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JAK2/STAT3 pathway and M2
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Background: Arylsulfatase D (ARSD) belongs to the sulfatase family and plays a

crucial role in maintaining the proper structure of bone and cartilage matrix.

Although several researches have revealed the functions of ARSD in tumor

progression, the prognostic value of ARSD in glioma and the related

mechanisms have not been fully investigated.

Methods: We performed a pan-cancer analysis of ARSD, and investigated the

relationship between expression of ARSD and overall survival (OS) in multiple

glioma datasets. ROC curves and nomograms were created to investigate the

predictive capacity of ARSD. Immune and analysis were conducted to investigate

the mechanisms underlying the roles of ARSD in glioma. Glioma tissue samples

were collected to verify the expression of ARSD in glioma, while the functions of

ARSDwere explored using cell experiment. M2macrophage infiltration assay was

used to determine the relation between ARSD and tumor immune

microenvironment.

Results: Survival analysis indicated that individuals with high ARSD expression in

glioma had a shorter survival time. Cox analysis showed that ARSD had a good

ability for predicting prognosis in glioma. Immune analysis suggested that ARSD

could regulate immune cell infiltration and affect the Cancer-Immunity Cycle to

create an immunosuppressive environment. Combined with cell experiment and

bioinformatic analysis, we found that ARSD can promote glioma progression

through regulation of JAK2/STAT3 pathway and M2 macrophage infiltration.

Conclusion: Our study found that ARSD can promote glioma development by

regulating immune microenvironment and JAK2/STAT3 signaling pathway,

which provided a potential therapy target for glioma treatment.
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Introduction

Glioma, as the most prevalent type of malignant brain tumors,

poses a significant threat to human health for its high mortality rate

(1). It is estimated that the annual incidence of glioma in adults is 6/

100,000 (2). Current treatment options for patients with glioma

include surgery, chemotherapy and radiation therapy (3). Despite

undergoing standard treatment, glioma patients still face challenges

in improving their prognosis (4). Most patients with glioma survive

less than a year, and only 4% of them live for five years or more (5).

The 5th edition of the WHO central nervous system (CNS)

Classification tumors brought significant changes to the

classification of gliomas, integrating the use of molecular

diagnostics into the classification system. According to 2021 WHO

classification, adult-type diffuse gliomas are divided into only 3

classifications: Astrocytoma, IDH-mutant (covers from grade 2 to

grade 4; includes diffuse astrocytoma, anaplastic astrocytoma, and

glioblastoma with IDH mutation in the 2016 classification);

Oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and

Glioblastoma, IDH-wildtype (6). Moreover, grading no longer

entirely depends on tumor histology, since some molecular events,

like EGFR gene amplification, TERT promoter mutation, can

identify the diagnosis of Glioblastoma without histological

evidence (6, 7). Therefore, it is necessary to explore new biomarker

for the improvement of glioma diagnosis and treatment.

Sulfatases are a series of proteins which play critical roles in bone

and cartilage matrix. Arylsulfatase D (ARSD) belongs to the sulfatase

family and is situated on theX chromosome alongside other aromatic

sulfate enzymes that share similar characteristics (8). Overexpression

of ARSDhas been demonstrated to activate theHippo/YAP pathway,

leading to inhibition of TNBC (triple negative breast cancer) cell

proliferation andmigration. Additionally, ARSDmight function as a

molecular inhibitor of the ERa signaling pathway by preventing

uncontrolled activation of ERa in breast cancer cells (9). Researches

indicated that ARSD was abnormally highly expressed in chronic

lymphocytic leukemia (CLL) and is a novel prognostic factor for CLL

(10). According to Lin’s findings, increased expression of ARSD

might contribute to amyloidosis in breast cancer cells, and therefore

targeting ARSD could be a potential strategy for treating TNBC or

Alzheimer’s disease (AD) (11). However, the roles of ARSD and its

molecular mechanism have not been investigated in glioma.

Macrophages are a main component of infiltrated immune cells in

glioma tissue, which were related to poor prognosis of glioma.

Macrophages can be broadly classified into two subtypes: M1

macrophages and M2 macrophages. There is a general consensus in

the scientific community that M1 macrophages have the ability to

eliminate tumor cells and defend against pathogen invasion, while M2
Abbreviations: ARSD, Arylsulfatase D; CNS, central nervous system; TNBC,

triple negative breast cancer; CLL, chronic lymphocytic leukemia; AD,

Alzheimer’s disease; OS, overall survival; UCEC, Uterine Corpus Endometrial

Carcinoma; COAD, Colon adenocarcinoma; UCS, Uterine Carcinosarcoma;

ROC, receiver operating characteristic; DEGs, differentially expressed genes;

GO, Gene Ontology; KEGG, Kyoko Encyclopaedia of Genes and Genomes;

GSEA, Gene set enrichment analysis; CCK8, cell counting kit-8; LGG, low grade

glioma; GBM, glioblastoma multiforme; TME, glioma tumor microenvironment.
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macrophages primarily contribute to the promotion of tumor growth,

invasion, and metastasis (12). Previous research showed that

macrophages were more likely to develop into M2 macrophages for

the immunosuppressive microenvironment in glioma (13). Glioma

cells can secrete various chemokines to recruit macrophages and

regulate the M2 macrophage polarization (14). Hence, therapy

against macrophage polarization and recruitment can be a promising

treatment for glioma.

conducted a thorough analysis of ARSD using various glioma

datasets in this study. Different from previous research, our research

investigated the prognostic significance of ARSD in glioma based on

the new WHO classification. Further investigation has shown the

mechanisms of ARSD for glioma using bioinformatic analysis. In

vitro experiment showed that ARSD can promote glioma cell

proliferation through JAK2/STAT3 pathway and regulate M2

macrophage infiltration.

Material and methods

Pan-cancer analysis

Weutilized TheHuman Protein Atlas (https://www.proteinatlas.org)

to examine the expression of ARSD in different normal tissues and single

cell types. Pan-cancer analysis was carried out using the UCSCXenaShiny

(https://hiplot-academic.com) online tool (15). Genetic alteration analysis

was conducted using the cBioPortal tool (16).
Survival analysis

Kaplan-Meier plots were drawn to evaluate the correlation

between ARSD expression level and patient prognosis. The

Survminer package was used for Kaplan-Meier analysis in R.

Univariate and multivariate Cox analysis were developed to estimate

whether it was an independent risk factor for glioma patients. The data

of nine glioma cohorts (TCGA, CGGA, Gravendeel, Rembrandt,

Kamoun, Murat, LeeY, Phillips, Freije) was obtained from the

Gliovis platform (17), including mRNA expression and clinical

information. The sample size of the nine glioma was listed in Table 1.
Establishment of prognostic model

The prognostic significance of ARSD in gliomawas analyzed using

Receiver Operating Characteristic (ROC) curves through

SurvivorROC package (18). In order to predict the OS in gliomas,

nomograms were established using various prognostic factors

including clinical features and ARSD expression in TCGA, CGGA

and Gravendeel. We then confirmed whether the actual and predicted

OS were consistent over 1, 3 and 5 years using calibration curves.
Immune infiltration analysis

We used the R package “GSVA” to produce enrichment scores

for 24 immune cell types (19). The gene sets of the immune cells
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were downloaded from a previous study (20). The enrichment

scores reflected the relative levels of each immune cell type. In

2013, Chen and Mellman introduced the Cancer-Immunity Cycle

(21), which clarified the process of killing tumor cells in immune

system, including release of tumor cell antigen, presentation of

tumor antigen, priming and activation, recruitment of T cells into

tumor, infiltration of T cells into tumor, recognition of tumor cells

by T cells, and killing of tumor cells (22). Thus, the body can

effectively kill tumor cells through the Cancer-Immunity Cycle.

Immunotherapy can enhance the functions of immune system for

killing tumor cells by amplifying or activating the Cancer-Immunity

Cycle. Based on this point, we estimated the associations between

ARSD and Cancer-Immunity Cycle in TCGA.
Enrichment analysis

The TCGA glioma patients were separated into two cohorts

(high-ARSD and low-ARSD) using the median ARSD expression as

a cutoff. The “limma” R package was utilized to acquire the

differentially expressed genes (DEGs). The screening criteria are

p-adj < 0.05 and |logFC|>1.5. To investigate the mechanism of

ARSD in glioma, the “ClusterProfiler” was utilized to conduct gene

set enrichment analysis (GSEA) (23).
Cell culture and transfection

The glioma cell lines (U251, U87, A172, and LN229) and the HA

(Human astrocyte) cell line were supplied from the Chinese Academy

of Sciences’ Cell Bank. The glioma cells were cultured in DMEM

(Biological, Salem, US) with 10% Gibco FBS (GIBCO, US) and

maintained in a 37 °C, 5% CO2 environment. The siRNA of ARSD

was obtained from Han Biotechnology (Shanghai, China) and was

transfected into cells using Lipofectamine 3000 (L3000015, Invitrogen).

The ARSD siRNA sequences were: 5′- GGUUGCUAC

GGGAACAAUATT− 3′ and 5′- UAUUGUUCCCGUAGCAACCT

T − 3′. The ARSD overexpression plasmid (pcARSD) was constructed
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from Han Biotechnology (Shanghai, China). After 48h-72h, the

transfected cells were harvested for further analysis.
RT-qPCR

RNA was extracted from HA and U251, U87, A172, LN229 cell

lines, using Superbrilliant test (Zhongshi, Tianjin, China). Reverse

transcription was performed using the Takara kit (Bori Medical,

Beijing, China), while PCR analysis was carried out using SYBR

qPCR Mix kit (Vazyme, Nanjing, China). The primer sequences:

ARSD:5′-CTACTCTTCACTGTGCAGTCTC-3′, 5′-GAGAT

GACATTGAAGGCCTTGA-3′. GAPDH: 5′-GGAGCGAGAT
CCCTCCAAAAT-3′, 5′-GGCTGTTGTCATACTTCT CATGG-3′.
Immunohistochemical analysis

Paraffin sections from 12 glioma patients were obtained from

surgically resected gliomas and classified by senior physicians in the

department of pathology in our hospital according to WHO

classification (WHO I: 3 samples, WHO II: 3 samples, WHO III:

3 samples, WHO IV: 3 samples). Paraffin sections were antigen-

repaired using 1% sodium citrate (Bioss, Beijing, China), and

incubated overnight with 0.6% ARSD antibody (SAB, China) at

4°C. The sections were incubated with Antirabbit IgG (Bioss,

Beijing, China), and dripping with horseradish labeled chain

enzyme ovalbumin working solution.
Western blot

Protein extraction from cells was performed using protein

extraction reagent (K1015, APExBIO), and the concentration was

measured using the BCA (bicinchoninic acid). The samples were

segregated using denaturing polyacrylamide gel electrophoresis, and

the protein bands were subsequently transferred onto polyvinylidene

fluoride membranes. The polyvinylidene fluoride membranes were

blocked with blocking solution for 15 minutes, after discarding the

blocking solution, the membranes were incubated with primary

antibody overnight at 4°C. The primary antibodies were diluted in

the following proportions: anti-ARSD (1: 1,200), anti-CD68 (1:1,000),

anti-CD163 (1:1,200), anti-CD206 (1:1,200), anti-CD115 (1:1,000),

anti-PPARG (1:1,000), anti-JAK2 (1:1,500), anti-P-JAK2 (1:1,500),

anti-STAT3 (1:1,200), anti-P-STAT3 (1:1,200), and anti-GAPDH

(1:10,000). Secondary Antibody (1: 10,000) was incubated for 2

hours away from the light. Infrared imaging scanning instruments

were used to detect membranes (Odyssey LI-COR, USA).
CCK8 assay

Logarithmic growth stage U251 and U87 cells were planted into

a 96-well plate (100ml 5×103/well). The cells were transfected and
TABLE 1 The sample size of nine glioma cohorts.

Dataset Sample size

CGGA 1013 samples

TCGA 667 samples

Rembrandt 444 samples

Gravendeel 276 samples

Kamoun 180 samples

LeeY 191 samples

Phillips 100 samples

Freije 85 samples

Murat 80 samples
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then cell viability determined using CCK8 kit at 0d, 1d, 2d, 3d and

4d respectively after transfection. Finally, we added CCK8 (10ml)
(Dojindo, Shanghai, China) to each well and measured absorbance

at 450 nm measured after 2 hours. (SpectraMax Plus 384).
Colony assay

The glioma cells were planted into the six-well plate at 1000

cells/well incubated for two weeks. The cells were treated with 4%

paraformaldehyde, followed by staining with 0.1% crystal violet.

The number of colonies was then quantified by analyzing the

images using Image J software (version 1.52 2p).
Transwell experiment

The experiment was divided into two groups: 1. coated matrix

gel group to detect cell invasion ability. 2. uncoated matrix gel to

detect cell migration ability. Adding 1×105 U251 or U87 cells and

300ml of serum-free medium to the upper chamber. The lower

chamber received 700 µl of medium containing serum. Fixation and

staining were performed at 24 hours, in the same way as above.
Wound healing experiment

The U251 and U87 cells were planted into a 6-well plate for 24h.

A pipette tip was employed to create a scratch on the cells, forming

a slit. Images of the scratches were taken at the same position at 0,

24, and 48 hours using a camera fitted microscope (Olympus,

Japan). To assess the cells’ wound healing capability, the width of

the scratch was measured at various time points using Image

J software.
M2 macrophage infiltration assay

Preparation for polarization of M2 macrophages: THP-1 cells

were induced to differentiate into macrophages by 100ng/ml PMA

(Beyotime; shanghai, China) for 24 h. RT-qPCR and Western blot

was used to verify M0 markers CD68. Macrophages were polarized

with 20ng/ml IL-4(Nearshore proteins; Suzhou; China) and 20ng/

ml IL-13(Nearshore proteins; Suzhou; China) for 48h in the

presence of PMA. Then RT-qPCR and Western blot was used to

identify the M2 macrophage markers CD163, CD206, CD115

and PPARG.

For M2 macrophage infiltration test, in the upper chamber of

Transwell plate, 5.0×104 M2 macrophages were inoculated and

300ml of serum-free 1640 medium was added. A total of 5.0×104

U251 and U87 cells were seeded in the lower chamber, and 700ml of
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serum-containing DMEM medium was added. Fixation and

staining were performed at 24 hours, in the same way as above.
Results

Analysis of sulfatase family in TCGA
glioma cohort

We explored the expression level of sulfatase family in TCGA

glioma cohort and found that most of sulfatase family genes were

differently expressed between glioma and normal tissues

(Supplemental Figure 1A). Univariate and multivariate Cox

analysis were performed based on the expression of sulfatase

family, and the result showed that ARSD was significantly related

to the prognosis of glioma (Supplemental Figure 1B). Survival

analysis in TCGA LGG and TCGA GBM indicated that high

expression of ARSD tended to have a poor prognosis

(Supplemental Figure 1C).
Pan-cancer analysis

According to the GTEx database, ARSD is expressed in multiple

normal tissues, including the brain, stomach, and liver (Figure 1A).

In addition, ARSD is also expressed in many single cell types, such

as epithelial cells and neuronal cells (Figure 1B). Pan-cancer

analysis demonstrated that ARSD was aberrantly expressed in

most cancer types of TCGA (Figure 1C). ARSD alterations occur

in a variety of tumors, such as deep in esophageal adenocarcinoma

deletion, mutation in UCEC and GBM (Figure 1D). TIMER analysis

revealed that the top 3 tumors with ARSD mutation rates were

UCEC (23/531), COAD (9/406), and UCS (1/57) (Figure 1E).

Analysis in cBioPortal found that ARSD mutations were mainly

concentrated on E341K (Figure 1F).
Survival and expression analysis

We performed survival analysis in nine glioma cohorts: CGGA

(HR:2.24, p<0.001), TCGA (HR:4.71, p<0.001), Rembrandt (HR:2.58,

p<0.001), Gravendeel (HR:2.42, p<0.001), Kamoun (HR:1.37, p=0.324),

Freije (HR:1.79, p=0.028), LeeY (HR:1.09, p=0.581), Murat (HR:1.29,

p=0.308) and Phillips (HR:1.20, p=0.477) (Figures 2A-I). Although the

results of LeeY, Murat, Phillips, and Kamoun showed no significant

difference in p-values, we thought the reasonmight be the small sample

in the four cohorts. To figure out the prognostic value of ARSD in

glioma, we performed ameta-analysis based onHRs of the nine glioma

cohorts (Figure 2J).

The 2021 WHO CNS tumors Classification enhanced our

understanding of glioma. We performed survival analysis in
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different glioma subtypes based on the new WHO Classification.

The results showed that ARSD had a good prognostic value in

astrocytoma (IDH-mutant, covers from grade 2 to grade 4; includes

astrocytoma, anaplastic astrocytoma, and glioblastoma in the 2016

WHO classification), glioblastoma (IDH-wildtype); and

oligodendroglioma (IDH-mutant and 1p/19q-codeleted)

(Supplemental Figures 2A-I). Although the p-value in

oligodendroglioma showed no significant difference, we thought

the reason might be the small sample size and the long survival time

of oligodendroglioma.
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Then TCGA, CGGA, and Gravendeel databases was utilized to

explore the relation between ARSD and clinical features. We

observed that ARSD expressed differently in groups with different

WHO grades, IDH status, 1p19q status and age (Figures 3A-O).
Cox analysis and nomogram development

Cox analysis demonstrated that ARSD may serve as a glioma

independent prognostic factor (Figures 4A-C). ROC curves
B

C

D E

F

A

FIGURE 1

Expression level and mutation analysis of ARSD. (A) The expression level of ARSD in normal tissues. (B) Expression of ARSD in different single cell
types. (C) The expression of ARSD in TCGA pan-cancer. (D) ARSD alterations occur in different tumor types. (E) TIMER analysis of ARSD mutation
rates. (F) Analysis of ARSD mutations in cBioPortal. * p < 0.05 , ** p < 0.01, *** p < 0.001, ns, no significance.
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demonstrated a good ability of ARSD in predicting glioma

prognosis at 1, 3 and 5 years (Figures 4D-F).

To provide a clinically relevant quantitative method for assessing

OS in glioma, we developed a personalized nomogram that combined

ARSD with other clinical indicators (TCGA: Supplemental Figure 3A;

CGGA: Supplemental Figure 3D; Gravendeel: Supplemental

Figure 3G). Decision curves were generated to evaluate the clinical

utility of the two nomograms (TCGA: Supplemental Figure 3B;

CGGA: Supplemental Figure 3E; Gravendeel: Supplemental

Figure 3H). Then we found the calibration curves of the nomogram
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was basically consistent with the standard curves in one, three, and

five-years OS (TCGA: Supplemental Figure 3C; CGGA: Supplemental

Figure 3F; Gravendeel: Supplemental Figure 3I).
The expression of ARSD leads to an
immunosuppressive microenvironment

The abnormality in tumor immunemicroenvironment is themain

reason for the proliferation, metastasis, and immune evasion of tumor
B C

D E F

G H I

J

A

FIGURE 2

Increased expression of ARSD predicted poor OS for glioma. (A-I) Survival analysis in nine glioma populations. (J) The total HR value of ARSD was
gathered using meta-analysis.
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cells. Our findings indicated that ARSD expression was positively

correlated with immunosuppressive cells, including M2 macrophages,

neutrophils, and Th2 cells (Figures 5A, B). Correlation between ARSD

and M2 macrophage, Neutrophil, and Th2 cells was analyzed

(Figures 5C-E). Anti-tumor immunity was conceptualized and

proposed as a series of steps called Cancer-Immunity Cycle. Our

work revealed the roles of ARSD in anti-tumor immunity of glioma,

and found that ARSD expression exhibited a positive correlation with

the scores of Step4 and Step1 in the Cancer-Immunity Cycle, while
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displaying a negative correlation with the scores of Step7, Step5, Step3,

and Step2 (Figures 5F, G). An analysis of ARSD and 23 types of

immune response was then performed to determine whether gliomas

exhibit hot immunophenotypes. The related gene signatureswere from

earlier research (24). We found as the expression of ARSD enhanced,

the immunophenotypes trended toward “hot” (Figure 5F).

These findings suggested that ARSD might regulating Cancer-

Immunity Cycle and immune infiltration, thus led to an

immunosuppressive microenvironment.
B C

D E F

G H I

J K L

M N O

A

FIGURE 3

Correlation analysis between ARSD and clinical features in TCGA, CGGA and Gravendeel cohort. (A-C) WHO grade; (D-F) 2021 WHO classification;
(G-I) IDH status; (J-L) 1p19q status; (M-O) Age. *** p < 0.001.
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Enrichment analysis

To figure out potential mechanisms of ARSD in glioma, DEGs

were explored between low-ARSD and high-ARSD patients in

TCGA, where 1,135 DEGs were obtained, containing 46

downregulated genes and 1,089 upregulated genes (Figure 6A).

GO and KEGG analysis revealed that the DEGs were enriched in

macrophage migration, negative regulation of immune system

processes, JAK-STAT signaling pathway, TNF signaling pathway,

and Th1/Th2 cell differentiation (Figures 6B, C). The GSEA analysis

demonstrated that the JAK-STAT signaling pathway, angiogenesis,

glycolysis, and hypoxia were upregulated in patients with high

ARSD (Figures 6D, E). The GSVA analysis was utilized to explore

the relationship between ARSD and 18 tumor-related pathways.

The results showed that ARSD was closely related to multiple

cancer-related pathways (Figures 6F, G).
ARSD promotes glioma cell proliferation,
migration and invasion in vitro

The immunohistochemical analysis revealed the increase of

ARSD expression with higher tumor grades (Figure 7A). It is

indicated that the level of ARSD expression was higher in U251,

U87, A172 and LN229 cell lines compared to HA (Figures 7B, C).

We then performed cell experiment to investigate the roles of

ARSD in glioma. Western blotting demonstrated that the

expression level of ARSD was lower in U251 and U87 cells

transfected with siRNA and higher with plasmids (Figure 7D).

Both the CCK-8 and colony formation assays demonstrated that
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knockdown of ARSD significantly suppressed cell proliferation in

U251 and U87 cells. Conversely, overexpression of ARSD

significantly enhanced cell proliferation (Figures 7E, F). The

knockdown of ARSD resulted in decreased invasion and

migration abilities of U251 and U87 cells, whereas overexpression

of ARSD enhances their invasion and migration abilities

(Figures 8A, B).
ARSD promotes the infiltration of M2
macrophages regulated by glioma cells

To investigate the relation between ARSD andM2 macrophages

infiltration, M2 macrophage infiltration assay was conducted. After

using classical inducing methods, we observed the transformation

from THP-1 cells to M2 macrophages (Figure 9A). RT-qPCR and

western blot showed that the markers of M2 macrophages were

elevated, such as CD68 CD163, CD206 CD115, PPARG

(Figures 9B, C). Our results demonstrated that the infiltration of

M2 macrophages was obviously weakened after ARSD knockdown,

but significantly enhanced after ARSD overexpression (Figure 9D).
ARSD promotes glioma progression
through JAK2/STAT3 pathway

Our bioinformatic analysis revealed a significant association

between ARSD and the JAK-STAT signaling pathway. To validate

the relation between ARSD and JAK-STAT signaling pathway, we

performed several cell experiments. Western blot analysis showed
B C

D E F

A

FIGURE 4

Cox analysis and ROC curves. (A-C) Univariate and multivariate analyses of ARSD were conducted using data from TCGA, CGGA, and Gravendeel
datasets. (D-F) ROC curves of ARSD for predicting 1, 3 and 5year survival in TCGA, CGGA and Gravendeel.
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that in U251 and U87 cell lines, p-JAK2/JAK2, and p-STAT3/

STAT3 ratios decreased with the downregulation of ARSD, but

increased with the overexpression of ARSD (Figure 10A). These

results suggested that ARSD can promote glioma progression

through JAK2/STAT3 pathway. Besides, JAK2/STAT3 pathway

inhibitor AG490 was also used to block the activation of this

pathway. Using CCK-8 and Transwel, we found the increased

proliferation, migration, and invasion of glioma cells induced by

ARSD overexpression were reversed upon inhibition of the JAK2/

STAT3 signaling pathway with AG490 (Figures 10B, C). AG490 was

shown to reverse the overexpression of p-JAK2 and p-STAT3 in
Frontiers in Oncology 09
JAK2/STAT3 pathway resulting from ARSD overexpression, as

demonstrated by western blot analysis (Figure 10D).
Discussion

Studies have revealed that the arylsulfatase family might play a

role in tumorigenesis and cancer progression, suggested that

therapy targeted arylsulfatase family may become a promising

strategy for cancer treatment (9). However, the exact mechanisms

of arylsulfatases for tumor development were rarely investigated in
B

C D E

F

A

G

FIGURE 5

Relation between ARSD and glioma immune microenvironment. (A) The levels of 24 immune cell types in high- and low-ARSD groups. (B) ARSD
expression is correlated with various immune cell types. (C-E) The correlation between ARSD expression and infiltration of macrophages (C), neutrophils
(D) and Th2 cells (E). (F) Association between ARSD and innate immunity, adaptive immunity and Cancer-Immunity Cycle. (G) A barplot was utilized to
display the enrichment scores of the Cancer-Immunity Cycle in the high-ARSD and low-ARSD groups. * p < 0.05 , ** p < 0.01, *** p < 0.001.
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the past. Our research performed bioinformatic analysis of

arylsulfatase family genes in glioma and found that most of these

genes expressed the abnormally. Survival analysis showed that

ARSD was the prognostic indicator both in TCGA LGG and

TCGA GBM. Although it was reported that ARSD was

dysregulated in different types of cancer, few research had

investigated its prognostic predictive value and potential

mechanisms. In this study, we discovered that ARSD was

upregulated in glioma and could serve as a novel prognostic

predictor. It was also suggested that ARSD could promote glioma

progression by regulating cell proliferation and macrophage

infiltration, as supported by bioinformatic analysis and

cell experiments.

We first investigated the prognostic value of ARSD in glioma in

multiple glioma cohorts and found that high expression of ARSD

tended to have a short survival time. Given the significant changes

in the 5th edition of the WHO Classification of CNS tumors, we
Frontiers in Oncology 10
performed survival analysis according to the new classification and

reached a similar conclusion. ARSD was identified as an

independent prognostic factor based on univariate and

multivariate Cox analyses. These results exhibited the strong

predictive abilities of ARSD for glioma prognosis.

Immunemicroenvironment analysis suggested that ARSDmight

regulate the immune phenotype and Cancer immunity cycle, which

lead to a suppressive immune microenvironment. Previous studies

have indicated that immune cells and stromal cells played a key role

in the anti-tumor immune response (25). The immunosuppressive

microenvironment in glioma involves a variety of infiltrating

immune cells, such as M2 macrophages, Treg cells, neutrophils,

and Th2 cells. The findings of our study suggested a positive

correlation in ARSD and the immunosuppressive cells levels.

Moreover, our results revealed that ARSD was involved in various

steps of the Cancer-Immunity Cycle. These findings illustrated that

ARSD played a critical role in glioma immune microenvironment.
B C

D E

F G

A

FIGURE 6

Identification of DEGs and subsequent enrichment analysis were performed. (A) The DEGs between high-ARSD and low-ARSD groups were
analyzed. (B) GO enrichment analysis of DEGs. (C) KEGG enrichment analysis of EDGs. (D, E) GSEA analysis between high-ARSD and low-ARSD
group. (F, G) The relation between ARSD and 18-cancer related pathways.
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Macrophages have a crucial role in regulating tumor growth,

invasion, and recurrence within the glioma tumor microenvironment

(TME). M2 macrophages promote tumorigenesis and progression

probably by activating th2-type immune response (26). M2

macrophages may promote tumor progression and poor prognosis

by inhibiting CD8+ T cell function (27).Numerous studies have

shown that various chemokines, including CCL2, CXCL12, LOX,

MCP-3, and M-CSF, are secreted by glioma cells to attract M2

macrophages and change their phenotypes (28). To investigate the

relation between ARSD and M2 macrophages infiltration, we

performed M2 macrophage infiltration assay and found that the
Frontiers in Oncology 11
infiltration of M2 macrophages was significantly decreased after

knocking down ARSD. It suggested that ARSD might affect the

process of macrophage infiltration in glioma. Based on these results,

targeting ARSD may represent a promising approach for preventing

the infiltration of macrophages by glioma cells. However, an

increasing number of studies revealed the critical roles of tumor

microenvironment in immunosuppression. Considering the lack of

tumor microenvironment in vitro, our conclusions also need to be

verified using patient-derived tumor cells and in vivo experiment.

Prior studies have demonstrated a significant involvement of

the JAK2/STAT3 pathway in the progression and development of
B C

D
E

F

A

FIGURE 7

ARSD promotes the proliferation of glioma cells. (A) Immunohistochemical images showed the expression of ARSD in different grades of glioma
tissue. (B, C) PCR and western blot showed the levels of ARSD in HA cells and 4 glioma cell lines. (D) The expression level of ARSD was knockdown
and overexpressed by using siARSD and pcARSD in glioma cells. (E, F) CCK-8 and colony formation assays demonstrated that the glioma cells
proliferation was regulated by ARSD. * p < 0.05 , ** p < 0.01, *** p < 0.001.
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human malignant tumors (29). Upon nuclear translocation,

phosphorylated STAT3 regulates the transcription of specific

target genes that govern fundamental physiological processes.

Consequently, this process results in aberrant gene expression

involved in cell differentiation, proliferation, and apoptosis, such

as Bcl-XL and c-Myc, which promote cell proliferation and

malignant transformation (30). Enrichment analysis showed that

ARSD was significantly related to JAK2/STAT3 pathway. Cell

experiment showed that modulation of the JAK2/STAT3 pathway

by CTR9 was found to promote proliferation, migration, and

invasion of glioma cells. Besides, our results further revealed that

the upregulation of ARSD, which promoted glioma cell

proliferation, migration and invasion, could be effectively

inhibited by the JAK2/STAT3 pathway inhibitor AG490.

In this research, we fully explored the prognostic value of ARSD

and investigated the potential mechanisms. Based on the new

classification of glioma in WHO, we found that ARSD was a risk

factor for overall survival in various subtypes of glioma, and has

good predictive value for glioma prognosis. With the combination

of bioinformatic analysis and experimental validation, we identified

that ARSD can promoted glioma progression by regulating JAK2/
Frontiers in Oncology 12
STAT3 pathway and M2 macrophage infiltration. However, there

are still some shortcomings in our research. First, the glioma cell

lines used in this research were purchased from commercial

vendors. Recent studies have shown that patient-derived tumor

cells had some advantages compared to the cell lines from

commercial vendors, such as better representation of tumor

heterogeneity, retention of original genomic and epigenomic

features. Our conclusions also need to be verified using patient-

derived glioma cells and in vivo experiments. Second, it is necessary

to conduct further studies with prospective and multicenter clinical

cohort, which make our prognostic analysis more convincing.
Conclusion

This study showed that ARSD could serve as a predictive factor

for glioma prognosis. High level of ARSD promoted the

development of glioma by regulating M2 macrophage infiltration

and JAK2/STAT3 pathway. Our findings provide new

understandings about the molecular mechanisms and target

therapy in glioma.
B

A

FIGURE 8

ARSD promotes the migration and invasion of glioma cell lines. (A) The upregulation of ARSD expression was found to promote the migration and
invasion of glioma cells, as demonstrated by Transwell assay. (B) Wound healing assay illustrated that the relative wound healing ability was reduced
or increased after knockdown or overexpression of ARSD. * p < 0.05 , ** p < 0.01, *** p < 0.001.
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FIGURE 9

ARSD could enhance the infiltration of M2 macrophages. (A) Morphological changes from THP-1 to M2 macrophages. (B, C) RT-qPCR and Western
blot showed the markers of M2 macrophages (CD68, CD163, CD206, CD115, and PPARG) elevated after induction. (D) M2 macrophage infiltration
was significantly reduced after ARSD knockdown and increased after ARSD overexpression in glioma cells. * p < 0.05 , ** p < 0.01, *** p < 0.001.
B
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A

FIGURE 10

ARSD promote glioma progression through JAK2/STAT3 pathway. (A) JAK2/STAT3 pathway was suppressed after ARSD knockdown and activated after ARSD
overexpression in glioma cell lines. (B, C) AG490 reversed the increased proliferation, migration, and invasion in glioma cell lines caused by ARSD
overexpression. (D) AG490 reversed the overexpression of p-JAK2 and p-STAT3 in the JAK2/STAT3 pathway caused by ARSD overexpression. * p < 0.05 , **
p < 0.01, *** p < 0.001.
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