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Background: Interferon-g (IFN-g) is a key cytokine with diverse biological

functions, including antiviral defense, antitumor activity, immune regulation,

and modulation of cellular processes. Nonetheless, its role in pancreatic

cancer (PC) therapy remains debated. Therefore, it is worthwhile to explore

the role of Interferon-g related genes (IFN-gGs) in the progression of

PC development.

Methodology: Transcriptomic data from 930 PC were sourced from TCGA,

GEO, ICGC, and ArrayExpress, and 93 IFN-gGs were obtained from the MSigDB.

We researched the characteristics of IFN-gGs in pan-cancer. Subsequently, the

cohort of 930 PC was stratified into two distinct subgroups using the NMF

algorithm. We then examined disparities in the activation of cancer-associated

pathways within these subpopulations through GSVA analysis. We scrutinized

immune infiltration in both subsets and probed classical molecular target drug

sensitivity variations. Finally, we devised and validated a novel IFN-g related

prediction model using LASSO and Cox regression analyses. Furthermore, we

conducted RT-qPCR and immunohistochemistry assays to validate the

expression of seven target genes included in the prediction model.

Results: We demonstrated the CNV, SNV, methylation, expression levels, and

prognostic characteristics of IFN-gGs in pan-cancers. Notably, Cluster 2

demonstrated superior prognostic outcomes and heightened immune cell

infiltration compared to Clusters 1. We also assessed the IC50 values of

classical molecular targeted drugs to establish links between IFN-gGs

expression levels and drug responsiveness. Additionally, by applying our

prediction model, we segregated PC patients into high-risk and low-risk

groups, identifying potential benefits of cisplatin, docetaxel, pazopanib,
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midostaurin, epothilone.B, thapsigargin, bryostatin.1, and AICAR for high-risk PC

patients, and metformin, roscovitine, salubrinal, and cyclopamine for those in the

low-risk group. The expression levels of these model genes were further verified

through HPA website data and qRT-PCR assays in PC cell lines and tissues.

Conclusion: This study unveils IFN-gGs related molecular subsets in pancreatic

cancer for the first time, shedding light on the pivotal role of IFN-gGs in the

progression of PC. Furthermore, we establish an IFN-gGs related prognostic

model for predicting the survival of PC, offering a theoretical foundation for

exploring the precise mechanisms of IFN-gGs in PC.
KEYWORDS

pancreatic cancer, pan-cancer, interferon-g (IFN-g) signaling pathway, IFN-g-related
genes, prediction model
1 Introduction

PC is a common kinds of gastrointestinal tumors that accounts

for a significant portion of tumor-related fatalities worldwide.

Surgical resection remains the primary treatment for PC (1).

Unfortunately, the majority of patients are unable to undergo

surgery due to late diagnosis. Immunotherapy has been

established as an effective treatment for several malignancies;

however, it only benefits a small subset of PC patients (2).

Moreover, the inconsistent success in molecular targeted therapy

can be attributed to the heterogeneity of tumors (3). Therefore, it is

important to explore and authenticate new prognostic indicators to

enhance the prognosis of clinical consequences and chemotherapy

responsiveness among PC patients.

Interferons, classified as vital proteins within the cytokine

family, serve diverse biological functions, with a particular

emphasis on their pivotal role in the immune system. There are

three primary types of interferons, namely types I, II, and III, each

with distinct roles in tumorigenesis. Extensive research has

demonstrated that type I and type III interferons unequivocally

exhibit the ability to impede tumor growth (4, 5). In the case of type

II interferon, known as IFN-g, its impact on tumor immune evasion

and bidirectional immune surveillance has generated controversy

surrounding its antitumor properties (6–8). Therefore, this study is

dedicated to exploring the potential role of IFN-g in PC. And it

primarily exerts its biological effects through cytostatic/cytotoxic

and antitumor processes within the adaptive immune response,

which is mediated by cells (9). The activation of the Janus kinase 1

(JAK1) pathway and the signal transducer and activator of

transcription 1 (STAT1) is the primary mechanism through

which IFN-g signals (10). IFN-g signaling is integral to various

biological processes, including inflammation regulation, innate and

acquired immunity, cell cycle control, apoptosis, and defense
02
against viral and bacterial infections (9). Studies have reported

that IFN-g can inhibit tumor by enhancing the efficacy of anti-

pancreatic cancer targeted drugs (11, 12). Although IFN-g signaling
has long been considered crucial to antitumor immunity, recent

evidence suggests that it has a dual role in promoting cancer

development and immune evasion (13). A study has reported that

IFN-g could promote PC epithelial-mesenchymal transition (14).

Hence, owing to the ambiguity surrounding the function of IFN-g
in PC, it is imperative to explore the IFN-g signaling pathway’s role
in this context. In light of the pivotal role played by the IFN-g
signaling pathway in tumor immunity and the treatment resistance

arising from its impairment in tumor cells, there is substantial value

and significance in investigating the involvement of IFN-g in the

progression of PC and in establishing pertinent predictive models.

Based on the previously mentioned information, we were able

to classify 930 patients with PC into two separate groups relying on

the expression levels of IFN-gGs. We then evaluated the

relationship of these subgroups with patient prognosis, differential

gene expression, HALLMARKER signaling pathways, immune

microenvironments, and drug sensitivities. Next, using LASSO-

COX analysis, we identified seven hub genes, namely EREG, IAPP,

KRT17, ANXA1, C7, and ALB, to establish and verify a novel

predictive model for PC. We demonstrated the stability and

reliability of this predictive model through both internally and

externally validating the prediction model in PC. By utilizing the

model, we categorized patients into groups of low and high risk, and

analyzed their associat ions with prognosis , immune

microenvironments, as well as drug sensitivities. Finally, the study

confirmed the levels of expression for seven hub genes in pancreatic

cancer cell lines and clinical samples. Collectively, our study

established a novel prognostic signature for PC, and the outcomes

may provide new avenues for clinical decision-making and

prognostic evaluation in the context of the malignancy.
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2 Materials and methods

2.1 Data aggregation and processing

The publicly available data on gene expression as well as clinical

information sourced frommultiple databases were gathered, such as

TCGA, GEO, ICGC, ArrayExpress, and GTEx. To ensure the

accuracy of our analysis, we eliminated patients lacking survival

data and addressed batch effects by employing the ComBat

technique from the “SVA” package (15, 16). Multiple datasets

were combined, including GSE57495, GSE28735, GSE62452,

MTAB-6134, and TCGA-PC, which collectively comprised 635

PC samples. We randomly assigned 319 samples to the training

cohort, 316 samples to the test1 cohort, and utilized all 635 samples

as the test2 cohort. External validation was performed using ICGC-

CA and ICGC-AU datasets, which provided 295 samples for the

test3 cohort. Overall, our study included 930 PC samples with

clinical information. Lastly, we extracted 93 IFN-gGs from the

Molecular Signature Database (MSigDB).
2.2 Comprehensive analysis of IFN-gGs in
multiple human cancers

We comprehensively summarized IFN-gGs by utilizing a

similar approach to prior studies through the downloading and

organization of multi-omics data from the TCGA pan-cancer

cohort. Specifically, we conducted a detailed analysis of interferon

gene copy number variation (CNV), single nucleotide variation

(SNV), and changes in methylation patterns at genomic level. At the

transcriptomic level, we extensively investigated the expression,

prognosis of the IFN-gGs. It is noteworthy that we compared

tumor tissues and adjacent normal tissues from the TCGA cohort

to generate the pan-cancer expression profile of IFN-gGs. The
results supply valuable comprehension for the regulatory

mechanisms and prospective clinical significance of IFN-gGs in

the context of pan-cancer biology.
2.3 Non-negative matrix factorization
clustering determination of IFN-gGs
modification subtypes

Our goal was to investigate the association of IFN-gGs
expression with clinical characteristics in PC (17). We used the

NMF algorithm to partition the 930 samples of PC into distinct

clusters. NMF algorithm aims to identify potential genes expression

models by decomposing the original matrix into two nonnegative

matrices. The specific parameters of the NMF clustering algorithm

are as follows: rank=2:10, method=“brunet”, nrun=100. We choose

values of k at the point where the cophenetic correlation coefficient

starts to decrease in magnitude (18). Next, we utilized the “survival”

package in R to complete the Kaplan-Meier (K-M) survival analysis.

Survival analysis contributes to a better understanding of the

significant value of NMF clustering in the clinical outcome of PC.
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2.4 Gene set variation analysis

In order to evaluate the IFN-g pathway activation among PC

patients, we employed the “GSVA” package in R to calculate

individual IFN-g pathway scores (19). These scores served as an

effective indicator of pathway activity and enabled us to contrast the

differences in IFN-g scores among the two different groupings of

patients using R’s “wilcox.test” function. In addition, we used the

“GSVA” software to compute the enrichment scores for 50 hallmark

pathways and applied a similar methodology to identify any potential

signaling pathway discrepancies between clusters (20). We further

investigated the expression of IFN-gGs in the two clusters to gain

deeper insights into the underlying mechanisms involved.
2.5 Analyzing tumor immune
microenvironments between
the C1 and C2

The tumor microenvironment (TME) is predominantly comprised

of immune cells, stromal cells, and tumor cells. To investigate the

immunological features among distinct clustering subtypes from a

holistic standpoint, we have introduced the well-established Estimate

algorithm. This algorithm is executed through the “estimate” package

in the R programming language (17), enabling the quantification of

ImmuneScore, StromalScore, EstimateScore, and tumor purity using

gene expression profiles as the foundation. To visually illustrate the

scores associated with the TME in a comprehensible manner, we

utilized the ggpubr package to craft refined violin plots. In order to

comprehensively evaluate immune cell infiltration (ICI), we utilized

several immune-related algorithms, including TIMER, CIBERSORT,

CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and

EPIC algorithms (21, 22). Furthermore, tumor cells can employ

immune checkpoints (ICs) to evade attacks from the immune

system, aiding their escape from immune surveillance and survival.

Therefore, we also compared the differences in ICs expression levels

between different subtypes in PC.
2.6 Drug sensitivity and differentially
expressed genes analysis

Utilizing the R package “pRRophetic” to forecast drug

sensitivity and enhance our comprehension of the connection

between tumor drug treatment and the expression of IFN-gGs
(23). This package is based on the Cancer Genome Project (CGP)

and includes 138 anticancer drugs that were tested against 727 cell

lines. The semimaximum inhibitory concentration (IC50) of the

samples was calculated using the ridge regression method (24). A

lower semi-inhibitory mass concentration of the drug in cancer cells

generally implies a smaller IC50, indicating that the cancer cells are

more responsive to the medicine. Additionally, we employed the

“limma” program to identify the DEGs by applying filtering criteria

of fold-change (FC) > 1.5 and false discovery rate (FDR) < 0.05

between the C1 and C2 subtypes (25).
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2.7 Establishing and validating a novel IFN-
g-based risk signature

In order to address collinearity, over-fitting, and determine the

optimal variables from the aforementioned DEGs, we employed

LASSO regression analysis in the training cohort (26). Next,

utilizing the multivariate Cox regression analysis, we developed a

model to determine the risk score for each sample and calculated

the risk score for each sample utilizing the predict function in R

(27). After grouping the patients in the training cohort relying the

median risk score, they were separated into high- and low-risk

categories. This same process was used for patients in the test1,

test2, and test3 cohorts, where they were divided into high- and

low-risk categories using the median risk scores derived from the

training cohort. These categories were then utilized for

further analysis.

To validate the model both internally and externally, we carried

out similar analyses on different cohorts, including the training,

test1, test2, and test3 sets: (1) we generated a heatmap by the R

package ‘pheatmap’ to illustrate he levels of gene expression in the

model; (2) we performed survival analysis using the KM approach;

and (3) To evaluate our model’s diagnostic performance, we

generated receiver-operating characteristic (ROC) curves, which

were used to compute the area under the curve (AUC) (28).
2.8 Analyzing the immune
microenvironment of tumors
and drug sensitivity between
patients with low and high risk

Studying the diversity in the immune microenvironment

among high-risk and low-risk groups, we conducted a study of

ImmuneScore, StromalScore, EstimateScore, and tumor purity. In

addition, various algorithms were utilized to investigate the

immunological differences among high-risk and low-risk groups

(29). The study also investigated ICG expression in different risk

populations, as previously mentioned. Lastly, we conducted drug

sensitivity analysis to pinpoint potential effective medicines for both

high-risk and low-risk populations. We just deemed substances that

displayed statistical significance across the training, test1, test2, and

test3 groups as dependable and authentic targeted agents.
2.9 Validation of seven model genes by
qRT-PCR and HPA platform

The prognostic significances of seven model genes in 930 PC

samples using KM and univariate Cox regression analysis were

investigated. We proceeded to generate heatmaps of the model

genes in the TCGA, GSE28735, and GSE62452 datasets to

investigate their differential expression in tumor and normal

tissues. Following this, at the transcriptional level, we intend to

confirm the conclusion of different expression levels of the seven

model IFN-gGs in seven paired clinical samples and four distinct
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types of pancreatic cancer cell lines utilizing the Quantitative real-

time PCR(qRT-PCR).

The normal human pancreatic ductal cell line called HPDE6-C7

was provided by the BeNa Culture Collection (BNCC). Procell Life

Science & Technology Co., Ltd supplied four distinct human

pancreatic cancer cell lines, specifically Bxpc-3, PANC-1, CFPAC-

1, and Mia-Paca-2. HPDE6-C7, PANC-1, and Mia-Paca-2 were

cultivated by DMEM supplemented with 10% fetal bovine serum

(FBS), as per BNCC’s product specifications. CF-PAC1 and Bxpc-3

cell lines were cultured in IMDM and 1640, respectively, with 10%

FBS. The cell lines were kept at a temperature of 37°C under an

atmosphere containing 5% CO2.

Between January and December 2022, we randomly selected

seven fresh pancreatic tumor tissues and their corresponding

paracancerous tissues, which were immediately treated with liquid

nitrogen freezing after surgical excision. All samples were obtained

from the First Affiliated Hospital of Dalian Medical University. In

our research, all patients received standard preoperative care, and

patients with PC did not undergo chemotherapy or radiation

therapy. This research received support and informed consent

from the Ethics Committee at the First Affiliated Hospital of

Dalian Medical University.

According to the manufacturer’s instructions, TRIzol reagent

(ADAMAS LIFE) was used to extract total RNA from four kinds of

pancreatic cancer cell lines and the HPDE6-C7. The total RNA

from the seven paired clinical samples was also extracted using the

TRIzol method with liquid nitrogen grinding. The cDNA was

synthesized by reverse transcription of all RNA samples using the

All-in-One First-Strand Synthesis Master Mix (with dsDNase)

(Yugong Life Technology Co., Ltd). The mRNA expression levels

of the seven genes were quantified using SYBR™ Green (Iscience

Biotech) on the Bioer 9600 FQD-96A fluorescence quantitative PCR

instrument. An internal control, b-actin was utilized. The primer

sequences (Sangon Biotech) for b-actin and the seven hub genes

were as follows: for human b-actin, 5’-CCTGGGCATGG

AGTCCTGTG-3’, 5’-TCTTCATTGTGCTGGGTGCC-3’; for

human ALB, 5’-AGGCAACAAAAGAGCAACTGAAAGC-3’, 5’-

CGGCAAAGCAGGTCTCCTTATCG-3’; for human IAPP, 5’-

GCAACAACTTTGGTGCCATTCTCTC-3’, 5’-GGGCAAGTAA

TTCAGTGGCTCTCTC-3’; for human C7, 5’-TCAAGTGC

CTCCTCTCCAGTCAAC - 3 ’ , 5 ’ -ACCGCCTGCGAG

TCTGAGTC-3’ (Reverse); for human ANXA1, 5’-CTCGGAT

GTCGCTGCCTTGC-3 ’ , 5 ’-CTGCTTTGATCTGTTGACG

CTGTG-3’; for human EREG, 5’-GTGGGTTATACTGGTG

TCCGATGTG-3’, 5’-ATGTGGAACCGACGACTGTGATAAG-3’;

for human ADM, 5’-TGGGTTCGCTCGCCTTCCTAG-3’, 5’-

ACATCCGCAGTTCCCTCTTCCC-3’.

To verify the expression levels of the seven genes at the protein

level, we intended to utilize The Human Protein Atlas (HPA:

https://www.proteinatlas.org/). Nonetheless, we were only able to

obtain protein expression data for six genes, as we could not find

EREG’s protein expression data on the HPA database. Additionally,

the HPA platform uses both the intensity of staining and the

proportion of stained cells to categorize antibody staining in

diverse kinds of human tissue cancer as unobserved, low,

medium, or high. Our study included the cellular localizations of
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the hub genes, excluding ADM and C7, as revealed by

immunofluorescence using HPA data.
3 Results

3.1 Pan-cancer overview of the
IFN-g-related genes

Figure 1 illustrates the flow chart for the study, wherein we

utilized genomics, transcriptomics, and clinical data from public

databases to analyze and reveal the molecular signature and critical

role of 93 IFN-gGs in diverse human tumors. Initially, we evaluated

the mutational characteristics of these genes in human cancers by

evaluating the proportion of CNV (Figures 2A, B). Our analysis

showed that IFN-gGs have a relatively higher frequency of gain

mutations in several cancers, including SKCM, OV, LIHC, KIRC,

KICH, and ACC, with UVM and UCS exhibiting the highest

frequencies. Notably, PTPN1, TRIM46, TRIM17, FCGR1A, IRF5,

IRF6, and CAMK2B had a higher frequency of gain mutations in

most human cancer types. In contrast, IFN-gGs have a higher

frequency of loss mutations in UVM, UCS, PCPG, OV, LGG,
Frontiers in Oncology 05
SKCM, and SARC, with KICH showing the highest frequency.

Moreover, IRF2, IRF8, PRKCD, IFNGR1, TRIM35, TRIM2,

TRIM3, TRIM29, and CAMK2D had a higher frequency of loss

mutations in most human cancer types. The molecular signature of

IFN-gGs for SNV showed a higher frequency of SNVs in COAD,

LUAD, SKCM, STAD, and UCEC, with VCAM1, TRIM48, STAT1,

PTPN2, JAK2, JAK1, CIITA, and TRIM46 having significantly

higher frequencies than other IFN-gGs (Figure 2C). Further, we

examined the expression characteristics of 93 IFN-gGs in samples

from cancerous tissue and nearby healthy tissue in various types of

cancer. The mRNA expression levels of most IFN-gGs were

significantly increased in almost all tumor tissues, especially in

BRCA and KIRC. In contrast, the mRNA expression level of

NCAM1 decreased in vast majority of human tumors as

compared to their respective normal samples, such as BRCA,

BLCA, COAD, UCEC and so on (Figure 2D). Additionally,

almost all IFN-gGs showed differential expression in cancer and

para-cancer, which could significantly influence the development

and prognosis of pan-cancer. We studied the prognostic capabilities

of IFN-gGs in human tumors using univariate cox regression

analysis and identified risky and protective IFN-gGs (Figure 2E).

We found the IFN-gGs played the different roles in pan-cancers. For
FIGURE 1

The research’s analytical workflow in detail.
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FIGURE 2

A summary of IFN-g-related genes across various types of cancer. (A) Frequency data in pan-cancer for CNV gain. The gain frequency of genes
related to IFN-g is represented by the color red. (B) Frequency data in pan-cancer for CNV loss. The loss frequency of genes related to IFN-g is
represented by the color blue. (C) Frequency data in pan-cancer for SNV. (D) Expression levels of IFN-g-related genes in tumors and adjacent
normal tissues in various cancer types(P<0.05). (E) Analysis of IFN-g-related genes survival rates across all cancer types. Genes with a P-value > 0.05
are represented in white, while pink and green denote high-risk and protective genes, separately. (F) IFN-g-related gene methylation levels vary
across different tumors and the red-to-blue gradient represents high-to-low methylation levels, with red indicating high methylation and blue
indicating low methylation.
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instance, the PTPN6 was acted as the protective factor for PC,

SARC, BRCA, CESC and BLCA, while acted as the risk factor for

LGG, UVM, KIRC, GBM and COAD. We also explored the

methylation patterns of IFN-gGs in the 20 pan-cancer, and our

analysis showed that most IFN-gGs displayed hypomethylation in

almost all cancer types, including PC (Figure 2F). Notably, IRF4,

IRF8, TRIM17 exhibited hypermethylation in all human tumors.
3.2 NMF clustering identification of
molecular typing according to the IFN-gGs

We employed the NMF algorithm to divide the 930 PC patients

into two subgroups based on cophenetic, dispersion, and silhouette

indicators (Figures 3A, S1). Our findings from the GSVA and

KM analyses suggested that patients in subgroup C2 exhibited

higher IFN-g scores and better overall survival (OS), showing the

presence of IFN-gGs might suggest a protective role for PC patients

(Figure 3B, C). Additionally, Figure 3D highlights the differentially

expressed IFN-gGs in the two subgroups. Furthermore, the

ssGSEA results based on pathways showed that the activation of

pathways were higher in the C2 subtype than that in C1 subtype,

including PANCREAS_BETA_CELLS, ANGIOGENESIS,

INFLAMMATORY_RESPONSE , KRAS_S IGNALING,

REACTIVE_OXYGEN, TGF_BETA_SIGNALING, and

PEROXISOME, emphasizing the IFN-g was closely linked with

these common pathways (Figure 3E).
3.3 Analyzing tumor immune
microenvironments between the C1 and
C2 subgroups

We used the “ESTIMATE” R software package to evaluate the

immune properties of C1 and C2 subtypes utilizing transcriptome

data. The outcomes we achieved demonstrated that the C2 subtype

displayed elevated levels of ImmuneScore, StromalScore, and

ESTIMATEScore, while tumor purity was reduced (Figures 4A–

D). In order to examine immune cell presence within the TME, we

employed diverse algorithms to determine the proportion of

immune cells infiltrating in both subcategories. As shown in

Figure 4E, we detected variations in the infiltration levels of

immune cells within the two subgroups, C1 and C2. Notably,

within the C2 subgroup, there was a greater prevalence of

immune cell infiltration, encompassing the CD4+ and CD8+ T

cells, B cells, as well as macrophages/monocytes, in comparison to

the C1 subgroup on the whole. Furthermore, the C2 subtype

demonstrated increased expression of ICs (Figure 4F), which are

vital in regulating immune function. Our discoveries suggest that

targeting ICs might be prospective approach to improve the

prognosis of patients with PC. Additionally, we identified CD27,

CD40LG, CD48, and JAK2 as potential prognostic markers

associated with better outcomes, while PDCD1LG2 was associated

with worse outcomes (Figure S2). In summary, the research

outcomes provide valuable insight into the immune features of
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C1 and C2 subcategories and offer potential therapeutic targets for

improving the prognosis of patients with PC.
3.4 Drug sensitivity analysis

Molecularly targeted therapies were a popular choice for PC

treatment, we assessed the response of two subtypes to

chemotherapy using the “pRRophetic” package. The medications

evaluated included targeted therapies specific to PC and

conventional drugs used in oncology research. These medications

included docetaxel, erlotinib, paclitaxel, metformin, bryostatin.1,

thapsigargin, roscovitine, salubrinal, midostaurin, epothilone.B,

cyclopamine and AICAR. Our findings suggested that paclitaxel,

docetaxel, erlotinib, midostaurin, epothilone.B, AICAR,

thapsigargin, and bryostatin.1 might be beneficial for the C1

subtype, while the C2 subtype was found to be more responsive

to metformin, cyclopamine, roscovitine, and salubrinal, as shown in

the Figure 5.
3.5 DEGs analysis and risk
model establishment

Using the techniques described in section Supplementary

Figure 3A, 204 genes exhibiting differential expression were

discovered in the C1 and C2 subtypes. Next, we proceeded to

conduct a univariate Cox regression analysis on a set of 204 DEGs

across subtypes. Following this, we employed LASSO regression and

multifactor Cox regression analyses, culminating in the development

of a prognostic model comprising seven genes, which included EREG,

ADM, IAPP, KRT17, ANXA1, ALB, and C7. The group that

underwent training was segmented into two categories, low-risk

and high-risk, utilizing suitable cut-off values for risk scores as

displayed in Figure 6A. Patients with higher risk scores had a

greater likelihood of mortality, as evidenced by the survival status

and risk score relationship in Figure 6B. And Figure 6C displays the

expression levels of the seven genes included in the prognostic model,

as represented in the heatmap. The analysis of patients’ survival

indicated that individuals with high-risk scores experienced poorer

overall survival (OS), as shown in Figure 6D. Additionally, the value

for diagnosis of the prognostic model was validated using receiver

operating characteristic (ROC) curves, with AUC values of 0.704,

0.722, 0.713, 0.746, 0.742, and 0.754 for 0.5-, 1-, 2-, 3-, 4-, and 5-year

survival, respectively, as presented in Figure 6E.
3.6 Validation performed internally and
externally in the prediction model in PC

Firstly, patients from test cohorts 1, 2, and 3 were separated into

high-risk and low-risk subpopulations using the median risk score in

training cohort as the reference. The survival status and risk scores’

distributions in the internal validation cohorts (test 1 and test 2) and

external validation cohort (test 3) were similar to those observed in
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training cohort, as demonstrated in Figures 7A, B, 8A, B, 9A, B. The

heatmaps plotted from the three test cohorts showed that the high-risk

group had genes with high expression (EREG, ADM, IAPP, KRT17,

ANXA1, and ALB) and genes with low expression (C7) in the internal

and external validation cohorts, as shown in Figures 7C, 8C, 9C. In all

three test groups, it was observed that patients with high-risk scores

exhibited significantly poorer OS rates, as depicted in Figures 7D, 8D,
Frontiers in Oncology
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9D. The area under the curve (AUC) values for predicting 0.5-, 1-, 2-,

3-, 4-, and 5-year overall survival were 0.682, 0.695, 0.696, 0.704, 0.703,

and 0.686, respectively, in the test 1 cohort, as illustrated in Figure 7E.

Similarly, in the test 2 cohort, the AUC values were 0.692, 0.706, 0.704,

0.724, 0.717, and 0.710 for the same survival periods, as presented in

Figure 8E. In the test 3 cohort, the AUC values were 0.626, 0.694, 0.688,

0.701, 0.642, and 0.660 for the same periods, as shown in Figure 9E.
A

B
D

E

C

FIGURE 3

IFN-g scores-based clustering analysis. (A) 930 PC patients are divided into two subgroups(C1 and C2) using the NMF algorithm. (B) A violin plot
from the “ggpubr” package displays enrichment scores for two clusters (C1 and C2), with low to high scores on the y-axis. (C) Survival curve
comparison of patients in clusters 1 and 2(C1 represented by the red line and C2 represented by the blue line. The abscissa signifies the number of
years, while the ordinate denotes the survival rate. It is evident from the curve that C2 has a better survival rate compared to C1). (D) Differentially
expressed IFN-gGs in the C1 and C2 subgroups(C1 represented by the red and C2 represented by the green). (E) The classical cancer-related
pathways between C1 and C2(C1 represented by the blue and C2 represented by the green). (*: p-value < 0.05; **: p-value < 0.01; ***: p-value <
0.001; ****: p-value < 0.0001).
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3.7 Analyzing the immune
microenvironment of tumors
and drug sensitivity between
patients with low and high risk

We evaluated various scores, namely StromalScore,

ImmuneScore, ESTIMATEScore, and Tumorpurity, in both high-

and low-risk groups. Our findings unveiled that the low-risk group

had greater levels of ImmuneScore, StromalScore, and

ESTIMATEScore, while exhibiting lower levels of tumor purity

(Figures 10A–D). To conduct a more thorough investigation for the

immune response, we used various algorithms and generated

heatmaps (Figures 10E–H). Based on XCELL, stroma score and

microenvironment score were higher than that in the low-risk

group. Our analysis in the training and test cohorts revealed that

low-risk subgroup had higher proportions of anti-tumor immune

cells, including B cells, CD4+T cells, CD8+T cells, and M2

macrophages, however, the abundance of immune cell infiltration

of neutrophil was upregulated in high-risk group. We also checked

the expression of immune checkpoint genes (ICs) in the two groups,
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as these genes are critical in immunotherapy. Our findings

considered that the expression of JAK2, CD48, CD40LG, and

TIGIT was downregulated in high-risk group (Figures 10I–L).

In the high- and low-risk groups, we carried out a comparison

to determine whether there were any variations in chemotherapy

sensitivity of patients with regards to the aforementioned targeted

therapeutic drugs. Our findings suggest that patients with high-risk

PC may experience favorable outcomes from Cisplatin, Docetaxel,

Pazopanib, Midostaurin, Epothilone.B, Thapsigargin, Bryostatin.1,

and AICAR. Conversely, individuals belonging to the low-risk

category in each of the four cohorts. might benefit more from

metformin, Roscovitine, Salubrinal, and Cyclopamine

(Supplementary Figure 4).
3.8 Validation of seven model genes via
qRT-PCR and HPA platform

We conducted KM survival analysis and univariate Cox

regression analysis to explore the prognostic significance of the
A B

D
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C

FIGURE 4

Analysis of tumor immune microenvironment in two IFN-g-related clusters. (A–D) Boxplots showing EstimateScore, ImmuneScore, StromalScore,
and tumor purity in C1 and C2. (E) Comparison of immune cell infiltration percentages in C1 and C2 using TIMER, CIBERSORT, CIBERSORT-ABS,
XCELL, EPIC, and MCPCOUNTER algorithms. (F) Comparison of immune checkpoint genes expression in C1 and C2. (*: p-value < 0.05;
**: p-value < 0.01; ***: p-value < 0.001).
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seven model genes furtherly. The results obtained from analyzing

the Cox regression univariately indicated EREG, ADM, KRT17,

ANXA1, and C7 were significantly associated with PC prognosis,

with only C7 being linked to a better prognosis (Figure S5A).

Notably, KM survival analysis yielded the same outcomes (Figure

S5B). Heatmaps were then created to demonstrate the expression

levels of the model genes in the TCGA, GSE28735, and GSE62452

cohorts (Figures S5C–E). qRT-PCR was used to verify the

expression patterns of these seven genes in cell lines of PC

(Figure 11A). Subsequently, we evaluated the expression levels of

these seven genes in seven pairs of clinical tissue samples, and the

results also revealed differential expression patterns of these genes

between cancer and adjacent non-cancerous tissues (Figure 11B).

The HPA database was u t i l i z ed to inves t i ga t e the

immunohistochemistry findings of pancreatic tissues, both

tumorous and non-tumorous, to assess the protein expression

levels of model genes (Figure 11C).
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4 Discussion

PC, a highly fatal malignancy characterized by early metastasis

and resistance to anti-cancer therapy, remains a challenge to treat

despite improved treatments in recent years, with different subtypes

and clinical characteristics affecting prognosis and tumor response

(30, 31). Prognostic models could help identify patients who would

benefit from more intensive therapies, highlighting the urgent need

to identify new molecular biomarkers for diagnosis, prognosis

prediction, and treatment response monitoring. Interferons are

glycoproteins with antiviral, anti-proliferative, anti-tumor, and

immunoregulatory actions, including IFN-g from the type II IFN

family, which has been considered an antitumor candidate because

of the function of inhibiting proliferation, inducing apoptosis, and

suppressing tumor-derived cytokines by complex mechanisms (32–

34). However, clinical trials have not always delivered expected

results, and studies conducted in the recent past have revealed that
FIGURE 5

The relationship between IFN-g clusters and responsiveness to drugs. Box plots of estimated IC50 values for 12 commonly used chemotherapeutic
drugs have been generated for C1 (blue) and C2 (yellow). The 12 types of chemotherapeutic agents can be listed as follows: Paclitaxel, Docetaxel,
Erlotinib, Midostaurin, Epothilone.B, AICAR, Thapsigargin, and Bryostatin.1, Metformin, Cyclopamine, Roscovitine, and Salubrinal.
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IFN-g can also contribute to tumor immune evasion, making its role

as a therapeutic target for malignancies controversial (35). Further

research showed that the tumor IFN-g induction can both inhibit

natural killer (NK) cells by upregulating classical MHC-I molecules

and inhibit CD8+ T cells by upregulating non-classical MHC-I
Frontiers in Oncology 11
molecule Qa-1b. Therefore, it’s valuable to investigate the function

of IFN-g in PC through bioinformatics analysis.

To illustrate the essential function of IFN-gGs in the

advancement and growth of human cancers, we conducted a

comprehensive analysis of IFN-gGs CNV/SNV variation,
A

B

D

E

C

FIGURE 6

Establishment of risk model development of PC based on IFN-gGs in the train cohort. (A) Patients distribution among two risk groups according to
appropriate score cut-off values. (B) Distribution of survival status and risk scores among patients. (Higher risk scores were associated with increased
of mortality). (C) Expression levels of a prognostic signature comprising of 7 IFN-gGs visualized as a heatmap. (D) Survival curves for low and high-
risk groups based on OS time. (E) The ROC curve for 0.5-, 1-, 2-, 3-, 4-, and 5-year survival. The AUC values of the ROC curves are listed as: 0.704,
0.722, 0.713, 0.746, 0.742 and 0.754.
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expression levels, prognostic factors, methylation levels in human

pan-cancer, providing valuable research directions and novel

targets for IFN-gGs in the future. Our study placed particular

emphasis on PC, investing additional time and effort to conduct a

thorough analysis. And we found that some IFN-gGs were actually
risk factors for the prognosis of PC, such as TRIM29, OAS1, OAS2

and OASL and so on. On the contrary, some IFN-gGs were actually
Frontiers in Oncology 12
protective factors for the prognosis of PC, such as NCAM1, TRIM3,

PTPN6 and CAMK2B and so on. The conflicting findings could

explain the double-edged sword effect of IFN-g in PC.

We utilized the NMF algorithm to divide 930 PC samples into

two clusters based on IFN-gGs. Our results suggested that the C2

subtype with high IFN-g scores had a significantly better prognosis

than C1, suggesting that the IFN-g pathway may play an anti-cancer
A

B

D

E

C

FIGURE 7

Internal validation results of robust prediction model in Test1 cohort. (A) Patients distribution among two risk groups according to appropriate score
cut-off values. (B) Distribution of survival status and risk scores among patients. (Higher risk scores were associated with increased of mortality). (C)
Expression levels of a prognostic signature comprising of 7 IFN-gGs visualized as a heatmap. (D) Survival curves for low and high-risk groups based
on OS time. (E) The ROC curve for 0.5-, 1-, 2-, 3-, 4-, and 5-year survival. The AUC values of the ROC curves are listed as: 0.682, 0.695, 0.696,
0.704, 0.703, and 0.686.
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role in PC. This conclusion is consistent with previous studies (11,

36, 37), indicating that IFN-g could inhibit the development of

pancreatic cells and may be considered a therapy target for PC

patients in the future. And in comparison to the C1 subgroup, the

C2 subgroup demonstrates increased expression of IFN-gGs,
including HLA-DPB1, HLA-DPA1, HLA-DBQ1, IRF4, IRF8, and

JAK2, while exhibiting decreased expression of GBP3. These

variations in the expression of IFN-gGs may be a contributing
Frontiers in Oncology 13
factor to the divergent prognostic outcomes observed in pancreatic

cancer patients between the C1 and C2 subgroups. A promising

approach for assessing the prognosis and managing individuals

with PC involves risk stratification based on the IFN-g signaling.

What’s more, further experiments for the mechanism of these key

IFN-gGs need to be carried out.

To explore the potential processes underlying clinical outcome

variations among patients with different IFN-g signaling scores, we
A

B

D
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C

FIGURE 8

Internal validation results of robust prediction model in Test2 cohort. (A) Patients distribution among two risk groups according to appropriate score
cut-off values. (B) Distribution of survival status and risk scores among patients. (Higher risk scores were associated with increased of mortality). (C)
Expression levels of a prognostic signature comprising of 7 IFN-gGs visualized as a heatmap. (D) Survival curves for low and high-risk groups based
on OS time. (E) The ROC curve for 0.5-, 1-, 2-, 3-, 4-, and 5-year survival. The AUC values of the ROC curves are listed as: 0.692, 0.706, 0.704,
0.724, 0.717, and 0.710.
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thoroughly analyzed the constituent parts of the immune

microenvironment and the expression of ICs. TME is a complex

combination of tumor, immune, stromal, and extracellular

components (38). ImmuneScore, StromalScore, and EstimateScore

were analyzed to determine the immune and stromal components of

each patient. Our results suggested that the C2 subtype might have a

higher immune abundance, which might be a potential reason for its
Frontiers in Oncology 14
better prognosis. Additionally, after our investigation, we found

significant discrepancy in the expression of ICs in the two clusters.

We observed significant differences in the expression of ICs between

the two subgroups, C1 and C2, such as CD27, CD40LG, CD48, and

JAK2, with a notable increase in C2.We believe that these disparities in

ICs expression could be one of the reasons contributing to differential

outcomes between the two subgroups. Therefore, we conducted further
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FIGURE 9

External validation results of robust prediction model in Test3 cohort. (A) Patients distribution among two risk groups according to appropriate score
cut-off values. (B) Distribution of survival status and risk scores among patients. (Higher risk scores were associated with increased of mortality). (C)
Expression levels of a prognostic signature comprising of 7 IFN-gGs visualized as a heatmap. (D) Survival curves for low and high-risk groups based
on OS time. (E) The ROC curve for 0.5-, 1-, 2-, 3-, 4-, and 5-year survival. The AUC values of the ROC curves are listed as: 0.626, 0.694, 0.688,
0.701, 0.642, and 0.660.
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investigations into the relationship between the expression levels of ICs

and the prognosis of PC. We found that high expression of immune

checkpoints, including CD27, CD40LG, CD48, and JAK2, is indicative

of a favorable prognosis for PC. As a result, these ICs that showed

differential expression could serve as promising targets for therapeutic

intervention. Research has indicated that when immune checkpoint

blockers (such as anti-ctLA-4 and/or anti-Pd-1) are used in
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combination with anticancer vaccines in immunotherapy, it can

suppress tumor growth while also increasing the proportion of

effector T cells that produce IFN-g (39). Moreover, PD-1 blockade

has been verified to increase the T-cell infiltration by facilitating the

IFN-g-induced chemokines. At the same time, recent research has

revealed that IFN-g could drive the Treg fragility to promote anti-

tumor immunity (40). And researchers have found that loss of tumor
A B D

E F

G

I

H

J K L

C

FIGURE 10

Analysis of tumor immune microenvironment in the high- and low-risk groups for the train, test1, test2, and test3 cohorts. (A–D) Comparison of
StromalScore, ImmuneScore, ESTIMATEScore, and Tumorpurity between high-risk and low-risk groups in the train, test1, test2, and test3 cohorts.
(E–H) Comparison of immune cell infiltration levels between low- and high-risk subgroups in different cohorts. Heat maps depict the differences
observed in the train, test1, test2, and test3 cohorts. (I–L) Box plots comparing immune checkpoint expression in low- and high-risk subgroups of
train, test1, test2, and test3 cohorts. (*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001).
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cell sensitivity to IFN-g makes tumors more responsive to immune

checkpoint blockades (ICBs) in melanoma and pancreatic, lung, renal,

and colon cancers (35). Although the anti-tumor effect of IFN-g in PC

is a matter of debate, according to the outcomes of our research and

above previous reports, we believe that IFN-g still plays an anti-tumor

role in inhibiting the development of PC and improving patient

prognosis. Certainly, we also recognize that the role of IFN-g in PC
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is dependent on differences in the TME or other yet-to-be-discovered

mechanisms. However, as indicated by the current findings of this

study, the IFN-g or substances that induce IFN-g production show

potential as effective drugs, particularly when used in combination

therapy for PC.

Targeted drugs are currently available for various types of

tumors, including lung, breast, and ovarian cancers, but they are
A
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C

FIGURE 11

Validating the expression traits of seven central IFN-gGs. (A) Analysis of RNA expression levels of EREG, ADM, IAPP, KRT17, ANXA1, ALB and C7 in four
PC cell lines (BxPC-3, CF-PAC1, Panc-1, MIA PaCa-2) and H6C7 by the qRT-PCR assays. (B) The RNA expression levels of the 7 hub genes in clinical
paired samples by the qRT-PCR assays. (C) Immunohistochemistry and immunofluorescence of the 7 hub genes from the HPA website(tumor
tissues vs normal adjacent tissue). (*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001; ns, non-significant).
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rarely available for PC (41). Since IFN-g plays a significant role in
PC, we investigated the effectiveness of several commonly used

drugs in PC treatment. Our findings indicate that Paclitaxel,

Docetaxel, Erlotinib, Midostaurin, Epothilone.B, AICAR,

Thapsigargin, and Bryostatin.1 are likely to be beneficial for the

C1 subtype, whereas Metformin, Cyclopamine, Roscovitine, and

Salubrinal are more beneficial for the C2 subtype.

While molecular typing is essential for functional mining of IFN-

g, it has some shortcomings in type clustering that make it difficult to

accurately predict clinical outcomes and IFN-g scores for individual
patients. To address this issue, we utilized LASSO-Cox regression

analysis to create a prognostic model comprising of 7 genes that can

accurately forecast the overall survival status of PC patients. By

applying our model to the training, test1, test2, and test3 cohorts of

PC patients, we effectively categorized them into two subgroups based

on their risk level and prognosis, with one group having a higher risk

and poorer prognosis, while the other group had a lower risk and a

better prognosis. Our signature demonstrated strong predictive value,

as evidenced by the ROC curves.

Other researchers have also studied the 7 genes and found that

they play an important role in PC and other human tumors. EREG,

belong to the ERBB family, can stimulate the intrinsic kinase

domain of the ERBB1 and ERBB4 receptors, leading to the

phosphorylation of certain tyrosine residues in the receptors’

cytoplasmic tail (42). Previous studies have revealed the EREG

promotes the proliferation of pancreatic cancer cells and is

elevated in cases of PC (43). Patients with PC have been found to

have higher serum levels of adrenomedullin, and the ADM gene

encodes a peptide hormone that differs between individuals with

chronic pancreatitis and healthy ones (44). Knocking down ADM

has been shown to reduce myelomonocytic cell recruitment and

tumor angiogenesis in pancreatic tumor-bearing mice (45). IAPP, a

beta-cell peptide, has been found to have strong anti-tumor effects in

p53-deficient tumors by inhibiting glycolysis and proliferation and

stimulating apoptosis (46–48). KRT17, a keratin type I family

member, has been linked to various malignancies, including PC,

and is involved in their occurrence and development (49–54).

ANXA1, a calcium-dependent phospholipid-binding protein,

playing a significant role in the progress of tumors in various

tumor types, including breast cancer, colorectal cancer, and PC

(55–59). Low levels of serum ALB, a nutritional status indicator,

have been associated with poor prognoses for different cancers (60,

61). The C7 gene produces the 121 kDa serum single-chain

glycoprotein C7, which is involved in the membrane assault

complex (62). Its role in PC is unclear, but reports have revealed

a correlation between C7 expression and poor prognosis in lung

tumors and a decrease or even removal of C7 mRNA in esophageal

carcinoma cells (63). In this study, we conducted a comparative

analysis of mRNA levels for seven prognostic model genes in the

H6C7 cell line and four distinct cancer cell lines. Our investigation

revealed that, with the exception of ADM, the mRNA expression

patterns of the remaining six model genes were consistent with the

findings of our bioinformatics analysis in at least one of the

pancreatic cancer cell lines. It is important to note that mRNA

expression levels of model genes in pancreatic cancer cell lines may

deviate from those found in public databases. To address this
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potential disparity, we procured seven pairs of pathologically

confirmed cancer and adjacent tissues from our research center,

thereby capturing the mRNA expression profiles of the seven model

genes in both cancerous and adjacent tissues. Our observations

revealed that ADM and ERRG exhibited significantly elevated total

expression levels in human tumor tissues, with expression patterns

in all seven pancreatic cancer cases aligning with our predictions.

ANXA1 and KRT17 consistently demonstrated expression trends

that concurred with our overall bioinformatics analysis in six out of

seven pancreatic cancer patients, indicating heightened expression

in tumor tissues. Similarly, C7 and ALB displayed expression

patterns that were consistent with our overall bioinformatics

analysis in six out of seven pancreatic cancer patients, suggesting

reduced expression in tumor tissues. Regarding IAPP, in two

pancreatic cancer cases, its expression levels in both cancerous

and adjacent tissues were nearly identical. However, in the

remaining five pancreatic cancer cases, its expression trends

mirrored our bioinformatics analysis predictions, indicating

differential expression. Considering the inherent variability and

heterogeneity in gene expression among individuals, we maintain

that our experimental results are accurate and, to a certain extent,

validate the credibility and accuracy of our bioinformatics findings.

Nevertheless, we acknowledge the necessity of expanding the sample

size of pancreatic cancer tissues for further validation. Furthermore,

recognizing that proteins constitute the fundamental units of

human structural and functional biology, we also assessed the

protein expression levels of the model genes. In pancreatic cancer

tissues, ADM, KRT17, and ANXA1 protein levels surpassed those in

normal samples, while C7 and ALB protein levels exhibited a

declining trend, in accordance with the findings from qRT-PCR

and bioinformatics analysis. IAPP displayed no significant disparity

in protein expression levels between cancerous and adjacent tissues,

thus partly corroborating our qRT-PCR results in cells and tissues.

However, we acknowledge the need for additional validation with an

expanded sample size. In summary, our study provides a

comprehensive analysis of the expression patterns of model genes

at both the mRNA and protein levels, employing different platforms

and examining various pancreatic cancer individuals.

Immunotherapy has emerged as a hopeful approach to treating

several types of solid tumors including lung, bladder, and head and

neck cancers, which has raised new hope for treating PC. A systematic

review has summarized the studies on immunocheckpoint inhibitors

(ICIs) in PC (64). The data showed that ICIs in combination with

chemotherapy or vaccine therapy could extend the overall survival

(OS) of PC to nearly 20 months. Thorough analysis of immune cell

infiltration showed that various anti-tumor immune cells, such as B

cells and CD4+ T cells, are elevated in the low-risk subgroup, and this

aligns with earlier research findings (65, 66). To investigate potential

targets for immunotherapy, we analyzed the variations in ICs

expression between two groups, as ICs are crucial in

immunotherapy. According to our findings, the low-risk group

exhibited elevated levels of AK2, CD48, CD40LG, and TIGIT. These

ICs are potential therapeutic targets for PC, as they can function as

effective inhibitors of immunosuppressive properties. In the future,

combination therapy using these ICs inhibitors and agonists may

improve the prognosis of PC. Our signature is beneficial for
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accurately treating people with PC. Patients with high-risk PC may

potentially benefit from a combination of Cisplatin, Docetaxel,

Pazopanib, Midostaurin, Epothilone.B, Thapsigargin, Bryostatin.1,

and AICAR, while those with low-risk PC may benefit from

Metformin, Roscovitine, Salubrinal, and Cyclopamine in all subgroups.

Naturally, it is crucial to acknowledge that there are certain

constraints to our study. Firstly, our research relied primarily on

public databases, which lack clinically relevant information, and

therefore the novel prognostic model should be validated with

additional real-world prospective data. Secondly, further investigation

into the mechanisms of action of the 7 IFN-gGs is required to clarify

the extent of their involvement in PC’s development and progression.

Thirdly, the significance of IFN-gGs in the TME of PC needs to be

deeply explored in vivo and in vitro. Although our results have

limitations, their advantages and clinical significance should not be

overlooked. Our research could still offer valuable guidance for basic

research and clinical treatment of PC.
5 Conclusions

We subdivided PC into two distinct subgroups based on the

levels of IFN-gGs expression, thus pioneering a novel prognostic

model for PC. Our investigation unveiled that IFN-gGs expression
levels exert a partial influence on the TME, drug responsiveness,

and the OS of individuals with PC. Certainly, further validation

through molecular biology and clinical experiments is imperative to

substantiate our discoveries and hypotheses. Nevertheless, our

findings concurrently furnish theoretical underpinnings for

delving into the crucial mechanisms involving IFN-gGs in PC,

and they hold promise in providing personalized guidance for

selecting targeted therapies for this malignancy.
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SUPPLEMENTARY FIGURE 1

The NMF algorithm utilizes various indicators, including the cophenetic,
dispersion, and silhouette measures.

SUPPLEMENTARY FIGURE 2

The association between the levels of expression of ICs(CD27, CD40LG,
CD48, and JAK2) and the prognosis of PC.

SUPPLEMENTARY FIGURE 3

The detailed process about the DEGs analysis and risk model establishment of

PC according to the IFN-gGs. (A) The thresholds to identify the DEGs between
the C1 and C2(204 DEGs). (B) LASSO coefficient profiles of IFN-gGs in PC. (C)
Model construction’s cross-validation results. (D) A total of 7 IFN-gGs are
identified by Cox regression analysis.

SUPPLEMENTARY FIGURE 4

Comparison of chemotherapy sensitivity to targeted therapeutic drugs in the

two groups of patients in the train, test1, test2, and test3 cohorts. The drugs
could be listed: Cisplatin, Docetaxel, Pazopanib, Midostaurin, Epothilone.B,

Thapsigargin, Bryostatin.1, AICAR, metformin, Roscovitine, Salubrinal,
and Cyclopamine.

SUPPLEMENTARY FIGURE 5

The prognostic value and expression level of the 7model genes. (A) Predictive
power of the 7 model genes by KM survival analysis. (B) Predictive power of
the 7 model genes by univariate Cox regression analysis. (C-E) The 7 model

genes’ expression levels were measured in three cohorts: TCGA, GSE28735,
and GSE62452, respectively.
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