respectively) (25). PCA dimension reduction plots

based on these numTS features clearly show a separation between

post- and pre-treatment responder samples, while responder pre-

treatment samples are located closer to non-responder samples of

pre- and post-treatment (Figures 4B, C; Supplementary Figure 4C).

For example, in the PCA plot with the macrophage, CD4 T cell, and

myeloid dendritic cell-associated miRNA numTS features

(Figure 4C; Supplementary Figure 4C), there is no overlap

between 95% confidence ellipses of responder post- and non-

responder groups (both pre- and post-treatment). Since

responder post-treatment samples stand out from non-responder

groups as well as responder pre-treatment samples, the result

suggests a significant treatment effect of the ICB therapy in the

numTS feature space. To further quantify this separation, we

calculated the Mahalanobis distance between the sample groups

(responders and non-responders, pre- or post-treatment, see

Materials and Methods). In all the six cell types, responders

(either pre- or post-treatment group) make the greatest overall

distance to all the other groups (Figures 4C; Supplementary

Figure 4C, Supplementary Table 3). Altogether, the results suggest

the numTS features of miRNAs associated with tumor-infiltrating

immune cells have potential to be a biomarker for patient’s response

to immunotherapy.
MiRNA numTS adds prognostic value
beyond common clinical covariates and
miRNA expression

To test whether numTS distinguishes patients with long-term

survival from those with short-term survival, we compared models
B CA

FIGURE 4

MiRNA numTS-based models outperform miRNA expression-based models in predicting tumor-infiltrating lymphocyte abundance. (A) Root-mean-
square error (RMSE) as metric measuring the performance of numTS-based models and expression-based models predicting the abundance of
tumor-infiltrating immune cells (TIMER scores of six cell types) of TCGA SKCM samples. The point in the middle of each vertical line represents the
mean RMSE. The upper and lower bars represent mean ± 2SE (standard error). The horizontal dotted lines indicate the average RMSE across all cell
types for miRNA numTS models and miRNA expression models separately. (B, C) PCA dimension reduction of immune checkpoint blockade-treated
melanoma patients (Riaz et al. cohort). PCA plots were based on miRNAs that were associated with the abundance (estimated by TIMER score) of
tumor-infiltrating CD8 T cells (B) and macrophages (C) in TCGA SKCM samples. The number of miRNAs selected for each cell type is indicated in
the figure. miRNA, microRNA; numTS, number of miRNA target sites; TIMER, Tumor Immune Estimation Resource; TCGA, The Cancer Genome
Atlas; PCA, principal component analysis.
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using clinical variables [including only tumor stage, age, gender

(excluding breast cancer), and smoking status (lung cancer only)]

plus the change of numTS in tumor vs. normal (numTS-clinical

model) with models using the clinical covariates and the miRNA

expressions (expr-clinical model) by building Cox proportional-

hazards regression models (40). Here, we only used BRCA, HNSC,

and KIRC, which provide sufficient sample size for RNA-Seq data

(n ≥ 30, Supplementary Table 1). In all the cancer types, the

numTS-clinical models significantly differentiate long-term

survivors from short-term survivors, while clinical-only models

do not (Figures 5A–C; Supplementary Figures 5A–C). The

numTS-clinical model differentiates the two groups more

significantly than expr-clinical models in all three cancer types

(Figures 5D–F), suggesting that miRNA numTS explained

additional variance of survival time that was not captured by

miRNA expression. To quantify the added prognostic value of
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DnumTS compared to miRNA expression, we used an LRT and

compared the improvements made by numTS-clinical models and

expr-clinical models on top of the clinical-only models. The LRT

results (Figure 5G) clearly demonstrate a strong and consistent

additional prognostic power of numTS compared to miRNA

expression. Together, in addition to commonly used clinical

features, miRNA numTS provides better prognostic value for

survival analysis than miRNA expression.
Discussion

In this manuscript, we developed the statistical method

BIOMATA-APA to find that numTS is an effective biomarker

faithfully representing miRNA binding mechanisms. In particular,

by running BIOMATA-APA on TCGA and independent cohort
B C

D E F

G

A

FIGURE 5

MiRNA DnumTS improves the survival model based on common clinical covariates by explaining additional variability. (A–F) Kaplan–Meier plots with
high (yellow) and low (green) risk groups separated by (A–C) clinical features and DnumTS selected by LASSO. (D–F) Clinical features and
Dexpression selected by LASSO. Sample sizes of high- and low-risk groups and log-rank test p-values are indicated in each figure. (G) Additional
predictive power added by DnumTS and Dexpression, measured by likelihood ratio test comparing clinical + DnumTS model vs. clinical only model
and clinical + Dexpression model vs. clinical only model. miRNA, microRNA; numTS, number of miRNA target sites; LASSO, least absolute shrinkage
and selection operator.
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data both with immunotherapy and no immunotherapy, we

demonstrated for the first time that the numTS feature 1)

distinguishes different cancer types, 2) predicts tumor

proliferation and immune infiltration status, 3) explains variation

in the proportion of tumor-infiltrating immune cells, 4) predicts

response to ICB therapy, and 5) adds prognostic power beyond

clinical and miRNA expression. Notably, the results on the different

cancer types and proliferation and immune infiltration status

suggest that different cancer types may use the miRNA binding

mechanism differently in relation to the unique APA landscape, and

the miRNA binding mechanism is also involved in the interactions

between tumor proliferation and immune infiltration in the tumor

microenvironment. Also, the results on the ICB therapy response

and the prognostic power reveal that the miRNA binding

mechanisms play important roles in eliciting immunotherapy

responses in cancer patients. Based on this, our work with

BIOMATA-APA elucidates a novel layer of intricate mechanisms

where widespread and cancer type-specific APA events extensively

interact with the miRNA regulatory axis.

Our work on numTS and with BIOMATA-APA is novel

compared to previous miRNA biomarker identification work.

Previously, multiple miRNAs have been demonstrated to have

regulatory roles in cancers. However, the miRNA expression-

based biomarkers for cancer hallmarks or clinical outcomes have

not been widely used due to their relatively poor reproducibility.

This work suggests that the poor reproducibility may be attributable

to the fact that 1) miRNAs function by binding to the target sites

located on mRNA transcripts (18), 2) the target sites are globally

disrupted in tumor samples (18), and 3) the target sites have not

been considered as a biomarker. To fill this knowledge gap, we

suggest identifying reproducible miRNA biomarkers by considering

the miRNA target sites (numTS). In fact, for two cancer hallmark

scores, tumor cell proliferation and immune infiltration scores, we

replicated 56.4% and 59.5% of miRNA numTS biomarkers that we

found in TCGA data in an independent cohort, respectively. Also,

miRNA numTS can be more widely usable than miRNA expression

since the estimation of numTS does not require miRNA expression

data and only requires regular RNA-Seq data. It is a great advantage

of the numTS feature because researchers can conduct miRNA

research even if they do not have miRNA expression.

To fully examine the dynamic miRNA binding activity, the

following studies are needed. First, BIOMATA-APA should

additionally incorporate not only miRNA expression but also

other aspects of the RNA-level regulations. For example, long

non-coding RNAs (lncRNAs (41)) and RNA-binding proteins

(RBPs (42)) are known to affect miRNA target site dynamics as

“sponges” of miRNAs or be involved in miRNA processing

pathways, respectively. Since both lncRNAs and RBPs play

instrumental roles in cancer progression and regulation,

understanding how these molecules influence physiological or

clinical outcomes through their global target site dynamics can

provide novel insights into cancer research (43). Second, modeling

the miRNA binding dynamics should eventually be at the single-cell

level. Once BIOMATA-APA is extended to model miRNA binding

dynamics at the single-cell level, it can further be combined with
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other single cell-level models that can identify co-expressed gene

modules (44) or cell–cell communication [ligand–receptor

interactions (45)] to elucidate comprehensive single-cell

molecular processes. Notably, since the method for cell–cell

communication considers a novel adaptive graph model with

attention mechanisms for interacting mRNAs, it would be

interesting to extend the attention mechanisms to incorporate the

mRNA–miRNA binding interactions. Third, while this manuscript

demonstrated the promise of predicting immunotherapy response

using the miRNA numTS features identified in TCGA data, miRNA

numTS features further need to be identified from the patients who

underwent the therapies, not from TCGA patients. Although

currently, we cannot use the patient data of immunotherapy for

numTS identification due to the limited number of samples from

responders (10 pre-treatment samples and 13 post-treatment

samples), we will seek to cross-validate our observations in a

larger cohort in the future.

By providing a comprehensive understanding of the miRNA

binding activity, BIOMATA-APA allows us to elucidate the

biological functions and potential therapeutic applications of

miRNAs. Notably, now that mRNA vaccines, like the Pfizer-

BioNTech (46) and Moderna (47) COVID-19 vaccines, have

gained significant attention and success, BIOMATA-APA will

potentially improve both the efficacy and safety of such mRNA

vaccines by fine-tuning their interactions with miRNAs. Several

studies demonstrated that the immune-related genes changed their

interaction with miRNAs (19, 38) and that the interactions between

immune-related genes and miRNAs play an important role in

COVID-19 disease (48, 49). Thus, BIOMATA-APA can

potentially fine-tune the immune response to achieve the desired

effect. For example, as mRNA and miRNA profiles vary among

individuals, the vaccine’s effectiveness can be optimized by avoiding

or promoting the interaction of specific mRNAs and miRNAs given

the individual’s numTS profile. Also, since multiple mRNAs would

interact with multiple miRNAs, a comprehensive understanding of

miRNA interactions with mRNAs can help avoid unintended

interactions, which can help improve the vaccine’s safety profile.

To the best of our knowledge, this is the first pan-cancer study

to systematically demonstrate numTS as a novel type of biomarker

representing the miRNA binding effects underlying tumorigenesis

and pave the way to incorporate miRNA target sites for miRNA

biomarker identification.
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