
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Mirjana Maletic-Savatic,
Baylor College of Medicine, United States

REVIEWED BY

Guixiang Liao,
Jinan University, China
Rami Vanguri,
Children’s Hospital of Philadelphia,
United States

*CORRESPONDENCE

Ivaylo B. Mihaylov

i.mihaylov@med.miami.edu

RECEIVED 19 May 2023

ACCEPTED 27 October 2023

PUBLISHED 15 November 2023

CITATION

Montoya C, Spieler B, Welford SM,
Kwon D, Pra AD, Lopes G and Mihaylov IB
(2023) Predicting response to
immunotherapy in non-small cell lung
cancer- from bench to bedside.
Front. Oncol. 13:1225720.
doi: 10.3389/fonc.2023.1225720

COPYRIGHT

© 2023 Montoya, Spieler, Welford, Kwon,
Pra, Lopes and Mihaylov. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 15 November 2023

DOI 10.3389/fonc.2023.1225720
Predicting response to
immunotherapy in non-
small cell lung cancer-
from bench to bedside

Chris Montoya1, Benjamin Spieler1, Scott M. Welford1,
Deukwoo Kwon2, Alan Dal Pra1, Gilberto Lopes3

and Ivaylo B. Mihaylov1*

1Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of
Medicine, Miami, FL, United States, 2Division of Clinical and Translational Sciences, Department of
Internal Medicine, University of Texas Health Science Center, Houston, TX, United States,
3Department of Medical Oncology, Sylvester Comprehensive Cancer Center, Miller School of
Medicine, Miami, FL, United States
Background: Immune checkpoint inhibitor (ICI) therapy is first-line treatment for

many advanced non-small cell lung cancer (aNSCLC) patients. Predicting

response could help guide selection of intensified or alternative anti-cancer

regimens. We hypothesized that radiomics and laboratory variables predictive of

ICI response in a murine model would also predict response in aNSCLC patients.

Methods: Fifteen mice with lung carcinoma tumors implanted in bilateral flanks

received ICI. Pre-ICI laboratory and computed tomography (CT) data were

evaluated for association with systemic ICI response. Baseline clinical and CT

data for 117 aNSCLC patients treated with nivolumabwere correlated with overall

survival (OS). Models for predicting treatment response were created and

subjected to internal cross-validation, with the human model further tested on

42 aNSCLC patients who received pembrolizumab.

Results:Models incorporating baseline NLR and identical radiomics (surface-to-

mass ratio, average Gray, and 2D kurtosis) predicted ICI response in mice and OS

in humans with AUCs of 0.91 and 0.75, respectively. The human model

successfully sorted pembrolizumab patients by longer vs. shorter predicted OS

(median 35 months vs. 6 months, p=0.026 by log-rank).

Discussion: This study advances precision oncology by non-invasively classifying

aNSCLC patients according to ICI response using pre-treatment data only.

Interestingly, identical radiomics features and NLR correlated with outcomes in

the preclinical study and with ICI response in 2 independent patient cohorts,

suggesting translatability of the findings. Future directions include using a

radiogenomic approach to optimize modeling of ICI response.

KEYWORDS

lung cancer, immunotherapy, radiotherapy, systemic response, local response,
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1 Introduction

Lung cancer remains the leading cause of cancer-related death

both in the United States and globally (1). In the most common

subtype, non-small cell lung cancer (NSCLC), the majority of

patients present with aggressive, non-localized disease (2). For

many patients with advanced NSCLC (aNSCLC) lacking driver

mutations, the advent of immune-checkpoint inhibitor (ICI)

therapy has improved overall survival (OS) and quality of life

(QoL). While certain patients have a durable response to ICI with

fewer side effects compared to chemotherapy, others experience

clinically significant immunotherapy related adverse events (irAE).

ICI monotherapy results in a lower burden of toxicity compared to

chemoimmunotherapy and dual ICI regimens (3, 4), but with

inferior objective response rates (ORR) and progression free

survival (PFS) (3–6).

Biomarkers and models able to predict response to

immunotherapy are helpful in guiding selection of intensified or

alternative regimens, further personalizing patient care.

Programmed death-ligand 1 (PD-L1) expression and the presence

of microsatellite instability (MSI) are established predictive

biomarkers (7, 8), tumor-infiltrating immune cells (IC) recently

received FDA approval (8–11) and Tumor Mutational Burden

(TMB) shows promise but remains under investigation (3, 12,

13). For these assays, the tissue samples needed for analysis can

be imperfect or unavailable in various clinical scenarios, while cost

and resource allocation can restrict access to the advanced

laboratory techniques required.

Predictive models able to classify aNSCLC patients using readily

available pre-ICI data alone could further optimize patient selection

for treatment when tissue-derived biomarkers are unavailable or

inconclusive. Baseline neutrophil-to-lymphocyte ratio (NLR) is

obtained cheaply and has prognostic value for patients receiving

ICI (14). Neutrophils are recruited by cytokines that also suppress

anti-tumoral lymphocyte activity, and high ratios may reflect

immunosuppressive conditions refractory to ICI response.

Increases in NLR during ICI treatment, referred to as a positive

“delta NLR” (DNLR), also may herald ICI resistance (15). A

prognostic model, “ISEND”, was created for patients with

aNSCLC treated with ICI monotherapy who had previously

received first-line platinum chemotherapy (15). iSEND used

clinical data (sex, ECOG performance status, NLR, and delta

NLR) to sort patients into good, intermediate, and poor

candidates for anti-PD-1 monotherapy. On independent

validation, these groupings were predictive of overall survival

(15). This promising effort required one NLR assay after the first

cycle of ICI to generate DNLR.
There is ample pre-clinical and growing clinical evidence that

radiotherapy (RT) as an adjunct to ICI can potentiate systemic

disease response. This synergy is mainly due to RT’s ability to cause

an immunogenic form of cell death that counteracts tumor immune

escape mechanisms (16), and more speculatively to a phenomenon

known as “abscopal response” (AR). The term “abscopal” (‘ab’ -

away from, ‘scopus’ - target) was coined in 1953 by R.H. Mole to
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refer to effects of ionizing radiation “at a distance from the

irradiated volume but within the same organism” (17). In 2004, it

was postulated for the first time that the immune system might be

responsible for these “off-target” anti-tumor effects and subsequent

preclinical work confirmed that the effects are in fact mediated by

immunocytes (T-cells). It was therefore theorized that combining

ICI and local RT could augment systemic response (18–20).. Trials

in NSCLC have trailblazed the possibility of such effects (21–23).

However, broad clinical evidence suggests that single site RT with

ImT yields suboptimal treatment results in polymetastatic disease

(24, 25). Comprehensive RT strategies targeting all measurable and

even subclinical disease have been proposed in an effort to extend

the role of RT to the polymetastatic setting (26, 27), often in

conjunction with combination ImT when disease is refractory

and/or tumor mutational burden (TMB) is low (28–30).

Quantitative image analytics, known as “radiomics,” can be

used to characterize tumor clonal heterogeneity (31), among other

aspects. Radiomic analysis assumes that patterns (known as

“features”) below the threshold of visual detection are present

within medical imaging and reflect underlying pathophysiology;

converts medical imaging into mineable data and extracts clinically

relevant features to improve cancer diagnosis, prognosis, prediction,

and assessment of treatment response; and has augmented

predictive models in diverse cancer types (32, 33) using

conventional imaging studies such as computed tomography (CT)

and magnetic resonance imaging (MRI). Advanced radiomics can

quantify and analyze subregions within tumors which reflect

differences in underlying tumor pathophysiology (31), such as

lymphoid infiltration within highlighted areas (34). CT radiomics

are of particular interest as these studies are commonly obtained for

patients with aNSCLC, and CT texture features from pretreatment

imaging have been incorporated in biomarker studies predicting for

response to ICI (35, 36).

Previously, our group demonstrated that a preclinical murine

model of aNSCLC incorporating pretreatment CT radiomics and

laboratory data could be created to predict systemic response to

immunotherapy after undergoing RT (37). In generating that

model, radiomics features were identified that significantly

correlated with systemic response. In the present study it was

hypothesized that radiomics would augment development of a

new predictive model able to classify treatment response of

aNSCLC patients using pre-ICI data alone. Clinical outcomes

between patients who had and had not previously undergone RT

were compared to elucidate possible synergistic effect of ICI and RT.

Respecting the multitude of biologic and radiographic differences

between prior murine cohorts and human patients treated with

ImT, texture feature analysis was carried out de novo, without

consideration of prior significant findings. To evaluate the

generalizability of this hypothesis, two distinct cohorts of

aNSCLC patients treated with different anti-PD-1 monotherapies

were interrogated retrospectively. The relationship between the

findings in the murine model and in both human cohorts, and

clinical implications of those findings, are presented and

discussed below.
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2 Materials and methods

2.1 Murine model

For the murine model, a cohort of nineteen C57BL/6 mice had

100 mL of Lewis Lung Carcinoma cell suspension injected

subcutaneously into their bilateral flanks (animal protocol

number 17-214-ad02 EDR, approved by IACUC on 1/27/2020).

On day 7, baseline CT scans and blood counts were obtained. Four

mice were used as a control group and fifteen underwent treatment.

On day 8, treatment mice were irradiated using a RadSource 2000

X-Ray Irradiator cabinet under 2% isoflurane. All received 8 Gy to

the right flank only on 3 consecutive days. After each fraction of

radiotherapy (RT), treated mice received immunotherapy,

consisting of intraperitoneal injections of 200 mg BioXcell anti-

mouse PD-1 (CD 279). Both tumors were measured in all mice with

digital calipers to assess both local (right flank tumor) and abscopal

(left flank tumor) responses. Workflow is depicted in Figure 1.

Further details of animal handling and the pertinent protocols can

be found in an earlier publication (37).
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Four mice were observed to experience a treatment response in

both flanks, indicating enhanced systemic response. Left and right

flank tumors on pretreatment CT scans were mined for texture

features associated with tumor response. Each tumor had 92 CT

radiomics features extracted. Features of interest consisted of

geometric features, first-order histogram features, second-order

joint probability features, and third-order joint probability

features (previously described by our group) (38). All texture

feature extraction was performed by in-house software, interfaced

with the Pinnacle treatment planning system (Phillips Radiation

Oncology Systems, Madison, WI).

2.2 Human cohorts

From an IRB-approved database (IRB number 20170427,

approved on 6/19/2017), 117 consecutive aNSCLC patients

treated with nivolumab monotherapy and 42 consecutive

aNSCLC patients treated with pembrolizumab monotherapy

between 2015 and 2018 were identified. The doses of nivolumab

and pembrolizumab were 240 mg administered every 2 weeks and
FIGURE 1

Workflow of the murine model. Nineteen C57BL/6 mice were injected subcutaneously in their bilateral flanks with 100 mL of Lewis Lung Carcinoma
cell suspension. Four were designated as a control group receiving no treatment, and fifteen underwent RT and ICI. Baseline CT and blood tests
were done on day 7. On day 8, mice in the experimental group were each irradiated. RT consisted of 8 Gy to the right flank only on 3 consecutive
days. After each fraction of RT, treated mice received anti-mouse PD-1 immunotherapy. Both tumors were measured with digital calipers to assess
both local (right flank tumor) and abscopal (left flank tumor) responses. No mice in the control group had a decrease in tumor size, while four mice
in the experimental group had an abscopal response to RT and ICI. CT Scans of these four mice were mined for texture features associated with
abscopal response for creation of a predictive model.
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200 mg administered every 3 weeks, respectively. Chart review

collected baseline clinical characteristics (sex, smoking status,

tumor burden, ECOG performance status, and prior RT) and

laboratory data (WBC, ALC, ANC, EOS, PLAT, LDH, ALB).

Various blood count tests (BCT) were generated, including

neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte

ratio (PLR), neutrophil-to-monocyte ratio (NMR), and

lymphocyte-to-monocyte ratio (LMR), in addition to prognostic

nutritional index (PNI). PNI was calculated as 10*ALB (g/L) +

0.005*ALC (mm3). Positron emission tomography (PET)-CT scans

immediately prior to initial ICI administration were transferred via

Digital Imaging and Communication in Medicine (DICOM) files to

a 3D treatment planning system (MIM v. 6.9.3; MIM Software Inc.,

Cleveland, OH) and fused to facilitate anatomic and target structure

delineation. Radiomic analysis was performed with respect to the

largest tumor on CT in accordance with prior radiomics studies in

patients undergoing immunotherapy (39). In all patients, this also

corresponded to highest standard uptake value (SUV) tumor on

PET. For each patient, the largest tumor on CT was segmented

using MIM software, with lung windowing used to define

parenchymal margins and mediastinal windows used to define

mediastinal and chest wall margins per established guidelines

(40). Chart review was performed to establish clinical follow up

and OS for all patients. As in the murine study above, 92 CT

radiomics features were extracted for analysis.
2.3 Statistics

After compilation of laboratory data, clinical data (for human

cohorts), and radiomics feature extraction, univariate and

multivariate analyses (SPSS Statistics V.25 software package, IBM

Corp., Armonk, NY, USA) were performed on all variables for

dichotomized endpoints similar to prior work (37). The

dichotomized endpoints were presence or absence of systemic

response in murine model, and shorter or longer than median OS

in the human cohort. The pairwise comparisons in the multivariate

analyses were performed with Bonferroni adjustment for multiple

comparisons. The imaging features, BCTs, and clinical variables

(including pre-treatment variables used in iSEND model) with the

highest statistical significance were selected for further modeling.

All those selected variables were tested for correlation, with a

Pearson correlation coefficient of 0.5 used for cut-off. If any two

significant variables were correlated with a coefficient larger than

0.5, one of the variables was removed from the pool. The remaining

uncorrelated variables were subjected to binary logistic regression,

aiming to model the prediction of systemic response or OS. Both of

the systemic response in animals and OS in humans were

dichotomized. The systemic response was dichotomized in terms

of present or absent, while the OS was dichotomized by median OS

period. The binary logistic regression allowed to estimate areas

under the receiver operating characteristic curve (AUCs) to assess

the discriminatory accuracy in predicting systemic response in mice

and overall survival in humans. SPSS ANOVA and SPSS

Multivariate General Linear Model were used for these

iterative analyses.
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The murine and the human predictive models were subjected to

internal k-fold cross-validation: 3-fold for murine and 5-fold for

human. Each cohort was partitioned in k equal subunits (folds) and

the model was trained on k-1 folds. Then the trained model was

validated on the remaining 1 subgroup. The process was repeated k

times with each subunit serving as training fold exactly once. In

addition, the human model was externally validated on a separate

patient cohort treated with pembrolizumab, a distinct anti-PD-1

ICI, to assess ability to discriminate based on OS. The results of the

application of the binary logistic model to the pembrolizumab

cohort were subjected to survival analyses (SPSS) where the

survival rates were estimated using the Kaplan–Meier method

and compared with log-rank tests.
3 Results

3.1 Murine predictive model

Systemic response was observed in 4 of the 15 mice that

underwent study treatment (37). From laboratory data, NLR and

interleukin-1 beta (II-1b) were associated with systemic response

(p<0.001 and 0.004 respectively). Three texture features (surface-to-

mass ratio, average Gray value, and 2D kurtosis) trended toward

association with systemic response on univariate (p=0.069, 0.013,

0.052) and multivariate (p=0.10, 0.05, 0.08) analyses. The selection

of those features for downstream modeling was based on the

univariate results. A logistic regression model incorporating these

three texture features, NLR, and Il-1b for predicting systemic

response yielded an AUC of 0.91 on three-fold internal cross

validation. ROC analyses results from these validations are

presented in Figure 2. Results of multivariate analyses for

variables selected for predictive model are listed in Table 1.
3.2 Human cohort characteristics

In the human nivolumab cohort, all patients had Stage IV

disease, the vast majority had progressed after at least 1 prior line of

systemic therapy, and adenocarcinoma was the most common

histology (76%). The median age was 67 years, 65% were male,

and only 17% were never smokers. Of the 13 patients for whom PD-

L1 status was known, 10 were PD-L1 negative. Nivolumab had been

FDA approved for the treatment of previously treated metastatic

NSCLC regardless of PD-L1 status (8), and PD-L1 status was not

routinely assessed at that time at our institution. The rest of the

baseline characteristics are listed in Table 2. Median OS of the

nivolumab cohort was 10.3 months and 2-year OS was 35%.

Among the 37 patients who had received thoracic RT prior to

ICI, clinical intent, dose, and fractionation, as well as timing relative

to ICI administration were heterogeneous. Overall, the presence of

thoracic RT at any time prior to ICI showed no association with OS

on univariate or multivariate analyses. Burden of disease was

quantified using size of largest tumor on pre-ICI CT and number

of lesions present on pre-ICI CT. There also was no association with

either metric with OS.
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3.3 Human predictive model

From radiomics analysis, three texture features correlated with

OS on univariate and multivariate analysis: surface-to-mass ratio

(p=0.032), average Gray value (p=0.02), and 2D kurtosis (p=0.018).

Interestingly, those were the same 3 features which were associated

with systemic response in the murine study. Furthermore, ECOG

(p<0.001) and NLR (p=0.006) also correlated with OS. Female sex

approached significance (p=0.08) on UVA for association with

higher than median OS. A binary logistic regression model sorted

patients into more likely or less likely to have longer than median

OS, incorporating NLR, patient sex, ECOG performance status, the

three texture features, age, histology, and number of prior therapies.

Age, histology, and number of prior therapies were then excluded

due to poor association, and a multivariate analysis was performed

with only the remining variables. The cohort was then divided into
TABLE 1 Results of multivariate analysis in murine cohort for
association with systemic response for variables selected for predicted
model, as described in Statistical Methods.

Texture Features
p-

value
Hazard Ratio (95% CI)

Surface-to-mass ratio 0.10 1.141 (0.971-1.494)

Average Grey value 0.05 0.991 (0.975-1.007)

2D kurtosis 0.08 0.758 (0.544-1.058)

Laboratory Values

Neutrophil-to-lymphocyte
ratio

<0.001 0.122 (0.029-0.507)

Interleukin-1b 0.004 1.39 (0.963-2.008)
F
rontiers in Oncology
FIGURE 2

A predictive model was generated from the murine model of three
texture features (surface-to-mass ratio, average Gray value, and 2D
kurtosis), pre-treatment NLR, and pre-treatment II-1b. This
underwent internal 3-fold cross validation for predicting systemic
response, and AUC analysis for this prediction is shown above. A
numerical average of these three folds yielded an AUC of 0.91.
05
TABLE 2 Baseline clinical characteristics for human cohort receiving
nivolumab.

Patient Race

White 60 51.72%

Black 9 7.76%

Hispanic 42 36.21%

Asian 1 0.86%

Other 4 3.45%

Missing 1 0.85%

Total 117 100%

Patient Sex

Male 65 55.56%

Female 52 44.44%

Total 117 100%

Body Mass Index

Median 24.50

Mean 24.77

Age (years)

Median 67

Mean 66

Smoking History

Never 20 17.09%

<15 pack years 20 17.09%

15-30 pack years 17 14.53%

>30 pack years 60 51.28%

Total 117 100%

Pre-Treatment ECOG PS

0 16 14.16%

1 20 17.70%

2 17 15.04%

3 60 53.10%

Missing 4

Pathology

Adenocarcinoma 74 63.25%

Squamous Cell Carcinoma 32 27.35%

Adenosquamous 1 0.85%

Bronchoalveolar 6 5.13%

Other1 4 3.42%

Total 117 100%

Number of Prior Systemic Therapies2

0 6 5.17%

(Continued)
fr
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five groups, and internal 5-fold cross-validation was performed. The

average of the AUCs from each of the five folds (subgroups) yielded

an AUC of 0.75 (Figure 3). Results of multivariate analyses for

selected variables are tabulated in Table 3. Of note, those selected

for inclusion in the predictive model include all pre-treatment

factors from the iSEND model (sex, ECOG performance status,

and pre-treatment NLR).

The coefficients from the five trained models were averaged to

generate a representative average model. This average binary

logistic regression model then was applied to a second,

independent cohort of 42 patients with aNSCLC who received

pembrolizumab monotherapy at the same institution. Like the

nivolumab cohort, the pembrolizumab patients were all (100%)

Stage IV but were relatively more fit (with 90.47% having ECOG PS

of ≤1) and less pre-treated (40.48% being treatment-naïve) than the
TABLE 2 Continued

1 65 56.03%

2 29 25.00%

3 5 4.31%

4 11 9.48%

Missing 1

Mean 1.57

Median 1

Relapsed or de novo Metastatic
Disease

Metachronous 40 34.19%

Synchronous 76 64.96%

PD-L1 Expression Status

High (>50%) 2 15.38%

Low (1-49%) 1 7.69%

Negative (<1%) 10 76.92%

Missing 104

Targetable Mutation Status

KRAS 7 6.86%

EGFR 10 9.8%

ALK 3 2.94%

MET 2 1.96%

BRAF V600E 3 2.94%

None 77 75.49%

Missing 15

Daily Steroid Use

Taking 14 11.97%

Median Prednisone Equivalent Dose (mg) 11.68

Blood Count Tests Median Mean

NLR 4.31 5.16

PLR 226.136 261.19

NMR 9.22 10.43

LMR 2.01 2.74

Primary Tumor Size (cc)

Median 13.14

Mean 52.98

Nodal Disease at Time of ImT

Yes 63 53.85%

No 54 46.15%

Anatomic M Stage

M1a 49 41.88%

(Continued)
TABLE 2 Continued

M1b 10 8.55%

M1c 58 49.57%

Overall Stage

IVA 59 50.4%

IVB 58 49.6%

Prognostic Nutritional Index

Median 43.3

Mean 43.67
fr
1 Four patients found to have pathology other than NSCLC after chart review.
2 Excluding Avastin.
FIGURE 3

A predictive model incorporating three texture features (surface-to-
mass ratio, average Gray value, and 2D kurtosis), ECOG performance
status, pre-ICI NLR, and patient sex was generated from 117 aNSCLC
patients treated with nivolumab. The model was internally validated
with a five-fold cross validation, and AUC graphs for predicting OS
were generated for each of the five folds. Individual AUC values are
shown above, and the numerical average of the five folds was 0.75.
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nivolumab cohort. However, the two groups had very similar body

mass index (BMI), primary tumor size, prevalence of nodal disease,

relative proportions of anatomic M stage, BCTs, PNI, and

proportion of synchronous versus metachronous metastatic

disease. Pembrolizumab monotherapy was at the time of this

study FDA-approved as first-line therapy for patients with EGFR/

ALK wild-type aNSCLC and PD-L1 Tumor Proportion score (TPS)

≥50% (8), and 24 of the 39 patients with PD-L1 status available had

TPS ≥50%. The rest of the baseline characteristics of the

pembrolizumab cohort are listed in Table 4. The median OS of

the nivolumab and pembrolizumab cohorts were 10.27 months and

14.27 months, respectively.

The model generated from the nivolumab cohort sorted

patients in the pembrolizumab cohort into two groups according

to predicted OS (Figure 4). The difference in observed median OS

(35.75 months vs 6.98 months) of the two groups was statistically

significant on log rank test (p=0.026). The hazard function of the

two groups sorted by the model also showed significant difference in

cumulative hazard (Figure 5). Statistical results are tabulated and

summarized in Table 5. Combined with outcome data from the

nivolumab cohort, these findings suggest that the regression model

effectively discriminates patients who will derive clinical benefit

from anti-PD-1 monotherapy.
4 Discussion

For the majority of aNSCLC patients, ICI regimens improve

treatment response compared with conventional chemotherapy

(41–46). However, resistance to ICI is common due to the

phenomenon of immune evasion, an emerging hallmark of cancer

(47). Ionizing RT can prime cytotoxic immune response (16, 18–

20), and has been shown to enhance ICI response in the metastatic

setting (21–23). Improved predictive modeling of ICI response

would help select candidates for treatment intensification or

alternative therapies, and strategies to augment ICI response
TABLE 3 Results of multivariate analysis in nivolumab cohort for
association with overall survival.

Texture Features
p-

value
Hazard Ratio (95% CI)

Surface-to-mass ratio 0.325 0.984 (0.952-1.017)

Average Grey value 0.594 0.998 (0.992-1.004)

2D kurtosis 0.040 0.996 (0.992-1.0)

Laboratory Values

Neutrophil-to-lymphocyte
ratio

0.117 1.046 (0.989-1.106)

Clinical Features

ECOG Performance Status <0.001 2.394 (1.663-3.447)

Female sex 0.057 0.688 (0.468-1.011)
F
rontiers in Oncology
Hazard ratios are reported for selected variables. Age, histology, and number of prior therapies
were excluded and a second multivariable analysis was performed with the remaining
variables. Texture features, NLR, ECOG, and sex were selected for inclusion in the
predictive model, as described in Statistical Methods.
07
TABLE 4 Baseline clinical characteristics for human cohort receiving
pembrolizumab.

Patient Race

White 24 51.72%

Black 2 4.76%

Hispanic 15 35.71%

Asian 1 2.38%

Total 42 100%

Patient Sex

Male 22 52.38%

Female 20 47.62%

Total 42 100%

Body Mass Index

Median 25.27

Mean 25.89

Age (years)

Median 71

Mean 70.69

Smoking History

Never 3 7.14%

<15 pack years 7 16.67%

15-30 pack years 13 30.95%

>30 pack years 19 45.24%

Total 42 100%

Pre-Treatment ECOG PS

0 6 14.29%

1 32 76.19%

2 3 7.14%

3 1 2.38%

Total 42 100%

Pathology

Adenocarcinoma 34 80.95%

Squamous Cell Carcinoma 6 14.29%

Adenosquamous 1 2.38%

Bronchoalveolar 0 0%

NSCLC, NOS 1 2.38%

Total 42 100%

Number of Prior Systemic Therapies1

0 17 40.48%

1 20 47.62%

2 4 9.52%

(Continued)
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would improve clinical outcomes. Current biomarkers predictive of

ICI response require invasive biopsy with the potential for high

financial toxicity (48) limiting availability and access. Previously,

the iSEND model (15) was developed to predict response to ICI

monotherapy in aNSCLC patients using readily available clinical

data, requiring delta-NLR determined by post-ICI assay.

Subsequently, our group generated a model predictive of systemic

response to ICI with RT in syngeneic mice inoculated with Lewis

Lung Carcinoma, incorporating only pretreatment variables

(radiomics and laboratory data) (37). Drawing on that preclinical

experience, the present study attempted to improve predictive

modeling of ICI-response by substituting quantitative imaging

analytics of pretreatment CT for iSEND’s delta-NLR, while

analyzing what relationship, if any, prior thoracic RT had with

ICI response. While prior RT was not associated with clinical

response, the dose, schedule , and timing of RT was

heterogeneous. Prior investigations on abscopal response show

dose-response to RT (21, 23), and it is difficult to interpret our

results. The results of the present study (see Results section) support

the use of radiomics as a tool to augment baseline clinical data in

guiding precision cancer therapy for patients with aNSCLC.

Baseline NLR previously had demonstrated prognostic value for

patients receiving ICI (14, 15), and its significance to both murine

and human models in the present study was anticipated. An

unexpected finding was the high translatability of tumor

radiomics from syngeneic murine to human subjects, with

identical texture features (average surface-to-mass ratio, average

Gray value, and 2D kurtosis) emerging as predictive. Patients with

known metastatic disease did not routinely undergo post-ICI tissue

sampling and in this retrospective analysis extant samples were

unavailable for molecular characterization. Interpretation of the

tumor pathophysiology underlying the identified radiomics features

therefore requires extrapolation from other sources.

Clonal evolution and epigenetic alterations drive heterogeneity in

individual cancer cells within the same tumor. In NSCLC, genomic

studies derived from tissue data have shown patients with higher

measures of intratumoral heterogeneity are at increased risk of

recurrence and death (49). Radiomics can characterize that

heterogeneity in a non-invasive fashion (31). Advanced radiomics

can identify subregions, sometimes referred to as “habitats”, within

tumors that can be linked to differences in underlying tumor

pathophysiology (31). The application of radiomics to tumor

immune microenvironment (TIME) dynamics is a further

development of the habitat concept. Our prior preclinical work
TABLE 4 Continued

3 1 2.38%

4 0 0%

Total 42 100%

Mean 0.738

Median 1

Relapsed or de novo Metastatic
Disease

Metachronous 12 28.57%

Synchronous 30 71.43%

PD-L1 Expression Status

High (>50%) 24 61.54%

Low (1-49%) 10 25.64%

Negative (<1%) 5 12.82%

Missing 3

Targetable Mutation Status

KRAS 2 6.90%

EGFR 4 13.79%

ALK 1 3.45%

MET 2 6.90%

BRAF V600E 1 3.45%

None 19 65.52%

Missing 13

Daily Steroid Use

Taking 7 16.67%

Median Prednisone Equivalent Dose (mg) 20

Blood Count Tests Median Mean

NLR 5.16 6.46

PLR 220.97 248.30

NMR 9.39 12.71

LMR 2.01 2.30

Primary Tumor Size (cc)

Median 11.10

Mean 62.30

Nodal Disease at Time of ImT

Yes 31 73.81%

No 11 26.19%

Anatomic M Stage

M1a 14 33.33%

M1b 5 11.90%

M1c 23 54.76%

(Continued)
TABLE 4 Continued

Overall Stage

IVA 19 45.2%

IVB 23 54.8%

Prognostic Nutritional Index

Median 43.6

Mean 44.27
f

1 Excluding Avastin.
rontiersin.org

https://doi.org/10.3389/fonc.2023.1225720
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Montoya et al. 10.3389/fonc.2023.1225720
demonstrated that radiomics of pretreatment MR and CT imaging

can predict lymphoid and myeloid infiltration of tissue in regions of

interest (34). In that study and the current one, the texture feature

“CT average gray” emerged as predictive of treatment effect. This

finding parallels a recent study showing CT gray level variance as

predictive of tumor infiltrating lymphocyte (TIL) enrichment for

patients with NSCLC treated with ICI (50). The FDA recently

approved immunohistochemistry (IHC) assays of tumor infiltrating

immune cells to predict ICI benefit in patients with NSCLC (51), and

higher levels of CD8+ TILs has been associated with higher PFS for

NSCLC patients treated with nivolumab (9). The correlation of

predictive radiomics with lymphoid cell migration patterns suggests

a potential role for quantitative imaging as an inexpensive, non-

invasive alternative to IHC for prediction of ICI response. In addition,

the ability of radiomics to localize lymphoid cell habitats within

tumor, peritumoral stroma, and tumor draining lymphatics could

define new therapeutic targets or avoidance structures for local or

systemic interventions (52). Within the TIME, auto- and paracrine

interactions reshape the extracellular matrix and contribute to local

immunomodulation through recruitment and/or suppression of
Frontiers in Oncology 09
cytoxic T-cells or immunosuppressive regulatory T-cells (Tregs)

(53). These changes in the local microenvironment promote tumor

growth, angiogenesis (54), and regional lymphangiogenesis (55). In

NSCLC patients, quantitative changes in Tregs and associated co-

inhibitory factors within TIME are observed with progression of

disease (53). Tumor neovascularization forms imperfect perfusion

networks leading to regions of acute and chronic hypoxia, dynamic

tumor proliferation rates, and clusters of variable cellular density. In

our view, the radiomics features “average surface-to-mass ratio” and

“2D kurtosis” most likely reflect tumor density and hypoxia status.

2D kurtosis has been shown to correlate with increased maximum

SUV on FDG-PET, a correlate for increased tumor doubling time

(56), and increased apparent diffusion coefficient on multiparametric

MRI, a radiographic surrogate for density and hypoxia (57). Tumor

hypoxia has long been associated with more aggressive disease and

correlates with increased incidence of distant metastases in both pre-

clinical and clinical data (58).

This study has significant limitations. Heterogeneity of systemic

response to ICI in a syngeneic murine cohort with identical cell lines,

identical inoculation sites, and identical interventions likely reflect
FIGURE 4

A model incorporating three texture features (surface-to-mass ratio, average Gray value, and 2D kurtosis), ECOG performance status, pre-ICI NLR,
and patient sex for predicting OS in patients with aNSCLC receiving ICI, generated using a cohort of 117 aNSCLC patients treated with nivolumab,
and then validated using a cohort of 42 aNSCLC patients treated with pembrolizumab. The cohort was dichotomized by the model based on
predicted OS, and the two resulting groups had a statistically significant difference in observed OS.
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variance of laboratory technique in the inoculation process despite all

efforts to achieve uniformity. We believe that subtle changes in

implantation of pseudometastases resulted in variable TIME

dynamics and differential treatment effects, findings that were

fortuitous and led to development of the present study. Patient

data was compiled retrospectively, and confounding factors

unaccounted for in our model may exist. While identical radiomics

features may predict for clinical response in murine and human

models, any similarity must be interpreted with caution. Intrinsic

differences in the tumor immune microenvironment (TIME)

be tween human NSCLC and subcu t aneous mur ine

pseudometastases influence the biologic processes predisposing

either to ImT response (49). Heterogeneity of pre-ICI local and

systemic therapies, profound anatomic and physiologic differences

between real patients and any preclinical model, and lack of
Frontiers in Oncology 10
uniformity in CT imaging parameters can further confound

radiomics findings and their interpretation.

In the current study, the relatively large sample size and the

simplicity of the biological correlates of the identified features may

have reduced dependance on uniform imaging parameters to

achieve reproducible results. CT measures relative (with respect to

water) attenuation coefficient, a fairly uniform parameter across

different machines compared to other imaging modalities such as

MRI. Future protocols should consider standardization of CT

scanner parameters to achieve a more harmonious radiomics

signal. The original nivolumab model was validated with an

independent group of patients who received pembrolizumab,

however both patient cohorts were treated at the same institution,

limiting generalizability of the results. Despite that limitation, the

survival data for both cohorts in this study (Figure 6) are consistent

with survival data observed in prospective trials of metastatic

NSCLC patients receiving ICI monotherapy. In CheckMate 057,

patients with advanced NSCLC having previously received

chemotherapy and treated with nivolumab monotherapy had a

median OS of 12.2 months for those with non-squamous cell

carcinoma (42) and 9.2 months for those with squamous cell

carcinoma (43). In KEYNOTE-001, metastatic NSCLC patients

treated with pembrolizumab monotherapy had a median OS of

22.3 months in treatment-naïve patients, and a median OS of 10.5

months for those previously treated with chemotherapy (41).

KEYNOTE-042 showed that for treatment naïve patients with

aNSCLC and PD-L1 expression < 50% (33% of our dataset),

median OS was 13 months (45). KEYNOTE-024 showed that for

previously untreated patients with aNSCLC and >50% PD-L1

expression, median OS was 26 months (46), but high PD-L1

expression represented only 57% of our pembrolizumab dataset

and the majority of that cohort were not treatment naïve.
FIGURE 5

Cumulative hazard for death for two groups of pembrolizumab
cohort sorted by predicted OS utilizing three texture features
(surface-to-mass ratio, average Gray value, and 2D kurtosis), ECOG
performance status, pre-ICI NLR, and patient sex. Cumulative hazard
for patients with better predicted OS was significantly lower.
TABLE 5 Tabulated overall survival values for two human cohorts, as
well as pembrolizumab patient sorted into higher or lower predicted OS
using predictive model.

Overall Survival of Pembrolizumab Patients
(months) Median

High Predicted OS 35.57

Low Predicted OS 6.98

Log-Rank p = 0.026

Overall Survival of Human Cohorts (months) Median

Nivolumab 10.27

Pembrolizumab 14.27

Log-Rank p = 0.057
While OS differences were not significant on log-rank test between two cohorts overall, the
difference between groups sorted by predictive model was statistically significant.
FIGURE 6

Kaplan-Maier OS curves for cohort of 117 nivolumab patients (used
for model generation) and the cohort of 42 pembrolizumab patients
(used for model validation). OS data for these patient groups were
consistent with findings from external randomized prospective
studies (41–43, 45, 46) and support the generalizability of the
regression model derived and validated using these cohorts.
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Patients rarely underwent pre- and post-ICI tissue sampling and

extant samples were unavailable for molecular characterization,

making radiogenomic modeling impossible. Interpretation of tumor

pathophysiology underlying statistically significant radiomics texture

features therefore relies on considerable speculation.

Follow on studies will integrate tumor radiomics, clinical data,

and molecular characterization to more fully elucidate ICI

mechanisms of response in aNSCLC. Radiogenomic models will

be optimized through concordance of TIME dynamics and

genomics, longitudinally characterized by tissue biopsy,

quantitative imaging, and liquid biopsy measures, and grounded

in germline influences related to ethnicity and race. For patients

with aNSCLC, multi-omics models are needed to guide strategic

interventions that favorably adjust the mechanisms dictating

clinical outcomes.
5 Conclusions

This study advances precision oncology by non-invasively

classifying aNSCLC patients according to ICI response using pre-

treatment data alone. Interestingly, identical; radiomics features and

NLR correlated with outcomes in the preclinical study and with ICI

response in 2 independent patient cohorts. Future directions

include a radiogenomic approach designed to optimize modeling

of ICI response and guide strategic interventions that favorably

adjust the mechanisms dictating clinical outcomes.
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