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Background: The examination, counting, and classification of white blood cells

(WBCs), also known as leukocytes, are essential processes in the diagnosis of

many disorders, including leukemia, a kind of blood cancer characterized by the

uncontrolled proliferation of carcinogenic leukocytes in the marrow of the bone.

Blood smears can be chemically or microscopically studied to better understand

hematological diseases and blood disorders. Detecting, identifying, and

categorizing the many blood cell types are essential for disease diagnosis and

therapy planning. A theoretical and practical issue. However, methods based on

deep learning (DL) have greatly helped blood cell classification.

Materials and Methods: Images of blood cells in a microscopic smear were

collected from GitHub, a public source that uses the MIT license. An end-to-end

computer-aided diagnosis (CAD) system for leukocytes has been created and

implemented as part of this study. The introduced system comprises image

preprocessing and enhancement, image segmentation, feature extraction and

selection, and WBC classification. By combining the DenseNet-161 and the

cyclical learning rate (CLR), we contribute an approach that speeds up

hyperparameter optimization. We also offer the one-cycle technique to rapidly

optimize all hyperparameters of DL models to boost training performance.

Results: The dataset has been split into two sets: approximately 80% of the data

(9,966 images) for the training set and 20% (2,487 images) for the validation set.

The validation set has 623, 620, 620, and 624 eosinophil, lymphocyte, monocyte,

and neutrophil images, whereas the training set has 2,497, 2,483, 2,487, and

2,499, respectively. The suggested method has 100% accuracy on the training

set of images and 99.8% accuracy on the testing set.
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Conclusion: Using a combination of the recently developed pretrained

convolutional neural network (CNN), DenseNet, and the one fit cycle policy,

this study describes a technique of training for the classification of WBCs for

leukemia detection. The proposed method is more accurate compared to the

state of the art.
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1 Introduction

Medical images are a massive data source for the healthcare

sector. With developments in imaging technology and processing

capabilities, the demand for increasingly complex tools to interpret

images has developed. More accurate image analysis will save

healthcare costs and improve the quality of diagnosis, ultimately

leading to better patient outcomes. Anemia, leukemia, and malaria

are just a few of the blood disorders that can be detected with

improved pathologists’ ability to recognize, count, and classify

blood cells (1–3). Improved understanding will facilitate

treatment, reduce potentially dangerous drug interactions, and

facilitate health monitoring. The three types of cells that make up

human blood are the erythrocytes (red blood cells), leukocytes

(white blood cells (WBCs)), and thrombocytes (platelets). All three

are derived from lymphoid and bone marrow stem cells.

Erythrocytes, which are non-nucleated biconcave diskettes,

transport both carbon dioxide (CO2) and oxygen (O2) around the

body. Blood is composed of roughly 40%–45% red blood cells and

1% WBCs (4–6). Organs in the body rely on each of the three types

of blood cells for specific tasks. Nevertheless, WBCs are made in the

bone marrow and are a crucial part of the blood’s immune system.

The immune system is the body’s primary line of defense against

invaders, most notably pathogens, and is mostly the work of

WBCs (7).

Thrombocytes, often known as platelets, are smaller than

erythrocytes and lack a nucleus. Giemsa staining produces a vivid

purple tint in platelets (8). Platelets are crucial to the body’s clotting

process, which guards against bacterial invasion and keeps the body

from bleeding out continuously following injuries (9). Leukocytes

may be divided into five major types based on a variety of

characteristics, including cell size, nucleus shape, type of nucleus

lobes, granule cytoplasm-to-nucleus ratio (CNR) staining qualities,

and function.

Lymphocytes, monocytes, neutrophils, eosinophils, and

basophils are the five most common types of WBCs. Another

thing is the band identification for a certain nucleus shape.

Figure 1 illustrates several common types of leukocytes. A

decrease in leukocytes below the threshold is medically referred to

as leukopenia. It is evidence of the frailty of the immune system and

a potential reason for disease.
02
Leukocyte counts can be low for one of two major reasons:

either the bone marrow has ceased producing leukocytes or an

infection is present and causing cells to be destroyed more quickly

than they can be replaced. Leukocytosis, a proliferative condition, is

characterized by a rise of leukocytes over the upper limit, which is

typically an indication of an inflammatory reaction. It occasionally

takes place because of normal immunological responses.

Nonetheless, if the neoplasm has an abnormally high or low cell

count, or if autoimmunity causes immunological reactions, it will be

classified as abnormal. Leukocyte disorders can also be classified in

this fashion (10) based on the nature and function of affected cells.

Hematologists can discover a great deal about blood diseases such as

anemia, bleeding disorders, leukemia, and HIV positivity from a

complete blood count (CBC) and differential blood count (DBC).

The CBC can be performed automatically by a cytometer as blood

flows past the detector, with parameters including hematocrit and

hemoglobin measured (11). DBC, which may count the different

types of leukocytes in peripheral blood, was previously performed

by a blood pathologist physically inspecting blood smears under a

light microscope. Nonetheless, this process is sensitive, and it is

essential that there be no (or just very few) inspection errors made

by the human professional. However, after several hours of

examination, specialists might often feel exhausted and make false

identifications of the various WBCs. This can happen rather

frequently (3, 12). As a result of the development of both

theoretical and practical applications for the technology that is

available today, several different methods of blood analysis that are

either fully or partially automated and are based on the image

analysis of blood smears or the principles of flow cytochemistry

have been developed. Image processing and artificial intelligence

(AI) (13) have lately been used to develop several new methods that

researchers have designed to automate the leukocyte classification

process. Within the scope of this investigation, a fully automated

computer-aided diagnosis (CAD) system of leukocytes has been

developed and implemented. The proposed CAD system includes

four primary stages, which are the image preprocessing and

enhancement stage, the image segmentation stage, the feature

extraction and selection stage, and the WBC classification stage.

The medical imaging industry makes extensive use of the

recently developed and powerful pretrained convolutional neural

network (CNN) DenseNet-161. However, compared to other
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pretrained CNNs, it has a high processing time and cannot

generalize. Thus, we are exploring the one cycle policy (14, 15), a

technique used to shorten training time while simultaneously

enhancing performance and tuning all hyperparameters of deep

learning (DL) models (15, 16). As can be shown in Figure 2, a

cyclical learning rate (CLR) can produce better training results than

the default learning rate (LR).

In contrast to blood cell segmentation algorithms that rely on

watershed segmentation, this article presents a segmentation

algorithm that uses Bounded Opening followed by Fast Radial

Symmetry (BO-FRS)-based seed-point detection and hybrid

Ellipse Fitting (EF)-based contour estimation. These methods

accurately extract seed points and precisely segment overlapping

cells, even from low-contrast inhomogeneous visual features. This

makes the method suitable for complex blood cell segmentation

problems. The proposed Least Squares (LS)-based geometric ellipse

fitting approach leads to better accuracy (ACC) and more

localization compared to algebraic Ellipse Fitting Methods

(EFMs), which are prone to biased fitting parameters and

inaccurate boundaries. The proposed method combines the

benefits of geometric and algebraic EFMs and is computationally

efficient. It also solves the noise problem with an Laplacian of

Gaussian (LoG)-based modified high-boosting operation and

avoids oversegmentation. This approach can also be applied to

other medical applications such as MRI, CT, ultrasound, and X-ray

images, as well as cybernetic applications and the segmentation of

overlapping objects. Notably, the proposed algorithm does not

require training data, making it more suitable than DL-based

techniques when little or no data are available for training (17).

The following is a list of the contributions that were made to

bring attention to the significance of the work that we will

be presenting:
Frontiers in Oncology 03
• We present an improved, lightweight, and effective CAD

system that can automatically classify four types of

leukocytes (neutrophils, eosinophils, lymphocytes, and

monocytes), which is a significant contribution to the

field of medical image analysis.

• We investigate the potential of DenseNet-161 pretrained

CNN for the suggested CAD system, which is a modern

approach to developing the system.

• The authors train the DenseNet efficiently with a single

cycle policy, cutting down on epochs and iterations, and

thereby making use of big datasets. This is a significant

contribution to the field of DL, as it demonstrates a more

efficient approach to training CNNs.

• The proposed model is tested experimentally on a variety of

real-world datasets, which is a significant contribution to

the field of medical image analysis, as it demonstrates the

effectiveness of the model on a range of different datasets.

• The results of the study show that the proposed model

outperforms the gold standard classification model, which

is a significant contribution to the field of medical image

analysis.

• The achieved ACC in categorization is approximately

99.8%, which is a significant contribution to the field of

medical image analysis, as it demonstrates the high ACC of

the proposed model.
The sections of this paper are as follows: Section 2 (Literature

Review) details the related work. In Section 3 (Materials and

Methods), we provide some the datasets and methods utilized for

the proposed model. The analysis and results of the experiments are

presented in Section 5 (Results and Discussion). In the end, the

paper was concluded in Section 6 (Conclusion).
2 Literature review

Many attempts at automatically segmenting, categorizing, and

analyzing leukocytes have been published. The automatic analysis

of medical images such as microscopic blood smears has attracted

the attention of many researchers. Numerous scientists have argued

for employing machine learning (ML) and AI to automatically

detect and diagnose abnormalities in microscopic images of

leukocytes. CAD of leukocytes can be broken down into two

categories: those that use ML (18) and those that use DL (19).

Both ML and DL are described and summarized here. Table 1
FIGURE 1

The main types of leukocytes cell images. Lymphocytes, Monocytes, Neutrophils, Eosinophils, and basophils are the five most common types of
white blood cells. Each type has a certain nucleus shape.
FIGURE 2

Accuracy achieved with one cycle of training against the
conventional method of training Convolutional Neural Networks.
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provides a summary of DL-based methods and serves to contrast

our proposed work with the state-of-the-art DL-based methods.

Table 1 summarizes the current state of the field and the limitations

of each technique based on recent studies that employed DL

algorithms to identify abnormalities in leukocytes. The most

noteworthy aspects of the new system are highlighted in the table

together with the results of the performance evaluation in terms

of ACC.

The following studies represent leukocyte diagnosis research

that has been conducted using classical ML. Sanei et al. (14) have

utilized the Bayesian classifier for the classification of leukocytes.

They have split the blood microscopic image into three sections.

Instead of relying on the image’s geometric or physical properties,

they used a Bayesian classifier to isolate the Eigen cells. Decisions

were based on the relative density of various colors. First, the input

photographs were rescanned, segmented, and rotated, and the three

vectors representing intensity and color were identified. Leukocyte

images from 10 patients were employed by Sarrafzadeh et al. (31),

who trained a support vector machine (SVM) using a set of

parameters that includes six geometrical qualities, six color

attributes, six statistical features, and seven-moment invariances

(invariants). The classifier reported an ACC rate of over 93%.

Leukocyte borders in images are defined manually to reduce the

impact of segmentation errors. The cytoplasm and nucleus of

leukocytes were separately identified by the Fuzzy C-means

clustering method. Thereafter, the cytoplasm, nucleus, and other

components of the cell that are of interest are removed Ko et al. (32)

used SVMs to classify the 480 blood smear images into training and

testing sets. They claimed that random forest performed better than

multilayer SVM when it came to classification. In a previous work,

the snake algorithm has been utilized to divide leukocytes. They

used the shape, color, and texture of the image as criteria for

classification. Gaussian normalization was then utilized to

transform the feature vectors from 0 to 1 after feature extraction

(32). Ramoser et al. employed SVM to automatically grade
Frontiers in Oncology 04
leukocytes. The study of 1,166 images split into 13 categories

found that segmentation was performed with 95% ACC (94/100)

and classification was performed with 75%–90% ACC. In their

study, Theera-Umpon and Dhompongsa (33) analyzed if it was

possible to classify leukocytes using only data from their nuclei. To

prevent segmentation errors from affecting the results of the

investigations, the cell nuclei were removed manually. Bayes

classifiers and CNNs were used for classification. They

determined that the information obtained from cell nucleus 100

was adequate because their classification was correct 77% of the

time. WBC subtype detection by flow cytometry was proposed by

Adjouadi et al. Parametric datasets were analyzed in a

multidimensional space using SVMs (34). To classify WBCs,

Rodrigues et al. created a two-stage artificial neural network. To

reduce the 106 problems, they first employed the Back Propagation

Neural Network (BPNN) for preclassification and then presented a

hybrid model based on the SVM and the pulse-coupled neural

network (PCNN). As a result, they looked for ways to lessen the

negative effects (35).

Both Otsu’s automated thresholding methodology and the

image enhancement and arithmetic strategy were proposed by

Joshi et al. for separating leukocytes from red blood cells. The K

Nearest Neighbor (K-NN) classifier was used to separate blast cells

from typical lymphocyte cells. Their ACC was determined to be

93% based on the results of the tests (36). Image processing

methods were used by Tantikitti et al. (37) for classifying WBCs,

extracting features from edges, changing colors, and fragmenting

images. Patients with dengue virus infections were sorted using a

decision tree analysis. The results showed that a total of 167 cell

shots were able to accurately classify leukocytes (92.2% ACC) and

that 264 blood cell photos correctly classified dengue (72.3%). One

hundred fifteen images were used by Hiremath et al. (38) as input

parameters for AI-based algorithms that categorized WBCs based

on their color, texture, and geometric properties. Histogram

equalization, edge extraction, and threshold-based automatic
TABLE 1 Overview of research using DL techniques for leukocyte classification or segmentation.

Author Method Accuracy Dataset Data volume

Maryam et al. (20) Optimized CNN 99% BCCD 12,444

Bani–Hani et al. (21) GA-optimized CNN 91% BCCD 12,435

Liang et al. (22) Hybrid CNN-RNN 90.80% BCCD 12,444

Rao (23) CNN and ResNeXt 99.24% BCCD 12,444

Rao (24) ANN and CNN 97.70% BCCD 1,600

Baydilli, and Atila (25) Capsul Networks 96.90% LISC 263

Ghosh and Bhattacharya (26) CNN and FCN on noise-free cell images 98.40% BCCD 12,500

Wang et al. (27) Single Shot Multibox Detector and YOLO 90.09% Private database 11,600

Ma et al. (28) DC-GAN, and ResNet 91.70% BCCD 12,447

banik et al. (29) CNN 96% BCCD 12,811

Sahlool et al. (30) VGGNet, CNN, and SESSA 83.20% C-NMC 10,661

Proposed model DenseNet with Cyclical Learning Rate 99.80% BCCD 12,447
CNN, Convolutional Neural Network; GA, Genetic Algorithms; ANN, Artificial Neural Network; FCN, Fully Connected Network.
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segmentation for lymphocytes, monocytes, and neutrophils are the

focus of that study. Several images of blood smears were used in the

trials, with geometric features of the images being utilized in

the classification process. Habibzadeh et al. (39) employed the

shape, density, and texture of microscopic images of blood to

classify and count leukocytes. The parameters of the SVM

classifier were the wavelet characteristics that were generated for

the classification process using the dual-tree complex wavelet

transform (DT-CWT) approach.

Ramesh et al. (40) proposed a simple classification method that

incorporates morphological characteristics and color data. As the

first step in a two-stage classification process, leukocyte cell nuclei

and leukocyte boundaries have been meticulously established. The

second stage involved applying the linear discriminant analysis

method to implement the features found in the cytoplasm and

nucleus of leukocytes. In another study, Su et al. (41) classified

leukocytes into five distinct groups, each with its own set of

distinguishing features. In this location, they aimed to use

morphological mechanisms to segment the elliptical nuclei and

cytoplasm of leukocytes. These photo chunks were mined for

geometric elements, color characteristics, and texture qualities

based on LDP (local directional pattern) and then used to train

three distinct neural networks. For the testing, they used 450 images

of leukocytes, and the highest identification ACC was 99.11%.

The microscopic analysis of blood cells is crucial for the early

diagnosis of life-threatening hematological disorders such as

leukemia. This paper presents an effective and computationally

efficient approach for automatically detecting and classifying acute

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).

Das et al. (42) proposed an approach that uses transfer learning,

which has been successful in medical image analysis due to its

excellent performance in small databases. The proposed system

employs a lightweight transfer learning-based feature extraction

followed by SVM-based classification technique for efficient ALL

and AML detection. The system is faster and more efficient due to

the depthwise separable convolution, tunable multiplier, and

inverted residual bottleneck structure. Moreover, the SVM-based

classification technique improves the overall performance by

optimizing the hyperplane location. The experimental results

demonstrate that the proposed system outperforms others in all

three publicly available standard databases, including ALLIDB1,

ALLIDB2, and ASH.

Breast cancer is a leading cause of cancer-related deaths among

women worldwide, and early detection is crucial for successful

treatment. In this work, the authors have developed five new deep

hybrid CNN-based frameworks for breast cancer detection. Sahu

et al. (43) proposed that hybrid schemes exhibit better performance

than the respective base classifiers by combining the benefits of both

networks. A probability-based weight factor and threshold value are

essential for efficient hybridization. An experimentally selected

optimum threshold value makes the system faster and more

accurate. Notably, unlike traditional DL methods, the proposed

framework yields excellent performance even with small datasets.

The proposed scheme is validated with datasets of breast cancer:

mini-DDSM (mammogram), BUSI, and BUS2 (ultrasound). The

experimental results demonstrate the superiority of the proposed
Frontiers in Oncology 05
ShuffleNet-ResNet scheme over the current state-of-the-art

methods in all of the mentioned datasets. Moreover, the proposed

scheme achieves high ACC rates of 99.17% and 98.00% for

abnormality and malignancy detection in mini-DDSM,

respectively, and 96.52% and 93.18% for abnormality and

malignancy detection in BUSI, respectively. In BUS2, the

proposed scheme delivers 98.13% ACC for malignancy detection.

Sahu et al. (44) introduce a breast cancer detection framework

based on DL that utilizes EfficientNet to achieve high performance

even in cases of small databases. The framework incorporates

uniform and adaptive scaling of depth, width, and resolution to

ensure an optimal balance between classification performance and

computational cost. Furthermore, a Laplacian of Gaussian-based

modified high boosting (LoGMHB) is employed as a preprocessing

step, along with data augmentation, to enhance the system’s

performance. The study evaluated the proposed method on

mammogram and ultrasound modalities and demonstrated its

superiority over other methods in all performance measures. The

experimental results were obtained using 5-fold cross-validation

and showed promising results for automatic and accurate detection

of breast cancer at an early stage, which could lead to proper

treatment and greatly reduce mortality rates.

The early detection of leukemia is crucial for proper treatment

planning and improving patient outcomes. Microscopic analysis of

WBCs is a cost-effective and less painful approach for detecting

leukemia. However, automatic detection of leukemia using DL and

ML techniques is a challenging task. Das et al. (45) present a

systematic review of recent advancements in DL- and ML-based

ALL detection. The review categorizes various AI-based ALL

detection approaches into signal and image processing-based

techniques, conventional ML-based techniques, and DL-based

techniques, including supervised and unsupervised ML and CNN,

recurrent neural network (RNN), and autoencoder-based

classification methods. Furthermore, the review categorizes CNN-

based classification schemes into conventional CNN, transfer

learning, and other advancements. The article provides a critical

analysis of recent research, discussing the merits and demerits of the

different approaches and highlighting the challenges and future

research directions in this field. Overall, this systematic review

provides a comprehensive understanding of DL- and ML-based

ALL detection, which may assist researchers in formulating new

research problems in this domain.

Das et al. (46) propose an efficient deep convolutional neural

network (DCNN) framework for accurate diagnosis of ALL, a

challenging task. The framework features depthwise separable

convolutions, linear bottleneck architecture, inverted residual, and

skip connections. It uses a probability-based weight factor to

efficiently hybridize MobilenetV2 and ResNet18, preserving their

benefits. The approach achieves the best ACC in ALLIDB1 and

ALLIDB2 datasets, with superior performance compared to transfer

learning-based techniques.

In the field of biomedical image processing, DCNNs have

received a lot of attention for various detection and classification

tasks. The outcomes of many of them are comparable to or even

superior to those of radiologists and neurologists. However, the

need for a large dataset makes using such DCNNs difficult to
frontiersin.org
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achieve decent results. Paul et al. (47) present a novel single model-

based strategy for classifying brain tumors on a short dataset. To

avoid overfitting, a modified DCNN known as the RegNetY-3.2G is

coupled with regularization DropOut and DropBlock. Additionally,

to mitigate the issue of tiny datasets, the RandAugment is an

improved augmentation technique. Last but not least, the MWNL

(Multi-Weighted New Loss).

Many studies have been introduced using DL techniques for the

classification of leukocytes because of the outstanding performance

of DL methods for the classification of medical images. The grid

search (GS) and random search (RS) hyperparameter optimization

methods were used by Hosseini et al. (20) to categorize images of

four different categories of leukocytes. ACC of 99% on the training

set and of 97% on the validation set was effectively obtained by the

given hybrid technique. Through this study (21), the authors

highlight the potential of DL, specifically CNNs, in automating

the classification of different types of WBCs based on microscopic

images. The use of CNNs allows for the detection of significant

features that help distinguish different classes of leukocytes, which

can assist hematologists in diagnosing diseases such as AIDS and

leukemia. The study applied genetic algorithms to optimize the

CNN’s hyperparameters and trained the model on a dataset

containing 9,957 images and tested it on another dataset of 2,478

images. The optimized CNN achieved high classification ACC,

sensitivity, and specificity, indicating its potential as a substitute

for manual WBC counting by pathologists. Overall, this study

demonstrates the potential of DL techniques in the field of

hematology and medical diagnosis. By automating the

classification of WBCs, it could lead to more efficient and

accurate diagnoses, ultimately improving patient outcomes. CNNs

have been presented by Liang et al. (22). This approach can help to

strengthen the explanation of input images and discover the

structured features of images, and it can also begin end-to-end

training of leukocyte images. In particular, they implemented the

transfer learning method in order to transfer the feature weights to

the CNN segment. Additionally, they implemented a configurable

loss function in order to enable the network to train and converge at

a faster rate and with more precise parameterization. The findings

of their experiments demonstrated that their proposed model for

the network has achieved an ACC of 90.8%. The optimized CNN

achieved a classification ACC of 99% on the training set, which was

91% for the validation set. In (23), Bairaboina et al. present a DL

model developed to classify mature and immature WBCs from

peripheral blood smear images. Traditional methods of manual

classification by hematologists can be laborious, expensive, and

time-consuming. The proposed model uses a combination of W-

Net, GhostNet, ResNeXt, and DCGAN-based data augmentation

techniques to achieve high ACC levels of 99.16%, 99.24%, and

98.61% for three datasets. The model has potential for clinical

application in blood cell microscopic analysis. Another a hybrid

approach of recurrent neural networks (RNNs). Leukocyte

segmentation was implemented using a network based on W-Net,

a CNN-based technique for WBC classification implemented by

Rao and Rao (24). Afterward, a DL system based on GhostNet was

used to retrieve important feature maps. Then, a ResNeXt approach

was used to classify them. The proposed method has attained an
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ACC of 99.24% on the Blood Cell Count and Detection (BCCD).

Rao and Rao (24) presented another DL-based framework for the

classification of leukocytes based on the MobilenetV3-ShufflenetV2

DL paradigm. At first, an effective Pyramid Scene Parsing Network

(PSPNet) is used to segment the images. When the images have

been segmented, the global and local features are extracted and

selected using MobilenetV3 and an Artificial Gravitational Cuckoo

Search (AGCS)-based technique. Images are then classified into five

groups using a ShufflenetV2 model. The proposed method achieves

99.19% and 99% ACC when tested on the BCCD and Raabin-Wbc

datasets. Baydilli and Atila (25) have presented a capsule deep

neural network (DNN)-based DL system for classifying leukocytes.

They have attained an ACC of 96.9% on the benchmarking dataset,

LISC. Ghosh and Bhattacharya (26) came up with two distinct

models of CNNs that improve and categorize input images of blood

cells. On the BCCD benchmarking dataset, they have achieved an

ACC of 98.4%. Wang et al. (27) have applied two unique object

detection strategies to the problem of leukocyte recognition. These

strategies are known as Single Shot Multibox Detector and You

Only Look Once (YOLO). In order to enhance the performance of

recognition, several essential elements affecting these object

detection strategies have been investigated, and detection models

have been constructed utilizing a private dataset. The level of ACC

that was achieved was 90.09%.Ma et al. (28) have come upwith a new

framework for the classification of blood cell images. This framework

is built on a deep convolutional generative adversarial network (DC-

GAN) as well as a residual neural network (ResNet). They have

accomplished a level of precision on the BCCD dataset that is 91.7%

accurate. By bringing together the ideas of merging the features of the

first and last convolutional layers and propagating the input image to

the convolutional layer, Banik et al. (29) created a novel CNNmodel.

They additionally employed a dropout layer to mitigate the model’s

overfitting issue. On the BCCD test database, they have obtained an

average ACC of 96%. Sahlol et al. (30) have used VGGNet, a robust

CNN architecture, already trained on ImageNet, to extract features

from images of leukocytes. The statistically improved Salp Swarm

Algorithm was then used to filter the extracted features. This

optimization method takes biological principles as its inspiration,

picking the most important features while discarding those that are

excessively linked or noisy. ACC of 83.2% was attained when the

proposed method was used on the C-NMC public Leukemia

reference dataset.
3 Materials and methods

3.1 Dataset

The BCCD public dataset (25) contains 12,453 augmented

images of leukocytes in JPEG format and cell type labels in CSV

format. There are 3,120, 3,103, 3,107, and 3,123 augmented images

for each class of the four cell types of eosinophil, lymphocyte,

monocyte, and neutrophil, respectively, as compared with the 88,

33, 21, and 207 original images (Mooney, 2018). The basophil

images are removed from the dataset as that type typically makes up

less than 1% of the leukocytes. A drop of blood is placed on a glass
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slide and smeared with a spreader slide. The blood is stained with a

Romanowsky stain such as May-Gr̈ u nwald Giemsa, Wright, or

Wright–Giemsa. Image quality, illumination, and different staining

techniques affect the outcome. The taken picture of cells is

magnified 100× and converted to standard RGB channels. The

dataset has been preprocessed, as each image was augmented and

repositioned before it is made available to the public for the input of

the CNN to avoid overfitting. The BCCD database is split into two

sets: approximately 80% of the data (9,966 images) for the training

set and 20% (2,487 images) for the validation set. The training set is

composed of 2,497, 2,483, 2,487, and 2,499 images of eosinophil,

lymphocyte, monocyte, and neutrophil, while the validation set

contains 623, 620, 620, and 624 images of eosinophil, lymphocyte,

monocyte, and neutrophil.

Neutrophils are the most numerous types of leukocytes

constituting 50%–70% of the circulating leukocytes (44). The

nucleus is relatively small and often multilobed. The stained

nucleus is dark blue, and its CNR is 2:1. They are capable of

phagocytizing viruses, toxins, fungi, and bacteria. They are the first

line of defense once microbial infection strikes.

Eosinophils compose 1%–5% of the leukocytes; however, their

counts fluctuate under different conditions (44). The cytoplasm is

pink-stained while the nucleus is purple-stained and frequently is

bilobed connected by a band of nuclear material. They protect

against parasitic infections and cancer cells. They produce

histamine as an inflammatory response to allergy-inducing

agents, damaged tissue, or pathogen invasion.

Lymphocytes constitute 20%–45% of leukocytes and are much

more common in the lymphatic system than in blood (22). They are

agranular cells with a large dark purple-stained nucleus and a

relatively small pale-colored amount of cytoplasm (38). They

create antibodies to regulate immune system responses against

bacteria, viruses, and other potentially harmful agents. The main

types of lymphocytes are T cells, B cells, and natural killer cells.

Monocytes make up approximately 2%–10% of leukocytes and

are the biggest leukocyte (22). Monocytes are granular and have a

kidney-shaped nucleus with plenty of light blue cytoplasm. They

share the phagocytic ability of neutrophils, break down bacteria,

and remove waste from the blood. They have a longer life span

compared with other leukocytes (20).

The BCCD database is augmented before becoming publicly

available on the Kaggle website because, practically, the amount of

training data is usually limited or not sufficient. Augmentation

expands the training set with artificial data so it can be used by

researchers. For the classification tasks, that means receiving a high-

dimensional input such as images and producing a related output. A

good classifier is immune to a wide-ranging variation. CNN as a

framework well-established for image data can discriminate

relevant minor features in the image while it is invariant to

unrelated large variations in the image (26). For image datasets,

augmentation can be done by modifying the images a few pixels to

improve the generalization ability and avoid overfitting. Among

available transformations are flipping, scaling, zooming, and

rotating the image in several directions. Augmentation helps

increase the correct classification rate regardless of size, position,

or degree of distortion of an image. Using random transformation
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exposes the network to more features in the data so it can generalize

better. One thing to consider when using an augmentation

approach is that one should take care of not altering the correct

class by using the wrong transformations (42, 44).
3.2 Convolutional neural network and
transfer learning

The CNNmodel is made up of multiple layers, including an input

layer, convolutional layers, batch normalization layers, pooling layers,

ReLU layers, Softmax layers, and one output layer. The dimensions a,

b, and c of the input image make up what is known as the input layer.

The total number of channels is specified by c. The main and first

convolutional layer of the network takes in data via three separate

inputs labeled a, b, and c. The convolutional layer is the one that is

responsible for mapping out the features. The activation layer makes

use of these features, which are also put to use for visualization

purposes. Transfer learning makes use of an already trained and

reused model as the foundation for a new task and model. The model

used for one task can be repurposed for other tasks as an optimization

to improve performance. By applying transfer learning, the model

can be trained with a small volume of data. It is helpful to save time

and achieve good results. In the transfer learning approach, we

transfer knowledge from the source mammogram input images to

the target domain mammogram mass images IT. The target classifier

Tc (Mt) is to be trained from the input mammogram image Is to the

target image IT to get the classifier prediction about BMNTi, which

stands for benign, malignant, and normal. To extract the features, a

transfer layer is used. The top layer from the classifier retrained the

new target classes, while the other layers were kept frozen as defined

in Equation 1.

BMNTi = Tc(Mt) (1)
3.2.1 DenseNet
DenseNets are the subsequent stage to increase the depth of

deep convolutional networks. When CNNs go deeper, the problems

arise. This happens because of the big path for information from

input to output layer. DenseNet-161 is a simple connectivity pattern

because it connects all layers directly with each other to be sure that

information flow is maximum between layers in the network. Feed

forward nature is maintained by obtaining each layer additional

inputs from the preceding layers. Figure 3 presents the architectures

of DenseNet for ImageNet. Features are combined by

concatenation. DenseNet is not as the same as traditional

architecture because it introduces L(L+1)
2 connections in an L-layer

network in lieu of L. Handling problems of vanish gradient, reusing

feature, lacking parameter’s number, and propagating features is the

most important feature of DenseNets.
3.2.2 Mathematical model of DenseNet
deep networks

DNNs have reached state-of-the-art performance in a variety of

computer vision applications. Moreover, the interpretation of
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DNNs has been examined from the perspective of visualization as

well as resilience. The groundbreaking studies that highlight the

potential of DNNs include AlexNet and VGGNet. The community’s

research focus has changed from feature engineering to network

design engineering as a direct result of the success of these key

efforts. As a result, various new network architectures have been

developed to improve the performance of DNNs. ResNets have

achieved state-of-the-art performance on a variety of benchmark

datasets, including ImageNet and the COCO detection dataset. This

was accomplished by reusing previous features in conjunction with

the identification shortcut. One of the factors that contribute to

ResNet ’s phenomenally high level of popularity is its

straightforward design strategy, which includes just one identity

shortcut. The shortcomings of the identity shortcut have been

investigated in subsequent publications, despite the tremendous

success that it has enjoyed. Because the identity shortcut bypasses

the residual blocks to maintain characteristics, it is possible that the

network’s capacity for representation is diminished as a result.

The ResNet has brought about a fundamental shift in how it was

thought to parametrize the functions of DNNs. The DenseNet can be

thought of as a kind of logical extension of this. Both the connection

pattern in which each layer connects to all the preceding layers and the

concatenation operation (as opposed to the addition operations in

ResNet) to retain and reuse features of previous layer are defining

characteristics of the DenseNet architecture. Let us make a brief detour

into mathematics to comprehend how one might possibly arrive at

such a conclusion. Looking back to functions’ Taylor expansion. To

clarify, for a point y=0, it might be expressed as shown in Equation 2.

One of the most important features of ResNet is that it can break

down a function into a series of terms with progressively higher

orders. In a manner analogous to this, ResNet disassembles functions,

as demonstrated in Equation 3. In other words, the ResNet breaks

down a function f (y) into a straightforward linear component and a

complex nonlinear one. However, if we were to write down more

information than just the two components, but not necessarily add

anything new. DenseNet is one example of such a solution. Figure 4

illustrates the primary difference between ResNet (shown on the left)

and DenseNet (shown on the right) in terms of cross-layer

connections: the utilization of addition versus the utilization of

concatenation. As can be seen in Figure 4, the primary distinction

between ResNet and DenseNet is that, in the latter case, outputs are
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concatenated (shown by) instead of added. This is denoted by the

notation. As a consequence of this, we apply an increasingly complex

chain of functions before performing a mapping from the values it

contains, as depicted in Equation 4. The number of features is further

reduced by combining all of these functions in Multi-layer Perceptron

(MLP). The mechanics of this are straightforward; instead of adding,

we just string together the terms. DenseNet gets its name from how

packed the dependency tree between the variables gets. The last layer

in this structure has numerous connections to its predecessors.

Figure 5 depicts these complex interconnections.

f (y) = f (0) + y  :  ½ f 0(0) + y :½  f
00(0)
2 !

+ y  :½  f
‴(0)
3 !

+…�� � (2)

f (y) = y + g(y)  (3)

y  → ½y,  f1(y),  f2(½y,  f1(y)�),  f3(½y,  f1(y),  f2(½y,  f1(y)�)�),  …� (4)
3.3 The proposed CAD system for
leukocyte images

The image preprocessing and enhancement stage, the image

segmentation stage, the feature extraction and selection stage, and

the WBC classification stage are the four primary stages that are

included in the proposed CAD system. These stages are illustrated

in Figure 6, which also contains the information that is mentioned
FIGURE 5

Dense links in DenseNet. DenseNet gets its name from how packed
the dependency tree between the variables gets. The last layer in
this structure has numerous connections to its predecessors. This
figure depicts these complex interconnections.
FIGURE 3

DenseNet architectures for ImageNet. DenseNets are broken up
into DenseBlocks, and while the dimensions of the feature maps
stay the same inside each block, the number of filters that are used
varies from one block to the next. These layers in between them are
referred to as Transition Layers.
BA

FIGURE 4

DenseNet vs. ResNet. The primary distinction between (A) ResNet
and (B) DenseNet is that, in the latter case, outputs are concatenated
(shown by) instead of added.
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in the Introduction section. In addition, the findings of this research

contribute to existing state-of-the-art models by suggesting the

implementation of a one fit cycle strategy, which makes the

process of training simpler. As a result, there is no requirement to

adjust any of the hyperparameters of the network that is being used.

3.3.1 Image preprocessing phase
In order to process the input histopathological image sample,

images are resized to 244 × 244, and training images are the only

ones that are normalized. Changing the range of intensity values for

individual pixels is the core idea behind image normalization. The

purpose of image normalization is to transform the pixel range

values into ranges that are more intuitive to the senses.
3.3.2 Image segmentation phase
Figure 7 illustrates an example for an input image with its

corresponding output image, segmented one. Color Image

Segmentation was used on the images to separate each individual

pixel using the HSV color space. The images will be segmented

using information derived from the HSV color space. HSV is an

abbreviation that stands for hue, saturation, and value as illustrated

in Figure 8.

The following Algorithm 1 is an outline of the primary steps

that are involved in the image segmentation phase:
Fron
i) First, convert the RGB image in HSV form as depicted in

Figure 6.

ii) using the color bar at the right to choose the

thresholds.
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iii) set up the thresholds for the masks.

• Lower Mask (refer to the hue channel)

• Upper Mask (refer to the hue channel)

• Saturation Mask (refer to the transparency

channel)

Ex: to segment the NEUTROPHIL cell, the lower and upper

mask values that are appropriate would be 0.0 and 1.0

After that, the saturation threshold is decided. This

is a bit tricky because you need to consider the colors

that are seen in the object. In this case, the values

are 0.45

iv) Create the mask by multiplying all masks of the

thresholds.

mask = upper_mask*lower_mask*saturation_mask

v)Then, multiply this mask by each value in the rgb

image.

red = img [ : , : , 0 ]*mask

green = img [ : , : , 0 ]*mask

blue = imh [ : , : , 0 ]*mask

i) Lastly, apply the morphology operation to remove the

noise or halls.
Algorithm 1. Image segmentation phases.

3.3.3 Feature selection and classification using
the DenseNet model

The DenseNet-161 DL model is used in the implementation of

both the feature extraction and classification stages. Adjouadi et al.

(34) developed DenseNet that had the best classification results on

the available datasets such as ImageNet. DenseNet does not use direct
FIGURE 6

An automated End-to-End CAD, system of white blood cells. The image preprocessing and enhancement stage, the image segmentation stage, the
feature extraction and selection stage, and the white blood cell classification stage are the four primary stages that are included in the proposed
CAD system.
FIGURE 7

An illustration of image before and after the segmenation phase. This is an example for an input image with its corresponding output image,
segmented one.
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connections among hidden layers, but it uses dense connection to

build a model. Its construction was based on linking each to a

subsequent layer. In any layer, any important features learned are

involved within the network. Due to the extracted features, deep

network training became more efficient and the performance of the

model increased. The number of parameters has become less than

CNN because feature maps are sent directly to all subsequent layers.

The DenseNet has a very important feature, which is that it reduces

overfitting in the model because of the use of dense connections.

Training DL models with very large numbers of parameters takes

much time. More and more data and powerful GPU are required to

train these models from scratch. Transfer learning is used to

overcome the pervious problem. By using transfer learning, you are

saving time. Transfer learning is a method of machine learning in

which a model that was developed for one task can be utilized as a

foundation for a model that will be used on a different task. Learned

features are often transferable to different data. For example, a model

trained in Dataset for animal images that includes learned features

such as edges and lines can be used on other dataset using transfer

learning technique. In transfer learning, feature extractor is done by

fully connected layer after removing it from the model used.

In this study, DenseNet-161 with ImageNet is utilized; however,

the final layer, which is designated as the “completely connected”

layer, has had its number of classes reduced from 1,000 to 4. The

strategy known as one fit cycle policy is utilized to implement

DenseNet-161.

3.3.4 One fit cycle policy
It is known that training of DNN is a difficult optimization

problem. Tuning of hyperparameters such as LR is very

important. The performance of the network will be enhanced

by carefully selecting the hyperparameters for LR, momentum,

and weight decay. The traditional approach involves running

a grid or random search, which can be time-consuming and

computationally intensive. The impacts of these hyperparameters

are also closely related to the architecture, the data, and each

other. This section provides more effective guidelines for

selecting certain hyperparameters (27). A small LR leads to

very slow training, while a large LR hinders the convergence. A

low LR is good, but it takes a long time to train perfectly. When

training speed is increased, LR is increased until LR gets too large

and diverge. To obtain the exact LR, you need to do many
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experiments and be patient. A new method was discovered by

Leslie N. Smith for setting up LR named CLRs. CLR made LR

values between minimum and maximum range instead of having

fixed values during the training. CLR cycle has two steps, one of

them being an increase in LR and the other one being a decrease

in LR. CLR eliminates the need to find the optimal LR but the

optimal rate between minimum and maximum range. Figure 9

shows classification ACC while training CIFAR-10. The red curve

is CLR. As depicted in Figure 9, the CLR achieves the same ACC

as the original LR but in iteration less than the original LR

method (15). In Leslie N. Smith’s research (48), super-

convergence is the method that uses CLR, but with one cycle

that contains two LR steps. The total number of iterations must

be larger than the size of the cycle. After completing the cycle,

LR is decreased much further for the remaining iterations.

Leslie N. Smith named this method one fit cycle policy. In

super-convergence, LR starts from a small value and is

increased to a very large value then returns to a value lower

than its initial one. The impact of LR many values is a training

ACC curve. In super-convergence, training ACC is moved fast as

LR is increased (15, 44), becomes oscillated as LR is very large,

and then jumps again to an extreme point of ACC.

To utilize CLR, one must provide a step size and minimum and

maximum LR bounds. A cycle consists of two such steps, one in

which the LR linearly grows from the lowest to the maximum and the

other in which it progressively falls. The step size is the number of

iterations (or epochs) utilized for each step. Smith (2015) explored a

variety of methods for varying the LR between the two boundary

values, discovered that they were all equivalent, and thus advised the
FIGURE 8

Color Image Segmentation was used on the images to separate each individual pixel using the HSV color space. The images will be segmented using
information derived from the HSV color space. HSV is an abbreviation that stands for Hue, Saturation, and Value.
FIGURE 9

CLR method and original learning rate.
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most straightforward method—letting the LR change linearly—even

though suggested discrete jumps and found similar outcomes (28).

Training for the LR range test begins with a modest LR and

gradually rises linearly over the course of a pretraining run.

This single run offers useful insight into the maximal LR and

how well the network can be taught over a variety of LRs. The

network starts to converge at a low LR, and as the LR rises, it

finally reaches an unmanageable size, which lowers ACC and

increases test/validation loss. By using a constant LR, a smaller

number is required since otherwise the network will not start to

converge. The LR at these extrema is the highest value that can

be utilized as the LR for the maximum bound with CLRs. The

minimal LR constraint can be chosen in a variety of ways: 1) by

a factor of 3 or 4 less than the maximum bound, 2) by a factor of

10 or 20 less than the maximum bound if only one cycle is used,

or 3) by a quick test of hundreds of iterations with a few initial

LRs and choosing the largest one that permits convergence to

start without overfitting. If the initial LR is too large, the

training will not start to converge. Be aware that the LR can

only rise to a certain point before the training becomes

unstable. This affects your decision about the lowest and

maximum LRs (i.e., raise the step size to widen the gap

between the minimum and maximum).
4 Results and discussion

The experiments are applied on a BCCD public dataset. Our

studies were carried out on it with the help of Google Colab. The

evaluation criteria are used to evaluate the performance of

classification model, including image test ACC, Macro-F1,

Micro-F1, and Kappa criteria, and average time. Macro-F1

takes the average of the precision and recall of each class.

ACC is defined by the ratio of Ncor (the number of correctly

classified images in testing set) to Nall (Total number of images

in testing set). Equation 5 defines the image test ACC. Precision

is calculated as the sum of true positives across all classes

divided by the sum of true positives and false positives across

all classes. Recall is calculated as the sum of true positives across

all classes divided by the sum of true positives and false

negatives across all classes. Equation 6 defines Micro-F1.

Kappa measure, based on confusion matrix calculation, can

handle problems such as imbalanced datasets and multiclass

problems. Precision is defined by Equation 7, and it means the

percentage of your results that are relevant. On the other hand,

recall as described by Equation 8 refers to the percentage of

total relevant results correctly classified by your algorithm.

Equation 9 defines Kappa coefficient, where p0 is the image

test ACC as defined in Equation 5, and pe is the summation of

the product of the number of images in each type of cancer and

the predicted number of images in each type of cancer to the

square of the total number of images in the testing set.

Accuracy(ACC) =
Ncor
Nall

(5)
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F1 − score =
2X(precision �  recall)
(precision +  recall)

(6)

Precision =
Sum c in C TruePositives _ c

Sum c in C (TruePositives _ c  +  FalsePositives _ c)
(7)

Recall =
Sum c in C TruePositives _ c

Sum c in C (TruePositives _ c  +  FalseNegatives _ c)

(8)

Kappa =
p0−pe
1−pe

, p0 =
Ncor
Nall

, pe = o
​NtrueXNpre

NallXNall
(9)
4.1 Classification results

The next subsection discusses the classification result on the

BCCD dataset based on the default one fit cycle policy approach.

The experimental result is applied on a raw dataset. Moreover, the

results of our research experiments are compared with the results of

other researchers. The experiments are performed over a desktop

computer system having an Intel Core i7-7700 CPU, 16 GB RAM,

and one 8-GB GPU. This research used DenseNet-161 to perform

the classification of microscopic images into neutrophils,

eosinophils, lymphocytes, and monocytes by using a pretrained

model in terms of ACC, F1, AUC, and Kappa. Our experimental

result of multiclassification problem on raw data is shown in Table 1

according to ACC, Macro-F1, Micro-F1 and Kappa. We ran the raw

data on 30 epochs. All classification results are given in Tables 2, 3.

The loss curves are shown in Figure 10, and the confusion matrices

are shown in Figure 11.

The experimental results in Table 3 show that all evaluation

metrics on 40× magnification factor (which is indicated by the black
TABLE 3 Precision, Recall, and F1-score for raw data.

Criteria Types precision recall f1-score

Eosinophil 1.00 1.00 1.00

Lymphocyte 1.00 1.00 1.00

Monocyte 0.80 1.00 0.89

Neutrophil 1.00 0.98 0.99

accuracy – – – 0.99

macro avg – 0.95 0.99 0.99

weighted avg – 0.99 0.99 0.99
fr
TABLE 2 The result of each evaluation is on raw data.

Network Criteria Result Average Time

DenseNet-161 Accuracy (ACC) 0.985 4.30 h
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underline) are better than the other magnification factors. The reason

for 40× achieving the best ACC is because it contains more significant

features of breast cancer. From Table 3, precision, recall, and F1-score

values show that our model classification result is perfect.
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The receiver operating characteristic (ROC) metric is used to

evaluate the output quality. ROC is a probability curve, while AUC,

area under the curve, is a metric for assessing how well two groups

may be distinguished. It reveals the extent to which the model can

differentiate between categories. If the AUC is high, then the model

is very good at predicting the correct classes. The AUC value (see in

Figure 12) for class 0 and class 1 is 1.00 and for class 2 and class 3 is

0.99. Ideally, the ROC for the false positive rate should be zero and

one for the true positive rate.
4.2 Comparisons with other models

This section compares our experimental results with the other

experiments carried out by other research papers on raw data and

augmented data. We evaluated the ACC of the newly introduced

method to that of the most recent and cutting-edge classification

frameworks for leukocyte histology by using the BCCD database. As a

consequence of this, we were in a position to evaluate the significance

of the hybrid DenseNet and CLR approach. The differences between

the suggested method and the state-of-the-art methods that are
frontiersin.org
FIGURE 11

Confusion matrix. A confusion matrix is a graphical representation
and summary of a classification algorithm's results. There is a one
hundred percent rate of accuracy for classifying Lymphocyte and
Eosinophil samples. There are two Monocyte samples that have
been mislabeled as Neutrophils.
FIGURE 12

Confusion matrix. A confusion matrix is a graphical representation
and summary of a classification algorithm's results. There is a one
hundred percent rate of accuracy for classifying Lymphocyte and
Eosinophil samples. There are two Monocyte samples that have
been mislabeled as Neutrophils.
TABLE 4 A comparison between research results and the state of the art.

Criteria Author Methods Result

Accuracy (ACC)

Maryam et al. (20) Optimized CNN 99%

Bani-Hani et al. (21) GA-optimized CNN 91%

Liang et al. (22) Hybrid CNN-RNN 90.8%

Rao (23) CNN and ResNeXt 99.24%

Rao (24) ANN and CNN 97.7%

Ghosh and Bhattacharya (25) CNN and FCN on noise-free cell images 98.4%

Ma et al. (26) DC-GAN, and ResNet 91.7%

Banik et al. (27) CNN 96%

Proposed model DenseNet-161 with CLR Approach 99.8%
FIGURE 10

Loss curve. How well a model matches its training data is measured
by the validation loss (Orange curve), whereas how well it performs
on novel data is measured by the training loss (Blue curve).
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currently in use are outlined in Table 4. To facilitate this comparison,

ACC was utilized as a performance metric.

DenseNet with the CLR approach, the suggested classification

framework, outperforms the DL systems established by Bani-Hani

et al. (40), Liang et al. (22), Paul et al. (47), Bairaboina and Battula

(23), Rao and Rao (24), and Banik et al. (29) when applied to the

BCCD dataset. In addition to this, it has accomplished a level of

ACC that is on par with that which Habibzadeh et al. (39), Rao and

Rao (24), and Ghosh and Bhattacharya (26) have accomplished.

In general, it can be deduced from the comparison in Table 4

that the suggested system is capable of recording a performance that

is better than that of all other systems.

From the experimental results applied on raw and augmented data,

Tables 2–4 show that the evaluation criteria-specified ACC achieved the

best results by applying a new method in training called one fit cycle

policy and with small number of batches and the fewest number of

epochs. When we have trained the CNN using 32 batch size and 60

epoch, we did not attain high performance. On the contrary, we use 32

batch sizes and 30 epochs on raw data, and this helped us to reduce the

time of training and achieve better ACC than the other research.
5 Conclusions

Using a combination of the recently developed pretrained CNN,

DenseNet, and the one fit cycle policy, this study describes a

technique of training for the classification of WBCs. The

proposed method is more accurate and requires less cycles to

train CNN—thanks to the one fit cycle policy. It fixes how

difficult it is to adjust the DL model’s hyperparameters.

DenseNet-161 was used in the experiment, and the results are

analyzed in terms of various performance indicators. ACC,

precision, and recall are presented as indicators of the suggested

model’s efficacy. We solved the multiclass classification problem

with a raw data ACC of 99.8%. As a result, the outcomes of our

experiments are more reliable than those obtained in the existing

state of the art for the classification of WBCs. In the future work, the

proposed model can be applied to diagnosis-specific diseases such

as cancer and liver disease.
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