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imaging-based radiomics in
predicting pathological complete
response after neoadjuvant
chemoradiotherapy in locally
advanced rectal cancer
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Xinming Zhao1 and Hongmei Zhang1*
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Beijing, China, 2Department of Pharmaceutical Diagnosis, GE Healthcare, Life Sciences, Beijing, China,
3Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/
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Beijing, China
Objective: Radiomics based on magnetic resonance imaging (MRI) shows

potent ia l fo r pred ic t ion of therapeut ic e ffect to neoad juvant

chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC); however,

thorough comparison between radiomics and traditional models is deficient. We

aimed to construct multiple-time-scale (pretreatment, posttreatment, and

combined) radiomic models to predict pathological complete response (pCR)

and compare their utility to those of traditional clinical models.

Methods: In this research, 165 LARC patients undergoing nCRT followed by

surgery were enrolled retrospectively, which were divided into training and

testing sets in the ratio of 7:3. Morphological features on pre- and

posttreatment MRI, coupled with clinical data, were evaluated by univariable

and multivariable logistic regression analysis for constructing clinical models.

Radiomic parameters were derived from pre- and posttreatment T2- and

diffusion-weighted images to develop the radiomic signatures. The clinical-

radiomics models were then generated. All the models were developed in the

training set and then tested in the testing set, the performance of which was

assessed using the area under the receiver operating characteristic curve (AUC).

Radiomic models were compared with the clinical models with the DeLong test.

Results: One hundred and sixty-five patients (median age, 55 years; age

interquartile range, 47–62 years; 116 males) were enrolled in the study. The

pretreatment maximum tumor length, posttreatment maximum tumor length,

and magnetic resonance tumor regression grade were selected as independent
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1234619/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1234619&domain=pdf&date_stamp=2023-08-16
mailto:13581968865@163.com
https://doi.org/10.3389/fonc.2023.1234619
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1234619
https://www.frontiersin.org/journals/oncology


Abbreviations: ADC, apparent diffusion coefficient;

Committee on Cancer; AUC, area under the receiver

curve; CEA, carcinoembryonic antigen; CI, confi

circumferential percentage; DCE-MRI, dynamic contras

distance from tumor to anal verge; DWI, diffusion-we

extramural vascular invasion; ESGAR, European Society

Abdominal Radiology; LARC, locally advanced rectal

absolute shrinkage and selection operator; MRF, m

magnetic resonance imaging; mRMR, maximum

redundancy; mrTRG, magnetic resonance tumor re

maximum tumor length; MTT, maximum tumo

neoadjuvant chemoradiotherapy; OR, odds ratio; pCR,

response; ROI, region of interest; T2WI, T2-weighted im

Peng et al. 10.3389/fonc.2023.1234619

Frontiers in Oncology
predictors for pCR in the clinical models. In the testing set, the pre- and

posttreatment and combined clinical models generated AUCs of 0.625, 0.842,

and 0.842 for predicting pCR, respectively. The MRI-based radiomic models

performed reasonably well in predicting pCR, but neither the pure radiomic

signatures (AUCs, 0.734, 0.817, and 0.801 for the pre- and posttreatment and

combined radiomic signatures, respectively) nor the clinical-radiomics models

(AUCs, 0.734, 0.860, and 0.801 for the pre- and posttreatment and combined

clinical-radiomics models, respectively) showed significant added value

compared with the clinical models (all P > 0.05).

Conclusion: The MRI-based radiomic models exhibited no definite added value

compared with the clinical models for predicting pCR in LARC. Radiomic models

can serve as ancillary tools for tailoring adequate treatment strategies.
KEYWORDS

rectal neoplasms, pathological complete response, magnetic resonance imaging,
radiomics, neoadjuvant chemoradiotherapy
Introduction

Neoadjuvant chemoradiotherapy (nCRT) coupled afterward

with surgical resection has been standardly applied in locally

advanced rectal cancer (LARC). For LARCs treated by nCRT,

approximately 15–27% can obtain pathological complete response

(pCR) (1). Concerned with the high operation-related morbidity

(surgical complications and bowel and urogenital system

dysfunction) and profound lifestyle alteration subsequent to

surgery (2, 3), investigators have proposed less invasive or

alternative procedures, like a “watch-and-wait” regime or local

resection (4, 5) for patients with good response to nCRT. To

implement these less invasive approaches safely and efficaciously,

precise stratification of patients with pCR is a crucial step.

Magnetic resonance imaging (MRI) has been generally

recognized as the standard imaging procedure in the primary

evaluation and re-staging of rectal cancer (6, 7). Several MRI

characteristics, including tumor volume, signal intensity, and

magnetic resonance tumor regression grade (mrTRG) (8–10),

have been investigated to predict pCR. However, no consensus
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exists for any reliable and reproducible methods for accurate

prediction before operation. The mrTRG, proposed by the

MERCURY research team (11), was demonstrated in several

studies (10, 12, 13) to have a significant association with pCR,

while a recent meta-analysis reported that mrTRG exhibited

superior specificity (93.5%) for pCR, but inferior sensitivity

(32.3%) (14).

Radiomics, which provides non-visual information in relation

to tumor heterogeneity by extracting many quantitative parameters

from digital imaging, has recently been applied to predict treatment

response in rectal cancer. A few studies have shown potential results

for predicting pCR in LARC using MRI-based texture or radiomic

parameters, but substantial limitations have emerged, including the

use of single-timepoint models (15–17), single-sequence radiomics

analysis (16), and a lack of independent validation (18). Thus,

multiple-timepoint models based on multiparametric MRI are

required to generalize the definite value of MRI-based radiomics

for pCR assessment, in order to promote radiomics into a more

practical perspective.

Therefore, our study aimed to develop and validate radiomic

models based on multiple MRI timepoints (T2- and diffusion-

weighted imaging, T2WI and DWI), and to compare the value of

radiomic models in predicting pCR in LARC with traditional

clinical models.
Materials and methods

Patients

Our research received approval from the institutional ethics

committee, accompanied by a waiver for patients’ informed consent

due to the retrospective nature of this study. We reviewed

consecutive patients who underwent rectal MRI scanning from
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January 2015 to August 2018 and were diagnosed with rectal cancer

by pathology at our institute. The patients were included under the

following criteria: (1) rectal adenocarcinoma diagnosed by biopsy;

(2) middle or lower rectum located, stage II–III (cT3–4N0M0 or

cTxN1–2M0) determined by pretreatment MRI; (3) rectal MRI

examinations within two weeks prior to commencing nCRT and at

an interval of 4–6 weeks subsequent to nCRT; and (4) completely

received nCRT followed by surgical resection. In all, 207 patients

were enrolled per the inclusive criteria. The exclusion criteria were

as follows: (1) other concomitant tumors (n = 4); (2) mucinous

adenocarcinoma (over 50% area of the tumor with high signal on

pretreatment T2WI (n = 1); (3) over 8 weeks between the

completion of nCRT and the operation (n = 31); and (4)

insufficient MRI quality (n = 6). Of those screened, 165 patients

were included and allocated to a training and testing cohort in a 7:3

ratio randomly.

Epidemiological parameters and levels of tumor markers were

derived from the electronic medical database at our institute,

including age, sex, pre- and posttreatment carbohydrate antigen

19-9 (CA19-9), and carcinoembryonic antigen (CEA) levels.
Neoadjuvant chemoradiotherapy
and surgery

All patients received long- or short-course nCRT before

surgery. Long-course nCRT was administered as radiotherapy of

45–50.4 Gy to the whole pelvis (5 times per week for 5 weeks) and

synchronous chemotherapy (825 mg/m2 capecitabine orally, twice a

day). Short-course nCRT was administered as radiotherapy of 25

Gy in total, with a fraction of 5 Gy and four cycles of chemotherapy

after 7–14 days from completion of radiotherapy (130 mg/m2

oxaliplatin intravenously, once a day, on day 1, as well as 1000

mg/m2 oral capecitabine, twice a day, during day 1–14). All nCRT

was followed by surgical resection, including abdominal-perineal

resection, low anterior resection, and Hartmann’s operation.
Histopathological assessment

Each surgery specimen was evaluated by a pathologist with 21

years’ diagnostic experience in gastrointestinal pathology, abiding

by the 8th edition of the American Joint Committee on Cancer’s

(AJCC) TNM staging system (19), blinded to imaging data. No

residual tumors found in the primary tumor bed and lymph nodes

were defined as pCR (ypT0N0).
MRI parameters and imaging acquisition

MRI scanning was conducted using Discovery MR 750 (GE

Healthcare, Chicago, IL), a 3.0-T MRI system with a phased-array

surface coil. Raceanisodamine hydrochloride (10 mg) was

intramuscularly injected in patients before scanning to suppress

bowel motility (except for those with contraindications).

Additionally, ultrasound transmission gel (50–60 mL) was
Frontiers in Oncology 03
injected into the enteric cavity through rectal intubation to

highlight the tumor boundary and enhance contrast. Axial T1-

weighted imaging (T1WI); axial fat-saturated T2WI (T2WI/FS);

axial DWI; and oblique axial, coronal, and sagittal T2WI of two

timepoints (pre- and posttreatment) were obtained. The detailed

parameters regarding the MRI sequences are presented in

Supplementary Table S1.
MRI morphological evaluation

MRI morphological evaluation, including the parameters of

distance from tumor to anal verge (DTA), maximum tumor

length (MTL), maximum tumor thickness (MTT), circumferential

percentage (CP), mrT (ymrT), mrN (ymrN), mesorectal fascia

(MRF), extramural vascular invasion (EMVI), and mrTRG was

conducted on pre- and posttreatment MR images. These were

evaluated by a radiologist with 21 years’ diagnostic experience in

gastrointestinal imaging, who was only aware of the pathological

results proven by biopsy.

DTA was measured on sagittal T2WI from the anal verge to the

tumor’s lowest margin. MTL was recorded as the maximum

longitudinal extent from the tumor’s upper to lower margins on

sagittal T2WI. MTT and CP were assessed on oblique axial T2WI

with maximum tumor dimension. MTT was recorded by the

perpendicular distance between the tumor extension’s outer

margin and the rectal wall and CP, the tumor invasion’s

proportion around the rectal wall with four degrees (degree 1, 0–

0.25; 2, > 0.25–0.5; 3, > 0.5–0.75, and 4, > 0.75–1).

The mrT (ymrT) and mrN (ymrN) staging originated from the

8th edition of the AJCC staging system (19). Metastatic lymph node

in the primary evaluation and re-staging after nCRT was

determined according to the consensus recommended by the

European Society of Gastrointestinal and Abdominal Radiology

(ESGAR) (7). MRF invasion was defined as the distance equal to or

smaller than 1 mm from tumor spiculae to MRF (7). EMVI

evaluation was conducted based on a five-point scoring system

(20). mrTRGs were assigned in accordance with the description by

the MERCURY study group (11): mrTRG1, complete regression,

the primary tumor bed without residual tumor signal; mrTRG2,

dense low signal fibrosis with minimal tumor signal; mrTRG3,

substantial tumor signal; mrTRG4, small areas of fibrosis outgrown

by residual tumor; and mrTRG5, extensive residual cancer with no

regression or tumor growth. The mrTRG1 was considered pCR,

whereas mrTRGs2–5 were considered non-pCR.
Imaging segmentation and radiomic
feature extraction

The delineation of regions of interest (ROIs) and radiomic

feature extraction were performed on the pre- and posttreatment

oblique axial T2WI and axial DWI by using Radcloud version 3.1.0,

which was based on the “pyradiomics” package within Python

version 3.8.1. Reader 1 (a junior radiologist with three years’

diagnostic experience in gastrointestinal imaging) and reader 2 (a
frontiersin.org
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senior radiologist with 16 years’ diagnostic experience in

gastrointestinal imaging) conducted a review of each imaging set

to reach a consensus over the ROIs. Reader 1 first drew manually on

each consecutive tumor-containing slice, which showed

intermediate T2WI and high DWI signal in contrast with the

normal signal of the muscular layer of the adjacent rectal wall. In

some patients, tumor signals were not identified on posttreatment

images, and these ROIs were positioned at the location of the tumor

bed before treatment (21). Figure 1 shows two examples of

segmentation of ROIs on the pre- and posttreatment images.

Reader 2 then examined these ROIs. The two readers would

discuss to reach a consensus if there was a discrepancy. They

were unaware of the pathological results and clinical data.

Imaging normalization weighting coupled with resampling for

voxel size (1×1×1 mm3) was conducted. Radiomic feature

extraction was followed by an automatic procedure. The types of

features are listed in Supplementary Table S2. There were 1,409

parameters extracted from each modality and 5636 parameters in

total were extracted for each patient.
Radiomic feature selection and
signature construction

Z-scores were used to normalize the radiomic features, which

aimed at averting the influence of different feature magnitudes.

Irrelevant or redundant features were eliminated and 30 parameters

with high relevance and low redundancy were reserved using

maximum relevance minimum redundancy (mRMR) arithmetic.

The performance of 10-fold cross-validation in the training set was

calculated and the optimal subset of features was identified using the

least absolute shrinkage and selection operator (LASSO) by

comparing the results. The values of the tuning parameters (l)
Frontiers in Oncology 04
were then determined. Each patient’s pre- and posttreatment

radscores were calculated using a weighted linear combination of

these selected predictors. The pre- and posttreatment radscores,

regarded as two independent radiomic signatures, were compared

byMann–Whitney U test between pCR and non-pCR to explore the

significance, respectively. The combined radiomic signature was

generated by integrating the pre- and posttreatment radscores using

multivariable logistic regression (selection method, Backward: LR).
Statistical analysis

We employed R (version 4.1.1, R Foundation, Vienna, Austria)

and IBM SPSS Statistics (version 25.0, Chicago, IL) to conduct the

statistical analyses. Clinical characteristics including demographic

data, levels of tumor markers, and MRI morphological parameters

were analyzed. The Shapiro–Wilk test was performed for normality

assessment. The difference in continuous normally distributed

variables was analyzed using the independent t-test between pCR

and non-pCR groups, whereas continuous non-normally

distributed variables were analyzed using the Mann–Whitney U

test. Categorical data were evaluated with the c2 test or Fisher’s

exact test. Two-sided P-values < 0.05 were considered

statistically significant.

The clinical variables were assessed by univariable logistic

regression analysis of pCR and non-pCR to explore the

significance. The significant variables were then analyzed by

multivariable logistic regression (selection method, Backward: LR)

to identify the independent predictors to construct the

pretreatment, posttreatment, and combined clinical models. The

clinical-radiomics models were established in the same way, except

for adding the pre- and posttreatment radscores as independent

radiomic signatures. All models were established based on the
A B D

E F G H

C

FIGURE 1

Two examples of segmentation of ROIs on the pre- and posttreatment images. Panels (A-D) show the segmentation of a 51-year-old patient with
low-rectum adenocarcinoma at a stage of cT3N1M0. (A, B) Pretreatment oblique axial T2WI and axial DWI (b = 1000 s/mm2); (C, D) Posttreatment
oblique axial T2WI and axial DWI (b = 1000 s/mm2); this patient was demonstrated pCR by surgical pathology. Panels (E-H) show the segmentation
of a 60-year-old patient with low-rectum adenocarcinoma at a stage of cT3N1M0. (E, F) Pretreatment oblique axial T2WI and axial DWI (b = 1000 s/
mm2); (G, H) Posttreatment oblique axial T2WI and axial DWI (b = 1000 s/mm2); this patient was demonstrated non-pCR by surgical pathology. DWI,
diffusion-weighted imaging; pCR, pathological complete response; ROI, region of interest; T2WI, T2-weighted imaging.
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training group and validated by the testing group. The utility of

models was evaluated using the areas under the receiver operating

characteristic curves (AUCs). Bootstrapping was used to generate

95% confidence intervals (CIs). The DeLong test was conducted to

compare the AUCs between models.

The overall workflow of the comparative study is presented

in Figure 2.
Results

Patients

One hundred and sixty-five patients (median age, 55 years; age

interquartile range, 47–62 years; 116 males) were enrolled in the

study. An amount of 115 patients (median age, 56 years; age

interquartile range, 50–62 years; 82 males) were allocated to the

training cohort, whereas 50 patients (median age, 54 years; age

interquartile range, 44–61 years; 34 males) were assigned to the

testing cohort. There were no significant differences in clinical

variables when comparing the testing and training cohorts

(Tables 1, 2). No significant difference was found between the

pCR prevalence (16.5% [19/115] vs. 14.0% [7/50], P = 0.683) in

two cohorts.
Radiomic feature selection and signature
construction

A subset of three pretreatment and eight posttreatment

radiomic parameters was confirmed separately as the optimal

candidate predictor for the radiomic signatures. Detailed

information regarding the contributing weight of the selected

radiomic features is shown in Supplementary Figure S1. Both the

pre- and posttreatment radscores of pCR patients in the training set
Frontiers in Oncology 05
were larger than those of non-pCR patients (median: pretreatment

radscore, -1.11 vs. -2.22, P = 0.011; posttreatment radscore, 0.42 vs.

-1.50, P < 0.001). These were verified by the testing cohort (median:

pretreatment radscore, -0.07 vs. -2.39, P = 0.415; posttreatment

radscore, 0.32 vs. -1.32, P = 0.014). Figure 3 shows box plots of the

pre- and posttreatment radscores in the training and testing sets for

the pCR and non-pCR groups. The pre- and posttreatment

radscores were enrolled in the combined radiomic signature as

independent predictors. The pretreatment, posttreatment, and

combined radiomic signatures exhibited AUCs of 0.775–0.887 for

the training group and 0.734–0.817 for the testing group.
Model development and validation

In the training set, the pretreatment MTL (P = 0.011),

posttreatment MTL (P = 0.001), posttreatment MTT (P = 0.025),

posttreatment mrT stage (ymrT) (P = 0.046), and mrTRG (P <

0.001) between the pCR and non-pCR groups were significantly

different by the univariable logistic regression analysis. The

pretreatment MTL, the only predictor identified in the

pretreatment clinical model, achieved the lowest AUCs both in

the training set (AUC, 0.717; 95% CI, 0.587–0.848) and the testing

set (AUC, 0.625; 95% CI, 0.375–0.874). The posttreatment MTL

(odds ratio [OR], 0.912; 95% CI, 0.848–0.980) and mrTRG (OR,

6.064; 95% CI, 1.933–19.020) were selected by the multivariable

logistic regression analysis as independent predictors both in the

posttreatment and combined clinical models, which achieved the

same AUCs of 0.804 (95% CI, 0.685–0.922) and 0.842 (95% CI,

0.709–0.975) separately for the training and testing cohorts.

In three clinical-radiomics models, the characteristics enrolled

as independent predictors were separate as follows: the

pretreatment radscore for the pretreatment clinical-radiomics

model; the posttreatment MTL (OR, 0.929; 95% CI, 0.862–1) and

posttreatment radscore (OR, 2.236; 95% CI, 1.471–3.400) for the
FIGURE 2

The overall workflow of the comparative study. CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; CP, circumferential percentage; DTA,
distance from tumor to anal verge; EMVI, extramural vascular invasion; MRF, mesorectal fascia; MRI, magnetic resonance imaging; mrTRG, magnetic
resonance tumor regression grade; MTL, maximum tumor length; MTT, maximum tumor thickness; pCR, pathological complete response.
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posttreatment clinical-radiomics model; and the pretreatment

radscore (OR, 2.370; 95% CI, 1.217–4.615) and posttreatment

radscore (OR, 2.153; 95% CI, 1.426–3.251) for the combined

clinical-radiomics model. The clinical-radiomics models of three

timepoints achieved AUCs of 0.775–0.887 for the training group

and 0.734–0.860 for the testing group. Table 3 and Figure 4 show

the AUCs of the models.

The combined radiomic signature, as well as the combined

clinical-radiomics model, achieved the highest AUC in the training

group (AUC, 0.887; 95% CI, 0.815–0.958), while it was the

posttreatment clinical-radiomics model (AUC, 0.860; 95% CI,

0.751–0.970) in the testing group. Furthermore, comparisons of

MRI-based radiomic models and clinical models showed that

neither the pure radiomic signatures nor the clinical-radiomics

models of three timepoints were significantly different from the

clinical models (all P > 0.05), both in the training and testing sets.

Also, there were no significant differences when comparing the pure
Frontiers in Oncology 06
radiomic signatures with clinical-radiomics models of three timepoints

(all P > 0.05). Table 4 illustrates the comparison between the models.
Discussion

The precise stratification of LARC patients with pCR after

nCRT has become a crucial issue, because they can consider less

invasive procedures, like a “watch-and-wait” regime or local

resection. MRI-based radiomics shows potential for predicting

pCR, but the thorough comparison between radiomics and

traditional models is deficient. In this study, we developed and

validated multiple time-scale (pretreatment, posttreatment, and

combined) radiomic models based on MRI to predict pCR

and compared their utility to those of traditional clinical models.

Radiomic models performed reasonably well for predicting pCR in

LARC. However, neither the pure radiomic signatures nor the
TABLE 1 Patients’ clinical characteristics in the training and testing sets.

Characteristic Training set (n=115) Testing set (n=50) P

Age (years) 56 (50–62) 54 (44–61) 0.341a

Sex 0.669b

Male 82 (71%) 34 (68%)

Female 33 (29%) 16 (32%)

Pretreatment CEA (ng/mL) 0.409b

< 5 61 (53%) 30 (60%)

≥ 5 54 (47%) 20 (40%)

Posttreatment CEA (ng/mL) 0.052b

< 5 95 (83%) 47 (94%)

≥ 5 20 (17%) 3 (6%)

Pretreatment CA19-9 (U/mL) 0.457b

< 30 96 (83%) 44 (88%)

≥ 30 19 (17%) 6 (12%)

Posttreatment CA19-9 (U/mL) 0.107c

< 30 107 (93%) 50 (100%)

≥ 30 8 (7%) 0 (0%)

Neoadjuvant chemoradiotherapy 0.511b

Long-course chemoradiotherapy 57 (50%) 22 (44%)

Short-course radiotherapy
plus chemotherapy

58 (50%) 28 (56%)

Surgery 1

Low anterior resection 53 (46%) 23 (46%)

Abdominal-perineal resection 59 (51%) 26 (52%)

Hartmann’s operation 3 (3%) 1 (2%)
Age is expressed as median with interquartile range in parentheses; other measurements are expressed as numbers of patients with percentages in parentheses. CA19-9, carbohydrate antigen 19-
9; CEA, carcinoembryonic antigen.
a: Mann–Whitney U test.
b: c2 test.
c: Fisher’s exact test.
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TABLE 2 Pre- and posttreatment MRI morphological characteristics of patients in the training and testing sets.

Characteristic Training set (n=115) Testing set (n=50) P

Pretreatment DTA, mm 53.4 (35.9–73.6) 44.6 (33.8–67.1) 0.169a

Posttreatment DTA, mm 58.4 (41.0–77.3) 49.6 (41.4–69.7) 0.227a

Pretreatment MTL, mm 45.4 (37.8–53.3) 43.6 (34.4–58.3) 0.712a

Posttreatment MTL, mm 23.5 (16.3–30.6) 24.5 (15.7–30.3) 0.994a

Pretreatment MTT, mm 18.2 (15.9–22.2) 19.4 (15.2–24.7) 0.606a

Posttreatment MTT, mm 10.4 (7.8–13.2) 10.5 (6.9–12.7) 0.492a

Pretreatment CP 0,978c

0–0.25 2 (2%) 1 (2%)

>0.25–0.5 23 (20%) 11 (22%)

>0.5–0.75 48 (42%) 20 (40%)

>0.75–1 42 (37%) 18 (36%)

Posttreatment CP 0,639b

0–0.25 31 (27%) 15 (30%)

>0.25–0.5 58 (50%) 20 (40%)

>0.5–0.75 17 (15%) 10 (20%)

>0.75–1 9 (8%) 5 (10%)

Pretreatment mrT stage 0.094c

1 0 (0%) 0 (0%)

2 1 (1%) 0 (0%)

3a 15 (13%) 6 (12%)

3b 70 (61%) 38 (76%)

3c 22 (19%) 2 (4%)

3d 4 (3%) 3 (6%)

4 3 (3%) 1 (2%)

Posttreatment mrT (ymrT) stage 0.121c

0 12 (10%) 6 (12%)

1 1 (1%) 2 (4%)

2 16 (14%) 7 (14%)

3 71 (62%) 34 (68%)

4 15 (13%) 1 (2%)

Pretreatment mrN stage 0.684b

0 28 (24%) 15 (30%)

1 51 (44%) 22 (44%)

2 36 (31%) 13 (26%)

Posttreatment mrN (ymrN) stage 0.648c

0 78 (68%) 38 (76%)

1 34 (30%) 11 (22%)

2 3 (3%) 1 (2%)

Pretreatment MRF 0.571b

(Continued)
F
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clinical-radiomics models of three timepoints showed a definite

added value to the traditional clinical models.

The pretreatment radiomic signature generated moderate

AUCs of 0.734–0.775 to predict pCR, which were concordant
Frontiers in Oncology 08
with the results of previous studies (18, 22, 23). Meanwhile, the

posttreatment and combined radiomic signatures obtained higher

AUCs (0.801–0.887) than the pretreatment one. The superiority of

posttreatment imaging corresponded well with the former
TABLE 2 Continued

Characteristic Training set (n=115) Testing set (n=50) P

Positive 34 (30%) 17 (34%)

Posttreatment MRF 1c

Positive 7 (6%) 3 (6%)

Pretreatment EMVI 0.835b

Positive 67 (58%) 30 (60%)

Posttreatment EMVI 0.786b

Positive 18 (16%) 7 (14%)

mrTRG 0.861c

1 24 (21%) 13 (26%)

2 72 (63%) 28 (56%)

3 16 (14%) 8 (16%)

4 3 (3%) 1 (2%)

5 0 (0%) 0 (0%)
Pre- and posttreatment DTA, MTL, and MTT are expressed as median with interquartile range in parentheses; other measurements are expressed as numbers of patients with percentages in
parentheses. CP, circumferential percentage; DTA, distance from tumor to anal verge; EMVI, extramural vascular invasion; MRF, mesorectal fascia; MRI, magnetic resonance imaging; mrTRG,
magnetic resonance tumor regression grade; MTL, maximum tumor length; MTT, maximum tumor thickness.
a: Mann–Whitney U test.
b: c2 test.
c: Fisher’s exact test.
A B

DC

FIGURE 3

Box plots for the pre- and posttreatment radscores of the pCR and non-pCR groups. Panels (A, B) show the pretreatment radscores in the training
and testing sets, respectively. Panels (C, D) show the posttreatment radscores in the training and testing sets, respectively. pCR, pathological
complete response.
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investigation (24), which is theoretically directly linked to

pathological results. To scrutinize the pure radiomic signatures,

consistent with prior studies (25), high weights of high-order

radiomic features were included in the models, with 3/3 of the

pretreatment and 4/8 of the posttreatment features being the

wavelet features, which reflect the change rate of the pixel value

in the frequency domain (26), representing the complexity and

heterogeneity of tumors and can better predict pCR.
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Clinical models performed inferiorly to well in our research. The

pretreatment clinical model based on the single MTL got the lowest

prediction performance (AUC, 0.625) in the testing set, which

indicated the predicting insufficiency of pure pretreatment

morphological features. But even so, the pretreatment radiomic

models (including both the pure radiomic signature and clinical-

radiomics model) didn’t perform significantly superior to the clinical

model. The posttreatment clinical model generated higher AUCs than
TABLE 3 The areas under the receiver operating characteristic curves of multiple-time-scale models.

AUC Clinical model Radiomic signature Clinical-radiomics model

Training set

Pretreatment 0.717 (0.587–0.848) 0.775 (0.674–0.875) 0.775 (0.674–0.875)

Posttreatment 0.804 (0.685–0.922) 0.855 (0.779–0.932) 0.865 (0.782–0.949)

Combined 0.804 (0.685–0.922) 0.887 (0.815–0.958) 0.887 (0.815–0.958)

Testing set

Pretreatment 0.625 (0.375–0.874) 0.734 (0.469–0.999) 0.734 (0.469–0.999)

Posttreatment 0.842 (0.709–0.975) 0.817 (0.687–0.948) 0.860 (0.751–0.970)

Combined 0.842 (0.709–0.975) 0.801 (0.600–1) 0.801 (0.600–1)
Data in parentheses are 95% CIs. AUC, area under the receiver operating characteristic curve; CI, confidence interval.
A B

D E F

C

FIGURE 4

The receiver operating characteristic curves for the clinical, radiomics, and clinical-radiomics models of three timepoints. (A-C) Curves for the
pretreatment, posttreatment, and combined models in the training set, respectively; (D-F) Curves for the pretreatment, posttreatment, and
combined models in the testing set, respectively. (Curves for the pretreatment and combined clinical-radiomics models coincide with those of the
pretreatment and combined radiomic signatures, respectively, which are displayed in red).
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the pretreatment one and the combined clinical model only reserved

the posttreatment clinical features as the independent predictors after

multivariable logistic regression selection with the method of

Backward, which implied the superior predicting utility of

posttreatment clinical features. Both the posttreatment and

combined clinical models were based on the posttreatment MTL

and mrTRG. Posttreatment MTL has been recognized as an effective

morphological predictor in assessing pCR as former studies reported

(24, 27, 28). Another promising predictor was mrTRG, which reflected

the tumor signal status after treatment and highly correlated with the

tumor response (10, 29). In the comparison of the posttreatment

radiomic models (including both the pure radiomic signature and

clinical-radiomics model) with the clinical model, there was still no

added significant value that emerged, which was the same as the

combined models. Our results were consistent with a handful of

previous reports. Shi et al. reported that a pretreatment radiomic

model could predict pCR but showed no significant difference from

the clinical model. However, the conclusion lacked independent

validation (18). Bulens et al. illustrated in an external validation

cohort that neither the pure radiomic model based on pre- and

posttreatment MRI nor the clinical-radiomics model outperformed

the clinical model in predicting (near-)pCR. However, the study did

not conduct further stratification research by timepoint (30).

The strength of our study resides in our multiple-timepoint and

multiple-modality comparative analysis in the field of radiomics, which

is few in the current research. Recent studies employing radiomics to

predict pCR in LARC have been an exponential growth, while few of

them clarified the usefulness of MRI-based radiomic models, especially

compared with the traditional clinical ones. Our study promotes

radiomics into a more applicable perspective and gets the

conclusions with general applicability and realistic instruction. Since

the ambiguous superiority over the clinical models and the laborious

and intricate process during radiomic analyzing, the application of

radiomic modeling is far from routine in the clinical practice. Clinical

parameters, including the emerging ones, such as histopathological,

immunohistochemical, and genetic, still deserve further investigation.

It is worth noting that radiomics is not devoid of any

advantages. Considering the realistic diagnostic procedures in the

clinical practice that mrTRG can vary in doctors with different

experience and the final diagnosis are always concluded by the

senior one in a two-observer review, we took mrTRG results
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evaluated by a senior radiologist into the analysis. Consistent with

the former literature (specificity, 92–98%; sensitivity, 0–59%) (14),

mrTRG in our study obtained moderate to high specificity (0.791–

0.865) and low sensitivity (0.571–0.579). In contrast, expert input

cannot be a requirement in radiomics analysis. It was reported (31)

that significant predictive performance can be achieved regardless

of whether radiomics ROI segmentation was done by an

experienced radiologist or a junior resident. And our radiomic

ROI segmentation was conducted by a junior one. In this case,

radiomics can serve as a supplementary tool in senior-absent

situations to add confidence in treatment response assessment

and help tailor the treatment strategies adequately.

There were several limitations in this research. First, it was a

retrospective analysis with a limited scale of datasets in a single

institute, which might carry inherent selection bias. Prospective and

multicenter external validation deserves further investigation in the

future. Second, many factors can potentially affect the reproducibility of

radiomic features, such as scanning sequence, data acquisition, image

preprocessing, segmentation strategy, and feature extraction tools. In

this study, we performed several measures (eg ROIs were delineated by

two radiologists in consensus and the whole-volume segmentation) to

improve feature reproducibility. Therefore, we did not evaluate the

interobserver and intraobserver reproducibility of segmentation. Third,

other functional sequences such as dynamic contrast-enhanced MRI

(DCE-MRI) and apparent diffusion coefficient (ADC) maps were not

enrolled in our study. DCE-MRI is not routinely applied in the rectal

MRI examination; ADCmaps are vulnerable, with geometric distortion

and sensitivity to susceptibility artifacts.

In conclusion, our study showed that MRI-based radiomic

models performed reasonably well for the prediction of pCR in

LARC, but exhibited no definite added value compared to the

traditional clinical models. Radiomic models can serve as

ancillary tools for selecting candidate pCR patients and tailoring

adequate treatment strategies.
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