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Cancer stem cells are a subset of cells within the tumor that possess the ability to

self-renew as well as differentiate into different cancer cell lineages. The exact

mechanisms by which cancer stem cells arise is still not completely understood.

However, current research suggests that cancer stem cells may originate from

normal stem cells that have undergone genetic mutations or epigenetic changes.

A more recent discovery is the dedifferentiation of cancer cells to stem-like cells.

These stem-like cells have been found to express and even upregulate induced

pluripotent stem cell markers known as Yamanaka factors. Here we discuss

developments in how cancer stem cells arise and consider how environmental

factors, such as hypoxia, plays a key role in promoting the progression of cancer

stem cells and metastasis. Understanding the mechanisms that give rise to these

cells could have important implications for the development of new strategies in

cancer treatments and therapies.
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Introduction

Cancer is one of the leading causes of death worldwide according to the latest data from

the World Health Organization (WHO). In 2020, there were an estimated 9.9 million

cancer-related deaths globally (1). The solid tumor environment, also known as the tumor

microenvironment, refers to the surrounding cellular and non-cellular components that

interact with and influence the behavior of solid tumors. It is a complex ecosystem that

plays a crucial role in tumor growth, progression, and response to therapy. The solid tumor

environment consists of various components, including cancer cells, stromal cells, immune

cells, blood vessels, the extracellular matrix (ECM), and signaling molecules.

Solid tumors are composed of cancer cells that have undergone genetic alterations,

enabling them to divide and grow uncontrollably. These cancer cells interact with other

cells and components within the tumor environment. Additionally, stromal cells are also

non-cancerous cells present in the tumor environment. This subset includes cancer-

associated fibroblasts, which provide structural support to the tumor, produce extracellular
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matrix proteins, and secrete growth factors that can promote tumor

growth (2). Other stromal cells, such as adipocytes and pericytes,

may also be found in the tumor environment. The involvement of

endothelial cells in cancer is primarily related to tumor

angiogenesis, which is the formation of new blood vessels to

supply nutrients and oxygen to the growing tumor.

The immune system plays a critical role in recognizing and

eliminating cancer cells, thereby exerting a significant influence on

the composition of the tumor environment. The involvement of

endothelial cells in cancer is primarily related to tumor angiogenesis,

whichis the formaAon of new blood vessels to supply nutrients and

oxygen to the growing tumor. In response to the presence of cancer

cells, immune cells, such as T cells, B cells, natural killer (NK) cells,

dendritic cells, and macrophages, infi ltrate the tumor

microenvironment. This infiltration can be influenced by the

chemotactic signals and interactions between cancer cells, stromal

cells, and immune cells (3). Despite immune cell infiltration, tumors

can create an immunosuppressive microenvironment. Tumor cells

and stromal cells release factors, such as cytokines and chemokines,

that inhibit immune cell activity and promote the recruitment of

immunosuppressive cells. Regulatory T cells, myeloid-derived

suppressor cells, and tumor-associated macrophages are examples

of immune cells with suppressive functions that can be found in the

tumor microenvironment.

The solid tumor microenvironment is also intrinsically shaped

by the presence of vascularization, which is essential in providing

the blood supply that is needed for the growth and survival of solid

tumors. Blood vessels within the solid tumor environment deliver

oxygen, nutrients, and growth factors to the tumor cells. The

formation of new blood vessels, known as angiogenesis, is a

crucial process in solid tumor development (4). However, the

tumor vasculature can be abnormal, leading to inadequate blood

flow and oxygenation in some regions of the tumor.

Additionally, the ECM significantly influences the solid tumor

microenvironment. As a regulated mechanism comprising of

network of proteins, carbohydrates, and other structural and

support molecules, ECM remodeling in solid tumors has been

demonstrated to exert profound effects on tumor behavior (5).

The modified ECM can promote tumor cell migration, enhance

tumor cell invasion into surrounding tissues, and facilitate

metastasis. Furthermore, the tumor microenvironment contains

various signaling molecules, including growth factors, cytokines,

and chemokines, which further enhance tumor cell proliferation,

migration, invasion, and angiogenesis.

Within the heterogenous tumor environment, a subset of cells,

known as cancer stem cells (CSCs), are believed to play a key role in

tumor growth, recurrence, and resistance to therapy. Studies have

shown that the percentage of CSCs in a tumor can range from less

than 1% to more than 50%, depending on the cancer type and stage

(6). Based on decade-long studies, CSCs are thought to be especially

important for the development and treatment of cancer clinically.

However, it is unclear on the how, when, and where CSCs originate,

and this remains a continuous research subject. One hypothesis is

that the CSCs developed from cellular reprogramming, a process by

which cells lose their original identity and acquire a different cell fate

(7). In some cases, CSCs can also be differentiated into other cell
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types, which can contribute to tumor heterogeneity and tumor

progression (7). Yamanaka factors can also induce the formation of

induced pluripotent stem cells (iPSCs), which have some similarities

to CSCs and can be used to reprogram CSCs (8). Several studies have

shown that the overexpression of Yamanaka factors in cancer cells

can induce a stem-like state, which is associated with increased

tumorigenicity and drug resistance (8–10). This suggests that there

may be a link between the reprogramming of cells to a pluripotent

state and the acquisition of stem-like properties in cancer cells that

increase their metastatic behavior.

Another important environmental factor, hypoxia, which refers to

a deficiency in the amount of oxygen reaching the tissues, has been

found to be related to the regulation of Yamanaka factors (11). Studies

have shown that hypoxia can induce the expression of Yamanaka

factors in cells, which can lead to the reprogramming of cells into a

pluripotent state (11, 12). Hypoxia-inducible factor 1 (HIF-1) is a

transcription factor that is activated under conditions of hypoxia, and it

has been found to regulate the expression of Yamanaka factors in

response to low oxygen levels (13). Furthermore, the activation of HIF-

1 has been shown to be important for the survival and self-renewal of

CSCs, which are thought to be responsible for tumor initiation,

progression, and resistance to therapy (13). It has been suggested

that the upregulation of Yamanaka factors in response to hypoxia may

contribute to themaintenance of CSCs and the development of tumors.

Here, we first review different theories that illuminate the

heterogeneity of how CSCs can arise and how a hypoxic

environment can be involved in promoting CSCs. Secondly, we

will review the commitment of Yamanaka factors as inducers of

stem-cell like qualities seen in CSCs. Additionally, the unique

interaction between CSCs and the extracellular matrix will be

discussed in the context of CSC’s ability to significantly increase

metastatic behavior. Lastly, we discuss how reprogramming can be

used as a possible therapeutic strategy in CSC treatment.
Cancer stem cells

“Omnis ellula e cellular (every cell stems from another cells).”

This aphorism originated from Rudolf Virchow, a German

physician whose publication made a major contribution to the

cell theory in 1855. Virchow proposed that some tumors arise from

embryonic-like cells with properties that are similar to stem cells

(14). Over a century later, the existence of CSCs was identified in

human acute myeloid leukemia (15). This was followed by the

discovery of CSCs within a solid breast tumor environment (16). In

2006, Shinya Yamanaka, a stem cell researcher, discovered that

adult somatic cells can undergo cellular reprogramming into an

embryonic-like pluripotent state through transcription factors

known collectively as Yamanaka factors (OCT3/4, SOX2, KLF4,

and c-MYC) (17). Multiple studies have implicated that CSCs share

critical properties with embryonic cells through the elevated

expression of Yamanaka factors, which supports the impact of

these pluripotency factors in tumorigenesis (18, 19). Considering

these recent discoveries however, it is still not clear how CSCs arise

in the tumor environment. It is important to note that the CSC

population can change over time, as cells undergo genetic mutations
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or epigenetic changes that alter their properties. Additionally, the

tumor microenvironment, which includes cells and molecules

surrounding the tumor, can influence the behavior of CSCs and

their ability to proliferate and differentiate.
The different theories of how cancer
stem cells arise

The stem cell theory of cancer (Figure 1A) includes two major

concepts: 1) cancer arises from stem cells that are present in the

tissues of both children and adults; and 2) cancer cells originate

from the cells of normal tissues, including stem cells, proliferating

cells, and terminally differentiated cells (20). In each of the

hypothesis on the origin of cancer, including field theory,

chemical carcinogenesis, infection, mutation, and genetic change,

stem cells are considered to be the core generator of cancer.

According to the stem cell theory, cancer originates from the

arrest in the maturation of stem cells. Additionally, CSCs and/or

cancer cells can give rise and/or be composed of cells found in

normal tissues including stem cells, transit amplifying cells, and

terminally differentiated cells. Observations on the origins of

teratocarcinomas and hepatocellular carcinomas led to another

hypothesis where cancers arise due to arrest in stem cell

maturation (21). Within the same decade, tumor transplantation

studies supported the theory that cancer was maintained by a small

population of stem-like cells (22, 23).

More currently, the somatic stem cell hypothesis (Figure 1B)

suggests that mutation or chromosomal rearrangements in dormant

stem cells could lead to CSC formation (24). Somatic stem cells have

three stable features: 1) they generate identical cells and have long
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term self-renewal; 2) their progeny differentiates to functional,

specialized cells; and 3) they faithfully respond to homeostatic

controls within their environment (24). In contrast, CSCs

undergo aberrant differentiation and do not respond to

homeostatic controls as they undergo self-renewal (25).

With respect to carcinogenesis, the Cell Reversal Theory

(Figure 1C) refers to a carcinogenic event on the cell and/or its

environment that causes the cell to transition to a different

epigenetic state, leading to abnormal proliferation in the absence

of homeostatic controls (26). As a result, the cell enters into a

deviant epigenetic program and becomes a CSC according to

environmental influences and its stage of development (26).

Given that there is a plethora of epigenetic states, it is more

probable that a small fraction of these transitioning cells survives

and selects an evolutionary advantageous route, the stem cell or

pluripotent route, rather than waiting on the correct and successive

environmental inputs that lead to enhanced proliferation, therapy

resistance, and invasion (26).

Another hypothesis relating to breast cancer pathology is the

stem cell misplacement theory (Figure 1D), which states that

misplaced epithelial stem cells arrive in the wrong connective

tissue stroma which leads to invasive cancer, known as an in situ

carcinoma (27). Thus, the seed of the cancer, which is a misplaced,

normal epithelial stem cell, can migrate to basement membrane due

to leakage or trauma. This epithelial stem cell could be identified as

a foreign invader by the immune system or it could escape the

immune system, ensuring its survival without triggering an immune

response. Environmental factors within the basement membrane,

including inflammation, trauma, aging, and degeneration, create

favorable conditions for the mislocalization of normal epithelial

stem, thereby increasing the probability of stem cell arrest and
DA B C

FIGURE 1

Schematics of different theories of CSC origin. (A) The stem cell theory of cancer postulates that cancer can arise from tissue stem cells and that
CSC and/or cancer cells can give rise to normal, differentiated cells through transited amplifying cells. (B) In contrast, the somatic cell theory
suggests that dormant stem cells become cancerous cells as a result of a mutation. (C) The cell reversal theory refers to a carcinogenic event that
initiates cell de-differentiation to different epigenetic states that can develop into CSCs. (D) The stem cell misplacement theory alludes to basement
membrane damage causing the misplacement of resident stem cells into the stoma leading to tumor formation and invasion. Created with
BioRender.com.
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development of invasive cancer. This hypothesis is based on

evidence that ductal carcinoma in situ has a higher frequency of

HER2 gene amplification/overexpression (50-60%) compared to

invasive breast cancer (20-30%) (27). However, it was noted that

when the invasive breast cancer was mixed with ductal carcinoma in

situ, the invasive cancer cells were HER2-negative while the ductal

carcinoma in situ was HER2-positive. This indicated that HER2

amplification/overexpression had no advantage compared to

HER2-negative in developing into an invasive cancer type (27).

Overall, most theories agree that CSCs emerge as a result of

accumulated epigenetic and/or genetic alterations arising from

normal stem cells or cancer cells while fewer evidence suggest a

“wrong place, wrong time” idiom scenario in in situ carcinoma.
Cancer stem cell origin

Which arose first, the cancer cell or the CSC? To illuminate this

question, tumor cells can arise either from transformed

differentiated cells or transformed resident stem cells (28, 29).

Transformation is likely to arise from environmental inputs such

as tissue regeneration (30), infections (31), toxins (32), as well as

intrinsic and non-intrinsic factors that lead to DNAmutations (33).

As the transformation process progresses in differentiated cells,

oncogenes are overexpressed while tumor suppresser genes are

deactivated leading to the de-differentiation of cells, uncontrolled

proliferation, and the acquisition of stem-like characteristics (26).

Tumors that originate from CSCs are thought to follow a

unidirectional hierarchy, meaning that the CSC population

initiates tumor growth (29). Thus, CSCs divide asymmetrically to

maintain a subpopulation CSCs while also generating transient cells

that undergo symmetric divisions with highly proliferative

capabilities (34). Current data on solid and hematological cancers

has suggested three models that are not mutually elusive to CSCs: 1)

the hierarchical model in which cell of the stem/progenitor

hierarchy are susceptible to transformation (15); 2) the CSC

model in which a small subpopulation of cells promotes tumor

initiation and growth (35); 3) the clonal evolution model which

states that genetic instability from genetic alteration worsen over

time leading to increased tumor aggressiveness, resistance, and

heterogeneity (36). The validity of all three models in explaining

the origin of CSCs attributes to the cellular plasticity seen with

different cancer types (37).

The stem cell theory of cancer, somatic stem cell theory, cell

reversal theory, and stem cell misplacement theory are all concepts

based on the microenvironment of solid tumors. In contrast,

leukemias, liquid tumors of the blood, represent a unique and

contrasting environment for the origin or development of CSCs. Up

until 1997, little was known of the origin of the target cell in the

hematopoietic stem cell hierarchy for leukemic transformation (15).

Two landmark studies involving immune-deficient mice models

showed that leukemic cells expressing the same markers seen in

adult human hematopoietic stem cells (CD34+CD38−) initiated

hematopoietic malignancy (15, 38). These leukemia-initiating cells

were termed leukemia stem cells or CSCs. To date, leukemia stem

cells have been identified in both acute myeloid leukemia and acute
Frontiers in Oncology 04
lymphoblastic leukemia (39). These cells share characteristics with

normal hematopoietic stem cells, including the ability to self-renew

and generate differentiated progeny. CSCs in leukemias are believed

to be responsible for the uncontrolled proliferation of leukemic cells

and the ability of the disease to recur after treatment. Additionally,

CSCs in leukemias are often characterized by the expression of

specific cell surface markers, such as CD34, CD38, and CD123,

among others, which can be isolated to study CSC populations in

leukemia samples.

The exact origins of leukemia stem cells remain a subject of

ongoing research and investigation. Leukemia is a complex disease

that arises from genetic mutations and abnormalities in blood-

forming stem cells. While the specific mechanisms underlying the

development of LSCs are not fully understood, a couple of theories

have been proposed based on scientific evidence and observations.

One prevailing theory suggests that leukemia stem cells originate

from hematopoietic stem cells or progenitor cells that acquire

somatic mutations in critical genes responsible for regulating

normal cell growth and differentiation (40). These mutations can

lead to uncontrolled proliferation and the development of leukemia.

Another theory suggests that leukemia stem cells arise from clonal

evolution (41). Leukemia is characterized by genetic heterogeneity,

indicating that leukemia stem cells and their progeny undergo

clonal evolution over time. This means that as the disease

progresses, subclones with distinct genetic mutations may emerge,

leading to treatment resistance and disease relapse.
Effects of hypoxic tumor environment
on cancer stem cells

Worldwide, solid tumors account for the highest levels of

morbidity and mortality and are the most common form of

cancer (42). A hallmark of the tumor environment is hypoxia,

especially in rapidly growing solid tumors where the oxygen levels

can range from 0% to 2% compared to normal physiological levels

of 4% to 9% oxygen (43). These low oxygen levels have been noted

in prostate (44), cervix (45), breast (46), head and neck cancers (47),

with levels depending on the size, stage, initial oxygenation level,

and the method applied to measure the oxygen within the solid

tumor (48).

A core mechanism of stemness generation and maintenance

induced by hypoxia are hypoxia inducible factors (HIFs) (Figure 2)

(49, 50). HIFs are a helix-loop-helix-Per-ARNT-Sim (bHLH-PAS)

containing transcription factor (51). HIF-1 is a heterodimer made

up of a and b subunits. These heterodimers translocate in the

nucleus and interact with specific DNA sequences, called HIF-

responsive elements, leading to activation or repression of gene

expression. So far, three different genes are known to encode a

subunit of HIF: HIF1a , HIF2a , and HIF3a . All three

heterodimerize with the HIF-1b subunit and are subject to

posttranslational regulation that is dependent on oxygen levels in

the environment (52). In most cases, HIF3a is thought to be a

negative regulator of HIF1a and HIF2a. However, a study using

zebrafish showed that HIF3a is degraded under normoxia (21% O2)

and when overexpressed under hypoxia binds to target gene
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promoters to upregulate expression (53). HIF1a and HIF2a
expression is specific to tissue type and the time course of

induction by hypoxia (54). For example, HIF-1a expression levels

peak early under hypoxia while HIF-2a expression slowly rises and

is more sustained (54). With respect to CSCs, a study investigating

glioblastoma stem cells demonstrated differential expression of

HIF-1a and HIF-2a in stem and non-stem cancer cell

populations. HIF-2a was found to be present within the CSC

population, while HIF-1a was present in both stem and non-stem

cancer populations. In the same study, knockdown of both HIF-1a
and HIF-2a attenuated stem cell and non-stem cell survival and

proliferation. HIF-2a knockdown led to growth restriction for stem

cells, while HIF-1a knockdown resulted in reduced growth in stem

and non-stem cells. HIF-1a and HIF-2a were also shown to be

required for VEGF expression in stem cells, but only HIF-1a
expression was required for VEGF expression in non-stem

populations (55). While HIF-1a has been shown to mediate

angiogenesis (56), metabolic reprogramming (57), invasion (58),

metastasis (58), and epithelial-mesenchymal transitioning (59), this

study suggests HIF-2a serves a unique role in CSC development

and maintenance. It is important for promoting the CSC phenotype

(49), prompting de-differentiation of cancer cells to CSCs (60), as

well as inducing the expression of pluripotent stem cell markers,

OCT4, NANOG, SOX2, KLF4, c-MYC (Figure 2) (61).
Interaction of hypoxia and Yamanaka
factors in cellular reprogramming

CSCs are classified by expression of stemness-related markers.

Several markers have been reported to be expressed in CSCs

including the Yamanaka transcription factors OCT4, NANOG,

SOX2, KLF4, and c-MYC (62, 63). Discovered by Dr. Shinya

Yamanaka in 2006, these transcription factors can collectively
Frontiers in Oncology 05
reprogram adult cells into induced pluripotent stem cells (iPSCs)

and are considered CSCs biomarkers. Studies have also suggested

that expression levels of Yamanaka factors are associated with the

prognosis of several cancer types, and subsequently can be useful in

assessing patient diagnosis and treatment decisions (17, 63). As

previously discussed, hypoxia and Yamanaka factors have been

found to be related in the sense that hypoxia can induce the

expression of Yamanaka factors, which may contribute to the

reprogramming and maintenance of cells into a pluripotent state

(64) (Figure 3).
SOX2

SOX2 is a transcription factor expressed early on in embryonic

development and throughout adulthood. It functions as part of the

core transcriptional network to maintain cell pluripotency and self-

renewal, in addition to regulating various other cell functions such

as metabolism, inflammation, and development (65–67) In the cell,

SOX2 binds directly to DNA targets to maintain expression of

pluripotency-associated genes and inhibit expression of genes

associated with differentiation. Furthermore, elevated levels of

SOX2 expression have also been associated with several cancers

including breast (68), prostate (69), and pancreatic cancer (70).

Specifically in breast cancer, SOX2 has been shown to be

involved in the development of breast CSCs (BCSC) (71, 72). In

addition, a recent study demonstrated that in hypoxic conditions,

SOX2 expression increases in a time-dependent manner facilitating

hypoxia-induced breast cancer cell migration via expression of

NEDD9, which further induced Rac1 and HIF-1a expression

(68). A different study found that in esophageal squamous cancer

cells, SOX2 promotes the expression of SLUG, a key regulator in the

hypoxia-induced epithelial to mesenchymal transition, through

activation of STAT3 HIF-a signaling (73, 74). In addition, a
FIGURE 2

Interaction of HIF factors and stemness generation through pluripotent stem cells markers. Hypoxia is a known hallmark of solid tumors and occurs
when cells are deprived of oxygen. This causes the cells to switch to alternative metabolic pathways that allow them to survive and continue to
grow. As a result, adaptations to hypoxia can lead to changes in the way tumor cells behave, making them more aggressive and resistant to
chemotherapy and radiation. Given that tumors have a high metabolic demand and often outgrow their blood supply, HIFs are activated to regulate
the expression of numerous genes that promote cell survival, proliferation, angiogenesis, and resistance to therapy. HIF-1a and HIF-2a have been
linked to promoting CSCs stemness and phenotype through the upregulation of epigenetic regulators including SOX2, NANOG, OCT4, KLF4, and c-
Myc. Created with BioRender.com.
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study on prostate cancer found hypoxic-induced SOX2 and HIF-a
expression promoted cell invasion and sphere formation, and

therefore facilitated metastasis (75). Overall, SOX2 appears to

play a complex role in hypoxia, facilitating both the expression of

HIF-1a and its downstream pathways, and promoting tumor

progression and invasion.
NANOG

Abnormal expression of NANOG, a differentiated HOX

domain protein, has been reported in several human cancers

including breast cancer (76), lung cancer (77), adenocarcinoma

(78), and gastric cancer (79). Although the exact molecular

mechanisms of NANOG remains poorly understood, NANOG

expression has been associated with both the development and

maintenance of pluripotent state of CSCs (80). For example, in a

pancreatic cancer tissue microarray analysis of 43 cases, high

expression of NANOG predicted worse prognosis, and

knockdown of both NANOG and OCT4 inhibited stemness of

pancreatic cancer cells (81). Numerous studies have also identified

dynamic roles of NANOG in the hypoxic tumor microenvironment

including but not limited to the activation of tumor autophagy in

non–small lung carcinoma cells (82), colony formation in colorectal

CSCs (83), and resistance to mediated lysis in non-small lung cell

carcinoma cells (84).

Recent studies have also identified that specifically in BCSC,

HIF-1 and NANOG cooperatively mediate stem cell maintenance

in hypoxic conditions. HIF-1a has been demonstrated to be

required for NANOG function in stem-cell maintenance by
Frontiers in Oncology 06
activating transcription of the ALKBH5 gene, which stabilizes

NANOG mRNA through demethylation. NANOG then serves as

a HIF-1 coactivator for the transcription of telomerase reverse

transcriptase, an essential component for telomerase activity in

telomere elongation (85, 86). Additionally, another study elucidated

a potential role of hypoxia-induced NANOG in tumor

immunosuppression in melanoma via enhancement of TGF-b1
expression (87). Overall, these studies suggest a cooperative

relationship of HIF-1 and NANOG in hypoxic conditions and

stem cell maintenance, while NANOG’s dynamic roles continue

to be elucidated.
OCT4

OCT4, a member of the Pit-Oct-Unc (POU) transcription

factor family, plays a critical role in self-renewal, pluripotency,

and maintenance of CSCs in several cancer types (88). OCT4

protein has three isoforms (OCT4A, OCT4B, and OCT4B1), with

OCT4A often referred to as simply OCT4. OCT4 (OCT4A) is

recognized as one the most important transcription factors in

cancer. Elevated expression levels have been found in several

cancers including lung, breast (89), bladder (90), liver (91), and

pancreatic cancer (79).

Specifically, in germ-line tumors, knockdown of OCT4 was

demonstrated to directly reduce cell proliferation and stemness

(92). In non-small cell lung cancer cells, a recent study found that

both HIF-1a and HIF-2a upregulate SOX2 and OCT4 expression,

which collectively regulate CSC formation through upregulation of

CD133 and CD44 stem cell markers (93). However, in a separate
FIGURE 3

Key features of Yamanaka transcription factors in cancer stem cells and tumor progression in hypoxic conditions. Hypoxia-induced expression of
Yamanaka transcription factors is associated with CSC reprogramming, CSC maintenance, and tumor progression. SOX2, NANOG, OCT4A, KLF4, and
c-MYC are all linked to pluripotency, CSC renewal, angiogenesis, EMT, and metastasis. While KLF4 has been shown to play a role in CSC
reprogramming, its mechanism and regulation in the reprogramming of CSCs is not fully understood. Created with BioRender.com.
frontiersin.org
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study, HIF-2a and not HIF-1a was shown to be critical for

expression of OCT4, specifically OCT4B, in lung cancer cells.

OCT4B expression was further identified to promote cancer

invasion through enhancing SLUG expression in a similar

mechanism to SOX2 (94). Both OCT4A and OCT4B have also

been shown to have pro-angiogenic characteristics, facilitating the

transition of CSC to tumor endothelial-like cells in liver cancer (95).

Overall, while it appears the connection of OCT4 and hypoxia has

been established in literature, the exact mechanism of expression

and function of OCT4 and its isoforms requires further research.
KLF4

KLF4 is a bifunctional zinc-finger transcriptional factor

that is widely expressed in many tissues. It plays a role in several

physiological processes including cell differentiation, inflammation,

apoptosis, inflammation, and angiogenesis (96). In cancer, KLF4

has been demonstrated to be either oncogenic or anti-oncogenic

depending on the cancer type, and therefore performs unique

functions in different CSCs. For example, in colon cancer KLF4 is

a potent tumor suppressor, while in melanoma KLF4 expression

promotes cell proliferation (97, 98).

Studies have shown that HIF-1 directly enhances KLF4 gene

expression under hypoxic conditions, and KLF4 plays a critical role

in regulating cell response to hypoxia (99, 100). KLF4 has been

shown to inhibit the expression of HIF-1a, the regulatory subunit of
HIF-1, under normoxic conditions (21% O2), thereby reducing the

cellular response to hypoxia (101). In addition, KLF4 has been

implicated in regulating hypoxia-induced apoptosis and

angiogenesis (102). Specifically in certain cancer cells, KLF4 has

been demonstrated to promote hypoxia-induced apoptosis by

upregulating the expression of pro-apoptotic genes, and to inhibit

hypoxia-induced angiogenesis by downregulating the expression of

pro-angiogenic factors such as VEGF (vascular endothelial growth

factor) (103). Overall, the connection between KLF4 and hypoxia

appears to be complex, with KLF4 playing a role in regulating the

cellular response to hypoxia and hypoxia in turn inducing

KLF4 expression.
c-MYC

c-MYC is an essential transcription factor part of the basic

helix-loop-helix (bHLH) DNA-binding proteins involved in

regulating normal cell processes including cell division,

metabolism, differentiation, cell death, and maintenance of stem

cells properties. Considering its myriad of functions, c-MYC is

tightly regulated by developmental and mitogenic signals in normal

cells, and dysregulation has been linked to oncogenic potential in

several cancers. Studies have found that sustained c-MYC

overexpression leads to oncogenic and epigenetic reprogramming

via downregulation of lineage-specific transcription factors. This

de-differentiation creates a more progenitor-like state that allows

for acquisition of stem cell traits by c-MYC activation of de novo

oncogenic enhancers, supporting CSC development (104).
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Studies have suggested a complex interplay between HIF and c-

MYC under hypoxic conditions. HIF-1a has been shown to inhibit

c-MYC activity, while HIF-2a activates c-MYC activity via

stabilization of c-MYCs transcriptional activation and repression

functions. C-MYC also directly promotes HIF-2a expression, while

its overexpression overall increases HIF levels and activity.

Therefore, in cancer, when c-MYC levels are high, HIF and c-

MYC collectively remodel cellular processes to increase oncogenic

potential including angiogenesis and metastasis (105). A recent

study on breast cancer cells adds to this complexity. Recently, Zhu

et al. identified a hypoxia-induced long non-coding RNA

(lncRNAs) that contributes to the development of BCSC by

creating a complex with insulin-like growth factor 2 mRNA-

binding protein 1 (IGF2BP1) that stabilizes c-MYC mRNA (106).

Overall, the relationship between c-MYC and hypoxia seems to be

well established, but the exact modulators of c-MYC stabilization

and expression continue to be investigated.
The role of cancer stem cells in
metastasis

Metastatic disease remains the primary cause of cancer

mortality. Despite recent advancements in cancer therapies,

survival in metastatic setting is still poor. 90% of cancer-related

deaths are due to metastatic disease rather than primary tumors.

Historically, cancer progression has been firmly established in

mutational processes and clonal expansion (107). However, recent

studies have implicated CSCs in the resistance (108) and recurrence

of tumors (109). Studies have also linked direct reprogramming of

somatic cells to cancer metastasis (110). Similarities between

somatic cells and CSCs suggest an association between

reprogramming in CSCs and progression of disease (111).This

relationship could be the basis for metastatic disease, driving

tumor initiation and growth. However, the underlying

mechanisms of CSC reprogramming and tumor progression

remain unclear.

The epithelial-mesenchymal transition (EMT) is a developmental

process that leads to the transformation of epithelial cells into

mesenchymal cells. While EMT is accepted to occur during

embryogenesis, it has also been recognized in CSCs (112). In 2005,

the “migratory cancer stem (MCS) cell” theory established the

association between CSCs and EMT, which describes a ‘mobile

CSC’ as a stationary CSC with partial EMT that disseminates and

retains stem cell features, forming metastatic colonies (113). The

acquisition of migratory qualities through EMT could then be a

critical feature of CSCs in the growth, invasion, and dissemination of

tumors, leading to the poor prognosis seen in metastasis. However, it

is unclear whether only CSCs are responsible for the initiation of

metastatic growth, or if there are other factors driving CSCs for pre-

metastatic development.

Another concept that implicates CSCs in the progression of

metastatic disease is their influence on the microenvironment. It is

well known that hypoxia promotes tumor changes, such as EMT

and dysfunctional vascularization, leading to cell migration and

metastatic disease (114). Hypoxia has also been shown to stimulate
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CSCs. The increase in reactive oxygen species due to hypoxia

promotes EMT in CSCs, resulting in the production of VEGF

(115). While VEGF is fully established as an angiogenic factor, it

has also been shown to drive malignancy through other

mechanisms. For example, VEGF promotes breast and lung CSC

renewal via VEGF receptor-2/STAT3-mediated upregulation of c-

MYC and SOX2 (116). However, variable VEGF expression among

cancer subtypes suggests involvement of other potential factors in

the microenvironment.

For decades, tumor vascularization via angiogenesis was considered

the primary method of blood supply for tumor growth (117). In 1999,

Maniotis et al. reported highly invasive and metastatic human

melanoma cells with tumor growth independent of angiogenesis,

suggesting the generation of vascular channels by cancer cells without

the involvement of endothelial cells (118). This process was termed

vascular mimicry (VM) (Figure 4). Tumors with VM lead to a worse

prognosis, and evidence has indicated that VM may be used as an

independent prognostic factor for survival (119). However, the

underlying mechanisms of the initiation of VM are still not well

understood. Recently, evidence has suggested an association between

VM and CSCs. CSCs were found to be positively correlated to triple

negative breast cancer subtype andVM in human invasive breast cancer

(120). Another study found that a hypoxic tumor microenvironment

increased the population of CSCs, thereby accelerating VM channel

formation in triple negative breast cancer (121). These findings could

explain the invasive nature of treatment-resistant tumors.
Therapeutic approaches in treating
cancer stem cells

Many strategies have been implemented for cancer treatment

including surgery, radiotherapy, chemotherapy, and targeted
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therapies. These strategies have been essential in reducing cancer

death rate by 1.5% from 2019 to 2020 (122). Furthermore, an overall

cancer death reduction of 33% has been reported since 1991 with

mortality declines seen in leukemia, melanoma, kidney, and lung

cancers (122). However, traditional cancer treatments are not

always effective, especially with malignant tumors (123). A few

reasons for unsuccessful treatment outcomes are metastasis,

recurrence, cancer heterogeneity, resistance to the treatment, and

immunological escape [L. Yang et al., (79)]. All of these factors can

be attributed to the characteristics seen in CSCs present in the

tumor environment. Therefore, CSCs are considered promising

targets for cancer treatment.

Tumor hypoxia is considered one of the most inimical factors

that leads to treatment resistance (124). Radiotherapy generates

reactive oxygen species, causing irreversible cellular DNA damage

and apoptosis (125). Currently, radiotherapy is most often used to

treat head, neck, breast, cervix, prostate, and eye cancers. However,

cancer cells experiencing hypoxia are likely to be three-times more

resistant to radiation (126). On the other hand, CSCs are considered

to be the “seeds” of cancer and are believed to be “awakened” with

radiation, leading to recurrence and metastasis post-radiation (88).

As for chemotherapy, oxygenated cells are essential for successful

drug delivery (127). Thus, hypoxic cells, including CSCs, escape

chemotherapy due to alterations in apoptotic pathways and DNA

damage repair systems (128). Additionally, the restricted/abnormal

vasculature of the hypoxic tumor environment contributes to

inadequate transport of anti-tumor drugs into the tumor tissue

(129). Immunotherapy is one of the more recent developments in

cancer therapies (130). However, there is strong evidence that

hypoxia suppresses T cells and support tumor associated

macrophage polarization (131).

In the past few years, multiple efforts have been made to directly

target CSC including biomarker-mediated targeting (79), targeting
FIGURE 4

Different vascular structures seen in the tumor environment. Healthy tissue consists of normal vascularization, ECM, and tight junctions. As the solid
tumor progresses, rapid tumor growth increases hypoxic niches and leads to abnormal angiogenesis. Abnormal vascular formation is also seen,
allowing for metastasis through enhanced EMT. Hypoxia is known to increase HIF factors. As the hypoxic tumor environment progresses, HIF-2a
expression rises and further promotes stemness in the hypoxic environment. Cancer stem cells have been positively correlated with vascular
mimicry, in which ECM remodeling occurs along with epithelial-endothelial transitioning to create new vasculature into the hypoxic environment.
Created with BioRender.com.
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of mitochondria (132), targeting of CSC related genes (133), and

targeting of epigenetics associated with CSCs (134). For example,

OCT4 and LIN28, pluripotency factors are highly expressed in

embryonic stem cells, were also found to be co-expressed in a sub-

population of epithelial ovarian cancer cells (135). It was

demonstrated that targeting these two pluripotent factors with

RNA interference significantly reduced cell growth and survival of

epithelial ovarian cancer cells suggesting that OCT4 and LIN28

were beneficial targets for in epithelial ovarian cancer patients.

Further relating to OCT4 targeting, an oncolytic adenovirus was

developed to retain its antitumor activity in a hypoxic environment

(136). This OCT4-dependent oncolytic adenovirus was driven by

nine copies of OCT4 response element as were a hypoxia response

element to target bladder cancer cells that overexpressed HIF-2a
and OCT4, which include bladder CSCs.

While it is recognized that benign cells can become CSCs, the

real question is whether CSCs can be genetically and epigenetically

reversed back to a benign phenotype. Thus, rather than targeting

overexpressed pluripotent factors as seen before, a pioneer strategy

would involve transcription factor-mediated cancer cell

reprogramming (17). Currently, cancer reprogramming has been

met with some success. For example, epigenetic modifications in

melanoma cells were induced by reprogramming them into induced

pluripotent cancer cells that were able to differentiate into non-

tumorigenic lineages (65). In the direction of immunotherapy,

cellular reprogramming has been used to generate T-cells and

natural killer cells with enhanced anti-tumor properties (137).

Thus, patient-tailored immune cell types, including macrophages

and dendritic cells, can also be generated via reprogramming of

lineage-specific master regulators that can induce unique cell

identities, in vivo. The involvement of cancer reprogramming has

been taken a step further in the direction of therapeutic cancer

vaccination. In a recent study by Majeti et al. (2023), myeloid

lineage reprogramming was used to convert murine leukemia

cancer cells into tumor reprogrammed-antigen presenting cells

(138). These reprogrammed tumor cells demonstrated a myeloid

phenotype and function as well as the ability to process and present

endogenous tumor associated antigens that could be used to elicit

cancer specific responses. With regards to human cancer cell lines,

that is brain, uterine cervix, lung, colon, bladder, and synovium

derived cell lines, double-network hydrogel has been utilized to

create spheroids with elevated levels of stemness-related genes

SOX2, OCT3/4, and NANOG in vitro within 24h of seeding

(139). The results seen in the cells lines were compared to a

highly malignant human brain cancer glioblastoma to confirm

that the findings of elevated CSCs markers were not cell-line

specific. Thus, spheroid formation highly mimics the CSC niche

in the tumor environment and offers a method of in vitro

reprogramming to identify reagents that can be used to

specifically investigate CSCs.

On the flip side to successful reprogramming efforts, some

cancer types resist or have limited reprogramming abilities. For

example, human benign and malignant MCF10A and MCF7 breast

cancer cell lines showed resistance to an induced reprogramming

using retroviral reprogramming method (140). This study found

that there were 29 candidate barrier genes with RNA-sequencing
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that could explain the roadblock seen in cancer cell reprogramming

in these breast cancer cell lines. It has been noted that cancer cell

reprogramming is more difficult and not well understood compared

to somatic cells (141). One reason is that features that are observed

in pluripotency, including morphology, specific gene expression,

clonal expansion, immunocytochemistry, and teratoma formation

are not well characterized, especially in cancer stem characterization

(140). Another reason is that the differences between malignant and

benign cancer cells have still not been fully characterized and

require much more exploration.
Conclusion

The origin of CSCs is complex and multifactorial, involving a

combination of genetic and epigenetic changes, as well as changes in

the cellular microenvironment. Hypoxia is a critical factor in the

development and maintenance of CSCs. Hypoxia induces the

activation of various signaling pathways that promote the survival

and self-renewal of CSCs, leading to increased tumor growth and

resistance to therapy. The adaptation of cancer cells to a hypoxic

environment involves the upregulation of HIFs, which play a crucial

role in the maintenance of CSCs. HIFs induce the expression of

genes involved in cell survival, angiogenesis, and metabolism,

providing a selective advantage to CSCs in hypoxic tumors. In

addition, hypoxia also induces epigenetic changes that alter gene

expression and contribute to the maintenance of CSCs. Yamanaka

factors have been suggested as potential CSC markers since

Yamanaka factors can induce a stem-like state in cancer cells,

leading to the acquisition of cancer stem cell properties. The

connection between Yamanaka factors and cancer stem cells lies

in the similarities observed between induced pluripotent stem cells

and cancer stem cells. Induced pluripotent stem cells generated by

the expression of Yamanaka factors share certain characteristics

with CSCs, such as self-renewal ability and the potential to

differentiate into different cell types. This suggests that there may

be overlapping mechanisms or molecular pathways involved in the

generation and maintenance of both induced pluripotent stem cells

and CSCs. Moreover, studies have indicated that the overexpression

of Yamanaka factors can induce a stem-like state in cancer cells,

leading to the acquisition of CSC-like properties. This includes

enhanced self-renewal capacity, increased tumorigenicity,

resistance to therapy, and the ability to initiate new tumors when

transplanted into animal models. Additionally, emerging evidence

suggests that hypoxia may influence the expression and activity of

Yamanaka factors in cancer cells. Hypoxia has been shown to

upregulate the expression of Oct4, Sox2, and c-Myc, among other

pluripotency-related genes, potentially inducing a stem-like state.

This connection raises the possibility that hypoxia could contribute

to the acquisition or maintenance of CSC properties through the

modulation of Yamanaka factors. By targeting and studying these

markers, scientists can gain insights into the mechanisms

underlying cancer initiation, progression, and treatment

resistance. Understanding the mechanisms by which hypoxia

regulates CSCs is crucial for developing effective therapies that

target these cells and to prevent cancer recurrence. Further research
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is needed to fully elucidate the complex interplay between hypoxia,

CSCs, and Yamanaka factor expression to identify new therapeutic

targets that can be exploited for the treatment of cancer.
Future directions

Advancements in CSC research have highlighted their critical

role in tumor initiation, progression, metastasis, and therapeutic

resistance. As we look ahead, several promising directions emerge

that offer potential breakthroughs in understanding and targeting

CSCs, particularly in the context of hypoxia and Yamanaka factors.

Firstly, investigating the interplay between CSCs and the hypoxic

tumor microenvironment presents a compelling avenue for research.

Hypoxia, or low oxygen levels, is a common feature of solid tumors and

has been shown to promote CSC maintenance and metastasis. Future

studies could focus on unraveling themolecularmechanisms underlying

CSC adaptation to hypoxia, which may involve the activation of specific

signaling pathways and epigenetic modifications. Understanding how

hypoxia influences CSC properties, such as self-renewal and

differentiation, will be crucial in developing novel therapeutic

strategies to target these resilient cells within the tumor niche.

Secondly, exploring the role of Yamanaka factors in cancer

stemness offers exciting prospects. The Yamanaka factors, initially

identified for their ability to induce pluripotency in somatic cells,

have been found to reprogram differentiated cancer cells back into a

stem-like state. Investigating the precise mechanisms by which

Yamanaka factors modulate CSC properties could pave the way

for innovative approaches in cancer therapy. Utilizing these factors

to induce differentiation in CSCs or, conversely, to reprogram them

into less aggressive cell types could hold great therapeutic potential,

potentially disrupting tumor growth and reducing resistance to

conventional treatments.

Moreover, combinatorial approaches that integrate hypoxia-

targeting strategies with Yamanaka factor-based therapies may yield

synergistic effects in eradicating CSC populations. By targeting

CSCs both within the hypoxic tumor microenvironment and at

the molecular level through Yamanaka factors, researchers may

enhance treatment efficacy and limit disease recurrence.

Lastly, translating these research findings into clinical

applications remains a priority for future investigations.

Developing therapeutics that specifically target CSCs, while

sparing normal stem cells, poses a significant challenge.

Nevertheless, progress in identifying unique CSC markers and

understanding the signaling pathways that regulate CSC self-

renewal provides promising opportunities for developing targeted

therapies. Moreover, exploring innovative drug delivery systems
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that can effectively penetrate the hypoxic tumor regions may

improve treatment outcomes.

In conclusion, the study of cancer stem cells, hypoxia, and

Yamanaka factors represents a cutting-edge frontier in cancer

research. Advancing our understanding of the molecular

mechanisms governing CSC behavior within the hypoxic

microenvironment and harnessing the potential of Yamanaka

factors to reprogram these cells hold great promise for

revolutionizing cancer treatment strategies. As interdisciplinary

collaborations continue to thrive, we can envision a future where

novel therapies specifically designed to target CSCs contribute to

more effective and personalized cancer treatments, ultimately

improving patient outcomes and advancing the fight against cancer.
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