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Single-cell RNA sequencing
identifies a novel proliferation
cell type affecting clinical
outcome of pancreatic
ductal adenocarcinoma
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Huiyuan Luo1, Yan Xiong1, Qin Li1, Qinmei Zhu1,
Songyun Zhao5*, Ting Chen6* and Jingen Xie7*
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Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China, 4Department of
Gastroenterology, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s
Hospital of Huai’an, Huai’an, China, 5Department of Neurosurgery, Wuxi People’s Hospital Affiliated to
Nanjing Medical University, Wuxi, China, 6Department of Oncology, The Affiliated Huai’an Hospital of
Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, China, 7Department of
General Medicine, Huai’an Cancer Hospital, Huai’an, China
Background: Pancreatic ductal adenocarcinoma (PDAC) is an extremely deadly

neoplasm, with only a 5-year survival rate of around 9%. The tumor and its

microenvironment are highly heterogeneous, and it is still unknown which cell

types influence patient outcomes.

Methods: We used single-cell RNA sequencing (scRNA-seq) and spatial

transcriptome (ST) to identify differences in cell types. We then applied the

scRNA-seq data to decompose the cell types in bulk RNA sequencing (bulk RNA-

seq) data from the Cancer Genome Atlas (TCGA) cohort. We employed unbiased

machine learning integration algorithms to develop a prognosis signature based

on cell type makers. Lastly, we verified the differential expression of the key gene

LY6D using immunohistochemistry and qRT-PCR.

Results: In this study, we identified a novel cell type with high proliferative

capacity, Prol, enriched with cell cycle and mitosis genes. We observed that the

proportion of Prol cells was significantly increased in PDAC, and Prol cells were

associated with reduced overall survival (OS) and progression-free survival (PFS).

Additionally, the marker genes of Prol cell type, identified from scRNA-seq data,

were upregulated and associated with poor prognosis in the bulk RNA-seq data.

We further confirmed that mutant KRAS and TP53 were associated with an

increased abundance of Prol cells and that these cells were associated with an

immunosuppressive and cold tumor microenvironment in PDAC. ST determined

the spatial location of Prol cells. Additionally, patients with a lower proportion of

Prol cells in PDAC may benefit more from immunotherapy and gemcitabine

treatment. Furthermore, we employed unbiased machine learning integration

algorithms to develop a Prol signature that can precisely quantify the abundance

of Prol cells and accurately predict prognosis. Finally, we confirmed that the

LY6D protein and mRNA expression were markedly higher in pancreatic cancer

than in normal pancreatic tissue.
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Conclusions: In summary, by integrating bulk RNA-seq and scRNA-seq, we

identified a novel proliferative cell type, Prol, which influences the OS and PFS

of PDAC patients.
KEYWORDS
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal

cancer characterized by aggressive tumor growth, frequent delays in

diagnosis, and poor prognosis, with a 5-year survival rate of only

around 9% (1). Despite the use of surgical resection, chemotherapy,

and antivascular therapy, the efficacy of these treatments remains

limited (2, 3). One possible explanation for the different treatment

responses and varying survival outcomes is the tumor heterogeneity

of PDAC (4, 5). Current studies based on group transcriptome

sequencing have encountered difficulties in explaining patient

heterogeneity. Therefore, gaining a deeper understanding of the

molecular and cellular characteristics of PDAC may provide

valuable insights for identifying biomarkers and potential

treatment options.

Single-cell RNA sequencing (scRNA-seq) is a potent and

innovative technology that enables the acquisit ion of

transcriptome data from single cells (6). By leveraging the high-

throughput capabilities of this approach, researchers can accurately

characterize the cell populations present within tumor tissue, which

might otherwise be obscured by the dominant cell populations

when utilizing traditional bulk sequencing techniques (7). As

scRNA-seq methods continue to advance, their utilization for

analyzing solid tissue, such as the PDAC, has become increasingly

prevalent (7, 8). However, the identification of rare cell

subpopulations still presents a significant challenge. To overcome

this, it is imperative to integrate data from multiple scRNA-seq

datasets, as this will enhance our capability to accurately uncover

these rare cell populations.

Our hypothesis proposed that the integration of various

scRNA-seq cohorts could uncover previously undetermined cell

types associated with PDAC, and their potential effect on patient

survival when their abundance increases within the tumor

microenvironment (TME). In this study, we identified and

characterized a highly proliferative PDAC cell type, called “Prol”,

and showed that its abundance in tumors is associated with poor

survival outcomes. KRAS and TP53 are major driver oncogenes in

PDAC, with KRAS mutations in 90–95% and TP53 mutations in up

to 75% of cases (9–11). KRAS is a membrane-bound protein that

transmits growth factor signals, and its mutations lock it in an active

state, leading to uncontrolled cell proliferation and survival (12).

TP53 is a tumor suppressor gene that controls cell cycle, apoptosis,

DNA repair, and other processes to prevent cancer. Its mutations

impair its normal function and may confer gain-of-function
02
properties that enhance tumor progression and metastasis (13).

However, the relationship between these somatic mutations and cell

type changes in PDAC is unclear. To fill this knowledge gap and

reveal the molecular mechanisms of the identified cell types, we

examined the PDAC risk cell type, Prol, for the accumulation of

known somatic cancer mutations. In addition, machine learning

offers advantages over traditional modeling by enabling the

discovery of novel and informative features, using flexible and

expressive functions, and combining different algorithms to

improve prediction and classification (14). Thus, we successfully

applied unbiased machine learning algorithms to create a novel Prol

signature that can accurately quantify the abundance of Prol cells

and predict clinical outcomes in PDAC patients. Our study may

reveal new aspects of the pathophysiology of PDAC, which could

lead to more personalized and beneficial treatments for patients

with this cancer.
Methods

Analysis of the scRNA-seq data

We obtained two PDAC scRNA-seq datasets and extracted data

of primary PDAC and non-tumor pancreatic tissue (15, 16),

consisting of 34 samples from primary PDAC tumors and 11

samples from non-tumor tissue. We applied filters to the gene-

cell matrix to eliminate cells with the number of features below 200

or greater than 8000 and mitochondrial genes exceeding 10%, and

the count of captured transcripts exceeding 50000. A total of 73,415

cells were selected and imported into the Seurat (version 4.2.1) R

package for subsequent analysis (17). To normalize the gene

expression levels, we employed the LogNormalize method with a

scale factor of 10,000. Next, we identified the 2000 most variable

genes and scaled their expression levels before conducting principal

component analysis (PCA) in variable gene space. The Harmony

(version 0.1.1) R package was used to mitigate batch effects (18). All

steps were carried out using functions from the Harmony and

Seurat packages, including NormalizeData, FindVariableFeatures,

ScaleData, RunPCA, FindNeighbors, FindClusters, and RunUMAP.

We also performed the clustering of Prol cells following the

aforementioned process. After obtaining 14 assigned clusters

using the Clustree R package (version 0.5.0) (19), we assessed the

cell cycle phase in the cells using the CellCycleScoring function (20)

provided by the Seurat package.
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Processing of bulk RNA-seq and
clinical data

We gathered cohorts from public databases including the TCGA

(https://tcga-data.nci.nih.gov/tcga/), International Cancer Genome

Consortium (ICGC, http://dcc.icgc.org/), ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/), and Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/). The following criteria

were employed for sample inclusion: (1) availability of survival

information for at least 40 samples, (2) PDAC pathological type,

(3) overall survival time exceeding 30 days, and (4) patients with

primary tumors who had not undergone any prior treatment before

they underwent resection. In the end, we included a total of 906

samples from 7 cohorts, which were TCGA-PDAC (140 samples),

ICGC-PDAC-AU-Array (PDAC-AU-Array, 231 samples), E-

MTAB-6134 (288 samples), GSE62452 (64 samples), GSE28735 (41

samples), GSE85916 (79 samples), and GSE57495 (63 samples). In

addition, we enrolled 167 GTEx pancreatic tissue samples from the

UCSC Xena (https://xenabrowser.net/datapages/). We also

downloaded the clinical information and transcriptome data of

OAK cohort (21) including 344 non-small cell lung cancer samples

to assess the effect of immunotherapy. We converted the raw read

count into transcripts per kilobase million (TPM) values for the

GTEx and TCGA datasets. The processed expression array data

obtained from ArrayExpress, GEO, ICGC, and OAK were directly

generated through their respective portals. We employed bulk RNA-

seq to analyze a larger number of samples for broadening our

investigation of cell type composition in PDAC. The GTEx and

TCGA datasets were merged to compare the abundance of Prol cells

in bulk RNA-seq between PDAC and normal pancreatic samples.

Genomic alterations for PDAC samples in TCGA were obtained

from the cBioPortal (https://www.cbioportal.org/).

We eliminated the 7 cohorts for batch effects using z-score

normalization and the surrogate variable analysis (SVA) algorithm,

and we used the TCGA-PDAC cohort for training and the

remaining six cohorts for testing to evaluate the predictive

capacity of the Prol signature.
Assignment of cell types for scRNA-seq
cohort and identification of marker genes

To identify marker genes specific to each cell type, we applied

the Wilcox test using the FindAllMarkers function in Seurat. We

retained only the marker genes with an absolute log2 fold change

(log2FC) of at least 0.75 and a Bonferroni-adjusted p-value of less

than 0.05. The Prol marker genes, which had high expression levels

(log2FC > 0.75), were then imported into the GOplot (version 1.0.2)

R package for Gene Ontology (GO) annotation.
Cell type abundance in scRNA-seq and
bulk RNA-seq data

To identify cell types that were either elevated or reduced in

PDAC, we conducted a Wilcoxon test between tumor and non-
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tumor samples using both scRNA-seq and bulk RNA-seq data. For

the scRNA-seq data, we determined the observed proportions of

each cell type in both tumor and non-tumor samples by dividing the

number of cells belonging to a specific cell type by the total number

of cells in the sample. We used the BisqueRNA R package (version

1.0.5) (22) by a PCA method to estimate the abundance of the 7

main cell types in the pancreatic bulk expression data from the

TCGA cohort, which were then used for downstream analysis.
Associations between survival outcomes
and cell type proportion estimates

We conducted Cox proportional hazard regression analyses to

investigate the potential associations between estimates of cell type

abundance and prognosis. PDAC patients from the TCGA cohort

were divided into low and high Prol cell type abundance groups

using the optimal cut-off value calculated by the survminer R

package (version 0.4.9). We used a Kaplan-Meier analysis based

on the Log-rank test was used to compare survival differences

between the two groups. Each survival analysis was carried out

using the survival R package (version 3.4-0).
Genome alterations analyses

We utilized the maftools R package (version 2.14.0) (22) to

analyze and visualize genetic mutation data in the TCGA cohort. To

identify the driver gene of PDAC, we applied the oncodrive module

of the maftools R package, which uses a Poisson method and a P-

value threshold of 0.05. This module employs the OncodriveCLUST

method, which detects cancer driver genes by clustering mutations

along the protein sequence. The underlying assumption is that

mutations in cancer genes, especially oncogenes, tend to occur in

specific protein positions that are functionally important (23). For a

given gene, if a tumor sample had at least one somatic mutation

type, we classified it as mutant for that gene. Conversely, if a tumor

sample did not have any somatic mutation type for the gene, we

classified it as wild type for that gene. The Prol cell type abundance

between PDAC samples with and without somatic mutations was

compared via the Wilcoxon test.

We obtained a list of oncogenes and tumor suppressor genes

from the Oncology Knowledge Base (OncoKB, https://

www.oncokb.org/) (24). Oncogenes or tumor suppressor genes

with a copy number alteration (CNA) frequency greater than 10%

were selected for conducting analyses similar to gene

mutation analyses.
Spatial transcriptomics, CellChat,
CytoTRACE, and pseudotime analysis

We downloaded spatial transcriptomics (ST) data from the

GEO (GSE111672). The expression profiles of the top 30 marker

genes for Prol CD8+ T cells, Prol CD4+ T cells, and Prol epithelium
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cells were each analyzed using the GSVA (version 1.46.0) R package

to calculate GSVA scores for different areas.

The CellChat R package (version 1.6.1) was utilized to conduct

CellChat analysis. Initially, we segregated Prol cells from the entirety of

the cells and classified them based on their cell type, including “CD8+

T”, “CD4+ T”, “B”, “Epithelium”, or “Fibroblast” cells. Following this,

a CellChat object was created using the createCellChat function. For

each cell signaling pathway, cell-to-cell interactions were produced

utilizing the computeCommunProbPathway function.

The CytoTRACE algorithm computed a score that evaluates the

differentiation and developmental potential of cells by analyzing

factors such as the number of uniquely expressed mRNA features

per cell and the distribution of mRNA content (25). Our study

utilized the CytoTRACE R package (version 0.3.3) to determine

which cell type served as the initial stage of cellular differentiation.

Besides, pseudotime analysis was used to further assess the direction

of cellular differentiation based on the monocle R package (version

2.24.0) (26). With the exception of q < 0.01, we maintained all other

parameters at their default values.
Response to immunotherapy and
gemcitabine treatment

Tumor immune dysfunction and exclusion (TIDE) represents a

highly effective approach for evaluating the immunity evasion of

tumors via an examination of their expression profiles (27). Greater

TIDE scores correspond to heightened potential for tumor cells to

evade immune surveillance, which could potentially result in

decreased efficacy of immunotherapy. In addition, the OAK

cohort was used to further validate the findings of TIDE.

In TCGA drug information, each chemotherapy drug was

reported with its respective response information. Specifically, we

focused on samples with response information for gemcitabine

chemotherapy. For samples that underwent multiple rounds of

gemcitabine treatment, we only retained those with the first

response information related to gemcitabine. We then assessed

the correlation between Prol cell type abundance and response to

immunotherapy or gemcitabine treatment.
Signature development using
unbiased machine learning-based
integrative approaches

To develop an accurate and stable Prol signature, we integrated

nine machine learning algorithms to construct 36 algorithm

combinations. These integrative algorithms included random

survival forest (RSF), elastic network (Enet), Lasso, Ridge, stepwise

Cox, CoxBoost, partial least squares regression for Cox (plsRcox),

supervised principal components (SuperPC), and survival support

vector machine (survival-SVM). To begin with, we utilized univariate

Cox regression analysis to identify prognostic markers of Prol cell

type in the TCGA cohort, with a significance level of p < 0.1. Next, we

employed 36 algorithm combinations on the markers to establish

prediction models using 10-fold cross-validation (10-fold CV) in the
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same cohort. Finally, we evaluated the predictive performance of each

algorithm combination by C-index across all validation cohorts, and

the algorithm combination with the maximum mean C-index was

chosen as the optimal one.

To screen the most valuable genes and construct the most reliable

Prol signature, we employed the randomForestSRC (version 3.1.1) R

package to conduct the RSF algorithm with ntree = optimal ntree and

mtry = optimal mtry parameters, followed by the SuperPC algorithm.

We used the superpc (version 1.2) R package for the SuperPC

method, a generalization of PCA. The algorithm generates a linear

combination of the features or variables of interest that captures the

directions of largest variation in a dataset. The superpc.cv function

was used to estimate the optimal feature threshold in supervised

principal components, and it utilized a form of 10-fold CV.
Immunohistochemical analysis
and qRT-PCR

The Human Protein Atlas (HPA, http://www.proteinatlas.org/)

database utilizes immunohistochemistry (IHC) techniques to provide

information on protein expression in 44 major human tissues, as well

as some cancer tissues. We employed the HPA database and qRT-

PCR to verify the protein and mRNA expression of LY6D. We

procured cell lines including the pancreas epithelial cell HPNE,

pancreatic cancer BXPC-3, SW1990, PANC-1, and AsPC-1/GEM

from the esteemed Shanghai Institutes for Life Sciences, affiliated with

the Chinese Academy of Sciences in Shanghai, China. We propagated

HPNE, BXPC-3, and SW1990 in RPMI 1640 medium supplemented

with 10% FBS, penicillin (10 U/mL), and streptomycin (50 mg/mL) at

37°C in 5% CO2. We propagated PANC-1, and AsPC-1/GEM in

DMEM medium supplemented with 10% FBS, penicillin (10 U/mL),

and streptomycin (50 mg/mL) at 37°C in 5% CO2.We extracted RNA

from both cells and tissues using Trizol reagent (Invitrogen) and

performed reverse transcription with SuperScript II reverse

transcriptase (Invitrogen) following the manufacturer’s protocol.

Here are the primer sequences used for LY6D and b-actin:
LY6D Forward: 5’-ACTGCAAGCATTCTGTGGTCTG-3’;

LY6D Reverse: 5’-CGCACAGTCCTTCTTCACCA-3’.

b-actin Forward: 5’-CACCCAGCACAATGAAGATCA

AGAT-3’; b-actin Reverse: 5’-CCAGTTTTTAAATC

CTGAxGTCAAGC-3.
Statistical analysis

We used the Wilcoxon test to compare two groups and the

Kruskal-Wallis test for multiple groups. Additionally, we used

univariate and multivariate Cox regression analyses to identify

independent predictors and performed receiver operating

characteristic (ROC) analyses to assess sensitivity and specificity

for survival or response prediction. We performed all statistical

analyses using R software (Version 4.1.2), considering a significance

level of P < 0.05.
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Results

Detection of cell types associated
with PDAC and the cell cycle
using scRNA-seq data

After analyzing scRNA-seq data obtained from 73,415 cells, we

utilized clustering analysis to identify a total of 14 subcell types with

the best resolution (resolution = 0.1) (Figure 1A, Supplementary

Figure 1A). These subcell types were then grouped into 7 main cell
Frontiers in Oncology 05
types based on known marker genes (Figure 1B, Supplementary

Figure 1B). The total number of genes identified from each cell type

was shown in Supplementary Figure 1C. We identified a novel cell

type, which comprised 99.4% of tumor cells, with high proliferation

capacity, named Prol, which was enriched with genes related to cell

cycle and mitosis (Figures 1C–E, Supplementary Table). To further

assess the proliferation ability of Prol cells, we evaluated cell cycle

scores based on the average expression of cell cycle genes. This

analysis allowed us to assess the potential for cell division in Prol

cells. Our results demonstrated that Prol cells exhibited significantly
A B

D E F

C

FIGURE 1

The integration of two single-cell datasets from different PDAC cohorts enables the identification and characterization of a cell type associated with
PDAC. (A, B) The visualization of 73,415 cells using Uniform Manifold Approximation and Projection (UMAP) revealed the integration of datasets to
remove the batch effect. Clusters were categorized into (A) 14 subtypes and (B) 7 major cell types. (C) Enrichment analysis based on upregulated
marker genes of the Prol cell type. (D) The bar plot illustrated the cellular proportion of PDAC tumor and non-tumor samples among the full set of
73,415 cells, categorized by sub-cell type. (E) The Prol cell type was found to be significantly more abundant in PDAC tumor samples compared to
non-tumor samples. (F) The cells were colored based on the inferred cell cycle phase from scRNA-seq data.
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higher scores for the S and G2M phases in comparison to other cells

(Figure 1F, Supplementary Figures 1D, E). This further suggested

that Prol cell type possessed a greater capacity for proliferation than

other cells. To ascertain the composition of cell types in the Prol

cells, we reclassified them. In addition to epithelium cells, our

analysis revealed the presence of all non-epithelium cells in the

Prol cells (Supplementary Figures 1F–L), emphasizing the critical

role of the tumor microenvironment (TME) in PDAC (28).

The upregulated abundance of
Prol Cells in PDAC correlates with
unfavorable prognosis

To investigate whether the changes in cell type composition that

we identified in our scRNA-seq data were universally present in

PDAC, we utilized bulk RNA-seq data from the TCGA and GTEx

datasets to estimate the abundances of the 7 main cell types. We

observed a statistically significant increase (p < 0.001) in the

abundance of Prol cells in PDAC samples compared to non-

tumor samples (Figure 2A). These findings were consistent with

the observations we made in the scRNA-seq data (Figure 1E). We

found that most of the specific Prol marker genes identified from

the scRNA data with log2FC > 0.75 were highly expressed in the

bulk RNA-seq data (Figure 2B).
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We classified PDAC patients into two groups based on Prol cell

abundance using the optimal cut-off value determined from the

TCGA cohort to assess the prognostic significance of Prol cells. The

Kaplan-Meier curve demonstrated that an upregulated abundance

of Prol cells was associated with poorer overall survival (OS) and

progression-free survival (PFS) (p < 0.05) (Figures 2C, D). We

conducted a Cox regression, adjusting for B cell type abundance, T/

NK cell type abundance, endothelial cell type abundance,

epithelium cell type abundance, fibroblast cell type abundance,

and myeloid cell type abundance, or age, gender, TMN stage, and

grade, and the results showed that Prol cell abundance was an

independent prognostic factor for both OS and PFS (all p < 0.05)

(Supplementary 2A–H). Similarly, we found that the majority of

Prol marker genes had the highest hazard ratio for both OS and PFS

compared to all other cell types (Figures 2E, F) which further

underscored the predictive value of Prol cells in PDAC.
Association between somatic mutations
and abundance of Prol cell type

Cancer is primarily caused by abnormal and uncontrolled cell

growth due to genetic mutations (29, 30). These genetic mutations,

commonly referred to as ‘drivers’ for their role in promoting
D

A B

E F

C

FIGURE 2

The abundance of Prol cell type was higher in PDAC and associated with a poor prognosis. (A) Proportions of major cell types identified in single-cell level
data were estimated in pancreatic bulk RNA-seq data, followed by testing for differential abundance between tumor and non-tumor samples. (B) The log2
fold-changes (log2FC) of cell-type marker genes, between tumor and adjacent non-tumor samples, highlighted the association of the Prol cell type with
PDAC tumors. Each dot plotted on the graph represents a gene, with its log2FC value displayed on the x-axis and its corresponding cell-type on the y-axis.
(C) The Kaplan-Meier survival curves depicted (C) overall survival (OS) and (D) progression-free survival (PFS) in TCGA demonstrated poorer survival
outcomes for patients with high frequency estimates of the Prol cell-type. (E, F) The association of the Prol cell-type with poor OS (E) and PFS (F) is
demonstrated by the HR values for cell-type marker genes, obtained through the Cox proportional hazards regression of their expression in TCGA. Each dot
plotted on the graph represents a gene, with its HR value displayed on the x-axis and its corresponding cell type on the y-axis. ***p < 0.001.
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tumorigenesis, give cells in somatic tissue certain selective

advantages over their neighboring cells (30). Nevertheless, it is

still unclear whether somatic mutations can cause specific types of

tumor cells to expand or diminish. Therefore, we examined the

correlation between mutations and cell type abundance in the driver

genes (TP53, SMAD4, and KRAS) identified by OncodriveCLUST

from the TCGA cohort (Figure 3A). Our findings indicated that the
Frontiers in Oncology 07
presence of mutant TP53 (p < 0.001) and mutant KRAS (p < 0.001)

were remarkably correlated with an elevated estimated abundance

of Prol cells (Figure 3B). It is noteworthy that Prol cells were the sole

cell type that demonstrated a considerable rise in either mutant

TP53 or mutant KRAS (Figures 3C, D).

Numerous studies have reported that mutations in TP53 can

lead to a loss of the tumor suppressor function of p53, resulting in
D

A B

E F G

C

FIGURE 3

The associations between estimated cell-type proportions and somatic mutations within the TCGA cohort indicated that TP53 and KRAS mutations
are linked to an increase in the abundance of the Prol cell type. The mutations demonstrated an effect on changes in the Prol cell type proportions
in the bulk TCGA pancreatic samples. (A) The driver genes (TP53, SMAD4 and KRAS) identified by OncodriveCLUST algorithm. (B) The proportion
estimates of Prol cell type were significantly higher in PDAC cases harboring a mutation (MT) in TP53 and KRAS compared to those with both
wildtype (WT) alleles. (C, D) The Prol cell type was the only cell type found to be significantly increased in PDAC cases with MT TP53 (C) and MT
KRAS (D). (E) Proportion estimates of the Prol cell type were plotted against individuals with no TP53 mutation, and different types of TP53
mutations. Prol estimates were significantly increased in individuals with loss of function (LOF) mutations in TP53. (F) The mutational landscape of
TP53 and KRAS. (G) Proportion estimates of the Prol cell type were plotted against individuals with no TP53 and KRAS mutations, single TP53
mutation, single KRAS mutation and mutations together. The significance levels for p-values in (B, E, G) are as follows: NSp > 0.05, *p < 0.05,
and ***p < 0.001.
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uncontrolled cell growth (31). Therefore, we further investigated the

impact of different types of mutant TP53 on the abundance of Prol

cells. Our findings indicated that TP53 missense, frameshift, and

nonsense mutations were associated with a significantly higher

abundance of Prol cells (all p < 0.05) (Figure 3E). Frameshift and

nonsense mutations are likely to cause a complete loss of TP53

function, while missense mutations in TP53 mainly occur in the

DNA-binding domain of the protein, leading to a loss of its tumor

suppressor function (31). Mutations in TP53, occurring later than

KRAS mutations, are found in up to 70% of PDACs and are often

associated with invasive and metastatic characteristics, while also

leading to gain-of-oncogenic activities (11, 32). We further explored

the associations between TP53: KRAS co-mutation and the

abundance Prol cells. 50.4% of PDAC patients had both TP53

and KRAS mutations (Figure 3F), and had a higher abundance of

Prol cells (p < 0.05) (Figure 3G). Such patterns indicate clonal

expansion of Prol cells in association with the accumulation of

driver gene alterations. All in all, these findings indicate that specific

somatic mutations can result in the expansion of certain types of
Frontiers in Oncology 08
cells, underscoring the role of KRAS and TP53 mutations in

promoting uncontrolled cell growth and proliferation.
Association between CNA and abundance
of Prol cell type

Tumors develop as a result of the activation of oncogenes and

the inactivation of tumor suppressor genes, which can occur

through somatic gene mutations or CNA (33). Thus, we further

explored the association between CNA landscape and the

abundance of Prol cells. First, we selected oncogenes or tumor

suppressor genes with CNA frequency over 10% (Figure 4A).

Then, we found the homozygous deletion (HOMDEL) of the

tumor suppressor genes SMAD4, MTAP, CDKN2A and

CDKN2B were associated with higher Prol cells abundance

compared with non-CNA samples, and the amplification (AMP)

of the oncogene RECQL4, AGO2, MYC, NDRG1 were associated

with higher Prol cells abundance (all p < 0.05) (Figure 4B).
A

B

FIGURE 4

The associations between estimated Prol proportion and copy number alteration (CNA) in the TCGA cohort. (A) Identified oncogenes or tumor
suppressor genes with CNA frequency over than 10%. (B) Proportion estimates of the Prol cell-type were plotted against individuals with non-CNA
and homozygous deletion (HOMDEL) or homozygous deletion (HOMDEL). The significance levels for p-values in (B) are as follows: NSp > 0.05, *p <
0.05, **p < 0.01, and ***p < 0.001.
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Overall, the amplification of oncogenes and the deletion of tumor

suppressor genes may lead to higher Prol cells abundance,

contributing to poor prognosis.
Prol cell type associated with
immunosuppressive and cold
tumour microenvironment

Apart from epithelial cells (Prol Epi), the Prol cell cluster also

contained all non-epithelial cell types including CD8+ T cells (Prol

CD8+ T) and CD4+ T cells (Prol CD4+ T) (Supplementary

Figure 1F). We applied ST technology to assess the spatial

locations of Prol Epi, Prol CD4+ T, and Prol CD8+ T, and found

that Prol Epi, Prol CD4+ T, and Prol CD8+ T GSVA scores were all

higher in the same tumor area (Figures 5A, B). This result indicated

possible interactions between Prol Epi and both Prol CD4+ T and

Prol CD8+ T. Thus, we conducted CellChat analysis, and found that

the Macrophage migration inhibitory factor (MIF) pathway was

active between Prol Epi and Prol CD4+ T as well as Prol CD8+ T

(Figure 5C). In addition, we extracted T/NK cells to cluster into

Treg cells, CD8+ T cells, and the other cells (Supplementary

Figures 3A–H). Using CytoTRACE scores and pseudotime

trajectory analysis, we assessed the differentiation direction for

Prol CD4+ T and Prol CD8+ T. We found a higher

differentiation potential for Prol CD4+ T and Prol CD+ 8 T (P <

0.05) (Figures 5D, G). Pseudotime trajectory analysis further

demonstrated that Prol CD4+T and Prol CD8+T were in the

beginning position of the differentiation process and were

sequentially transformed into regulatory T cells (Treg) and CD8+

T Cell exhaustion (CD8+T ex), respectively (Figures 5E, F, H, I).

Moreover, we grouped T/NK cells, B cells, and myeloid cells into

immune cells (Figure 5J) and observed a negative association

between the abundance of Prol cells and the abundance of

immune cells in the scRNA-seq data (Figure 5K). We used

Thorsson V et al.’s method, which employs DNA methylation

data, to estimate leukocyte fractions from the data (34). We

found that the abundance of Prol cells was negatively associated

with leukocyte fractions (Figure 5L). These findings emphasize the

critical role of Prol cells in immune evasion.
Predictive value of Prol cells
for immunotherapy and
gemcitabine treatment

Considering that Prol cell type was associated with an

immunosuppressive and cold TME, we hypothesize that PDAC

patients with a higher abundance of Prol cell type may be less

responsive to immunotherapy. According to the TIDE, the

responder group showed a significantly lower abundance of Prol

cells compared to the non-responder group (Figure 6A) (P < 0.05),

with an area under the curve (AUC) of 0.716 for the ROC curve

(Figure 6B). Moreover, we found that an upregulated abundance of
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Prol cells was associated with poorer OS in non-small cell lung

cancer patients with immunotherapy (P < 0.05) (Figure 6C). The

AUCs of the ROC curves for 0.5-, 1-, and 2-year OS were 0.61, 0.63,

and 0.61, respectively (Figure 6D).

The responder group for gemcitabine treatment also showed

significantly lower Prol cell abundance compared to the non-

responder group (P < 0.05) (Figure 6E), with an AUC of 0.654 for

the ROC curve (Figure 6F). In summary, these findings suggest that

PDAC patients with a lower abundance of Prol cells may be more

likely to benefit from immunotherapy and gemcitabine treatment.
Prol signature generated from machine
learning integrative procedures

To further quantify the abundance of Prol cells using key genes

and improve the ability to predict prognosis in PDAC, we

developed a Prol signature based on unbiased machine learning

integrative procedures. First, univariate Cox analysis was conducted

to identify 75 Prol cell type markers with prognostic significance.

We used the TCGA cohort to fit 36 different algorithm

combinations and calculated the C-index for each combination in

the validation cohorts (Figure 7A). The combination of Random

Survival Forests (RSF) and Superpc achieved the maximum mean

C-index of 0.62 (Figure 7A). In the RSF, 19 genes were identified,

then subjected to Superpc to construct the Prol signature

(Figures 7B, C). After dividing the PDAC patients into high- and

low-risk groups based on the optimal cutoff value of each cohort,

our findings revealed that patients in the high-risk group exhibited

remarkably worse OS compared to those in the low-risk group

across all cohorts (all P < 0.05) (Figures 7D–J).
Evaluation of the Prol signature

To assess the distinguishing ability of the Prol signature in

different cohorts, we conducted ROC analyses. Our results revealed

AUCs for the 1-, 3-, and median-year periods were 0.67, 0.65, and

0.56 in the TCGA-PADC cohort; 0.71, 0.69, and 0.63 in the E-

MATB cohort; 0.68, 0.64, and 0.73 in the GSE28735 cohort; 0.70,

0.64, and 0.64 in the GSE57495 cohort; 0.60, 0.64, and 0.75 in the

GSE62452 cohort; 0.65, 0.65, and 0.62 in the GSE85916 cohort; 0.72,

0.70, and 0.65 in the PDAC-AU-Array cohort; and 0.67, 0.65, and

0.64 in the meta-cohort, respectively (Figure 8A). The C-index

values and their corresponding 95% confidence intervals were

reported for all cohorts as follows: 0.62 [0.55–0.68], 0.64 [0.59–

0.70], 0.63 [0.52–0.77], 0.60 [0.51–0.69], 0.62 [0.51–0.72], 0.60

[0.50–0.71], 0.63 [0.59–0.67], and 0.61 [0.59–0.54] (Figure 8B).

Additionally, the OS prediction performance of the Prol signature

was compared to that of other clinical features (Figures 8C–G).

Notably, the Prol signature exhibited higher accuracy than features

such as age, gender, T, N, M, grade, and stage. These findings

suggest that the Prol signature is a highly reliable predictor of

prognosis compared to other variables.
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FIGURE 5

Prol cell type associated with immunosuppressive and cold tumour microenvironment. (A) The annotated PDAC-A tumor cryosection on the ST
(Spatial Transcriptomics) slide highlighted a region with high levels of cancer cells and desmoplasia, indicated by the color red (left panel). Right
panel shows Prol epi, Prol CD4+T and Prol CD4+T GSVA scores at diff ares. (B) The annotated PDAC-B tumor cryosection on the ST (Spatial
Transcriptomics) slide highlights a region with high levels of cancer cells and desmoplasia, indicated by the color red. (C) MIF signaling pathway from
CellChat results. (D, G) Box plot showed the comparison of CytoTRACE scores between Prol CD8+ T cells and exhausted CD8+ T cells (C), and
between Prol CD4+ T cells and regulatory T cells (Tregs) (D). (E, H) Monocle-generated pseudotemporal trajectory of Prol CD8+ T cells and
exhausted CD8+ T cells (E) or Prol CD4+ T cells and Tregs (H). (F, I) Pseudotime was color-coded in different gradients from proliferating CD8+ T
cells to exhausted CD8+ T cells (F), and from Prol CD4+ T cells to regulatory T cells (I). (J) T/NK cells, B cells, and myeloid cells were grouped into
immune cells. (K, L). Correlation between Prol cell abundance versus immune cell abundance in scRNA data (K) and bulk RNA data (L). The
significance levels for p-values in (D, G) are as follows: ***p < 0.001.
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Validation of expression of genes from the
Prol signature

We analyzed the expression levels of the Prol signature genes in

PDAC and non-tumor samples using data from the TCGA and

GTEx databases. We found that all the Prol signature genes were

significantly overexpressed in PDAC samples (p < 0.001)

(Figure 9A). Among them, LY6D was the most critical gene

according to the RSF. We further confirmed the mRNA and

protein expression of LY6D using the HPA database and qRT-

PCR. We observed that the LY6D protein expression was markedly

higher in pancreatic cancer tissues than in normal pancreatic tissues

(Figure 9B). In addition, qRT-PCR analysis showed a significant

increase in LY6D expression levels in all PDAC cell lines except the

PANC-1 cell line (p < 0.05) (Figure 9C). These results indicated that

the aberrant expression of these genes, especially LY6D, may play a

role in the tumorigenesis of PDAC.
Discussion

Over the past 20 years, pancreatic adenocarcinoma incidence has

gradually increased by 0.5%-1.0% per year. Despite a modest

improvement in the 5-year survival rate from 5.26% to 10%, there

have been no significant breakthroughs in the treatment of this

disease (35). Using scRNA-seq data from PDAC and normal

pancreas, we developed a new comprehensive transcriptomics

framework to decompose cell types in bulk RNA-seq data of
Frontiers in Oncology 11
TCGA cohort. This framework has identified a proliferative cell

type, Prol, that is associated with PDAC, and its high proportion in

PDAC tumors is linked to significantly worse survival outcomes. The

majority of marker genes specific to Prol, which were identified from

scRNA-seq data, were found to be higher and associated with worse

survival outcomes. Therefore, these bulk RNA-seq results obtained

from scRNA-seq data further reinforce the link between Prol cell type

and PDAC, as well as its correlation with worse survival outcomes,

independent of the decomposition analysis. Through ST technology,

cellchat analysis, and bulk RNA-seq data analysis, we found that Prol

cell type was associated with immunosuppressive and cold TME. The

findings of our study implied that genomic alterations were

associated with the abundance of tumor-associated Prol cells in

PDAC. Furthermore, we have provided evidence to suggest that

PDAC patients with a lower abundance of Prol cell type may be more

likely to benefit from immunotherapy and gemcitabine treatment.

Finally, we have developed a Prol signature through unbiased

machine learning integrative procedures to quantify the abundance

of Prol cells and improve prognostic prediction based on key genes.

The TCGA project, an invaluable resource to oncologists, enabled

us to identify PDAC-associated cell types and their clinical

implications using our merged pancreatic scRNA-seq datasets.

Although previous studies have linked several marker genes specific

to Prol to poor survival outcomes (36–38), our study revealed that

these genes form the Prol cells. The Prol cells comprise both

previously identified PDAC genes and novel targets, including

H2AFZ, HN1, and HIST1H4C, which warrant further

investigation. Our approach has successfully identified more than
DA B
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FIGURE 6

Predictive value of Prol cell-type for immunotherapy and gemcitabine treatment. (A) The variation in Prol cell-type abundance between TIDE
prediction responders and non-responders in the TCGA cohort. (B) The ROC curve of Prol cell-type abundance to predict the benefits of
immunotherapy in the TCGA cohort. (C) Kaplan-Meier curve of OS according to the Prol abundance in the OAK cohort. (D) ROC curve of OS
according to the Prol abundance in the OAK cohort. (E) The variation in Prol cell-type abundance between responders and non-responders of
gemcitabine treatment in the TCGA cohort. (F) The ROC curve of Prol cell-type abundance to predict the benefits of gemcitabine treatment in the
TCGA cohort. *p < 0.05 and ***p < 0.001.
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one hundred Prol marker genes, which can provide valuable insights

into the complex biological mechanisms of PDAC in future research.

KRAS activation is one of the earliest genetic events identified in

PDAC, indicating the conversion of a normal centroacinar or ductal

cell to an initiated cell (39). KRAS mutations are the most prevalent

oncogenic alterations in PDAC, present in approximately 90% of

cases, which is consistent with our results (40, 41). TP53, a tumor
Frontiers in Oncology 12
suppressor gene, plays a crucial role in maintaining genome

integrity by regulating transcription, DNA repair, genomic

stability, cell cycle control, and apoptosis (42). Previous studies

have demonstrated that mutations in KRAS or TP53 induce cell

cycle (42–44), which is consistent with the enrichment analysis of

Prol marker genes. Our study further found that both TP53 and

KRAS mutations were associated with a higher abundance of Prol
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FIGURE 7

A machine learning-based integrative procedure was utilized to develop and validate a consensus Prol signature. (A) A total of 36 prediction models
were developed using a 10-fold cross-validation framework, and the C-index of each model was computed across all validation datasets. (B) The
number of trees determined by minimal error. (C) The variable importance of the 19 most valuable genes based on the random survival forest (RSF)
algorithm. (D–J). Kaplan-Meier curves of OS according to the Prol signature in the TCGA (D), E-MATB-6134 (E), GSE28735 (F), GSE57495 (G),
GSE62452 (H), GSE85916 (I), and PDAC-AU-Array (J).
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cells, indicating the clonal expansion of Prol cells in association with

the accumulation of driver gene alterations. In conclusion, we

identified a cell type associated with somatic mutations

remarkably linked to worse OS and PFS, providing novel insights

into co-dependent oncological mechanisms of PDAC and

strengthening current PDAC typing.

Some non-epithelial cell types were observed in the tumor-

enriched Prol cells. Thus, we speculated that these non-epithelial
Frontiers in Oncology 13
cells may also contribute to the progression of PDAC. Based on ST

technology and CellChat analysis, we found that the Macrophage

migration inhibitory factor (MIF) pathway was active between

Prol Epi and Prol CD4+ T as well as Prol CD8+ T. The MIF-CD74

complex triggers transcription factors that regulate cell

proliferation via the ERK-MAPK and SRC pathways, which also

govern gene expression (45). Besides, blocking the MIF-CD74

signaling pathway can effectively restore the antitumor immune
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FIGURE 8

Evaluation of the Prol signature. (A) Time-dependent ROC analysis for predicting OS at 1, 2, and median years. (B) C-index of Prol signature across
all datasets. (C–G). The prognostic prediction performance of the Prol signature was compared with other clinical variables to predict prognosis in
the different cohorts.
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response (46, 47). We assumed that Prol Epi might have induced T

cell exhaustion via the MIF-CD74 signaling pathway.

Interestingly, these results were consistent with our conjecture.

Prol CD4+T and Prol CD8+T were in the beginning position of

the differentiation process and were sequentially transformed into

Treg and CD8+T ex, respectively. This result revealed the

potential mechanisms underlying the poor prognosis associated

with a high abundance of Prol cells from a different perspective.

Besides, we found the abundance of Prol cells was negatively

associated with immune-cell infiltration via scRNA-seq and bulk-

seq data. The absence of immune cells within the tumor tissue, as

indicated by a “cold” microenvironment, suggests that the tumor

may not respond to immunotherapy (48, 49). Thus, we

hypothesized that the high abundance of Prol cells may be

associated with immunotherapy resistance, and this hypothesis

was validated using TIDE. Our findings will enable individualized
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treatment strategies for PDAC patients and enhance their

disease outcomes.

Given the dismal survival rates of patients diagnosed with

PDAC, it is imperative to better understand the factors impacting

survival (50). Our findings indicated that the utilization of Prol cells

may have clinical significance as a prospective biomarker to aid in

treatment selection and prognostication. Current clinical prognostic

prediction tools for PDAC rely mainly on factors such as tumor

size, invasion site, TNM stage, and the patient’s medical condition.

Combining cell type markers as a method to understand cancer

biology can serve as a valuable complement to existing clinical

practices. The Prol marker genes have the potential to serve as a

foundation for the development of novel expression-based

prognostic technologies. With the maturation of RNA sequencing

technology, clinical laboratories can now identify comprehensive

gene expression patterns that have prognostic value (51). Thus, we
A

B
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FIGURE 9

Validation of expression of genes from the Prol signature. (A) Differential expression of 19 model genes in normal and PDAC samples. (B)
Immunohistochemical analysis of LY6D in normal pancreas tissue and pancreas cancer. (C) qRT-PCR analysis of LY6D. ***p < 0.001.
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developed an integrative pipeline for constructing a Prol signature

by leveraging the expression profiles of Prol marker genes. Using

the 10-fold cross-validation method, we fitted 36 models to the

training dataset. After subsequent validation in six independent

cohorts, we confirmed that the best model was a combination of

RSF and Superpc. Algorithm combinations reduced the number of

low-value features, optimized the model, and improved its

generalization ability. The Prol signature was particularly useful

for evaluating OS in PDAC. Moreover, the signature presented

significantly superior accuracy than clinical traits (e.g., stage). All

these suggested that the massive potential for the clinical better

extrapolation and application of the Prol signature.

This study has expanded our understanding of a novel PDAC cell

type with potential clinical implications. However, there are some

limitations to consider. First, since our study utilized retrospective

samples, future validation should be conducted in a prospective,

large-scale cohort. Second, complete clinical records were not

available for all patients, which could lead to bias in data analysis.

Third, although we have revealed the relationship between the

abundance of Prol cells and prognosis by various methods, the

abundance of Prol cells has not been fully elucidated whether it is

helpful for early diagnosis. Fourth, future experiments, both in vitro

and in vivo, are necessary to explore the biological functions of Prol

marker genes. Fifth, Superpc is a latent variable model based on linear

relationships, Gaussian errors, unique principal components, and

variance selection, which may not apply to some data sets with non-

linear, low-variance, or multi-factor structures.

In summary, we utilized scRNA-seq data and TCGA bulk RNA-

seq cohorts to decompose different cell types and identified the

essential role of novel Prol cells in PDAC, as well as their impact on

prognosis. The abundance of Prol cells in PDAC has been linked to

genomic alterations in specific genes. Furthermore, PDAC patients

with a lower abundance of Prol cells may benefit more from

immunotherapy and gemcitabine treatment. Identifying tumor-

associated cell types can strengthen our comprehension of cancer

biology and holds significant prospects for discovering biological

biomarkers in multi-center validated studies.
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SUPPLEMENTARY FIGURE 1

The integration of two single-cell level datasets from different PDAC cohorts
enables the identification and characterization of a cell type associated with

PDAC. (A). The Clustree plot was generated to identify the best resolution for

the analysis. (B). Dot plot displaying the percentage of cells expressing
canonical marker genes and their average expression levels across 14 cell

clusters. (C). The total number of genes identified from each cell type. (D, E).
UMAP plot of 14 cell clusters, color-coded based on cell cycle scores derived

from full single-cell level RNA-seq data. The plot indicated that the Prol cell
cluster mainly consists of cells exhibiting elevated expression levels of (D)
G2M phase genes and (E) S phase genes. (F). UMAP plot of Prol cells color-

coded by subcluster. (G). UMAP plot depicting Prol cell colored by their main
cell types. (H-L). UMAP plot representing Prol cell cluster cells color-coded

by their gene expression of specific marker genes, including (H) EPCAM
(Epithelial Cells), (I) CD79A (B Cells), (J) CD8A (CD8+ T Cells), (K) CD4 (CD4+

T Cells), and (L) COL1A1 (Fibroblast), each of which is presented within
individual subclusters.

SUPPLEMENTARY FIGURE 2

Univariate and multivariate Cox regression analyses of OS and PFS in the

TCGA cohort. (A–D). Univariate and multivariate Cox regression of OS,
adjusting for B cell type abundance, T/NK cell type abundance, endothelial

cell type abundance, epithelium cell type abundance, fibroblast cell type
abundance, and myeloid cell type abundance (A, B), or age, gender, TMN

stage, and grade (C, D). (E–H). Univariate and multivariate Cox regression of
PFS, adjusting for B cell type abundance, T/NK cell type abundance,

endothelial cell type abundance, epithelium cell type abundance, fibroblast

cell type abundance, and myeloid cell type abundance (E, F), or age, gender,
TMN stage, and grade (G, H).

SUPPLEMENTARY FIGURE 3

Identification of exhausted CD8+ T cells and Treg cells. (A). UMAP plot
depicting T/NK cells colored by their main cell types. (B–E). UMAP plot

representing T/NK cell cluster cells color-coded by their gene expression

of specific marker genes, including (B, C) CD8A and CD8B (CD8+ T Cells) and
(D) FOXP3 (Tregs), each of which is presented within individual subclusters (E).
(F, G). Re-grouped CD8+ T cells (F) to identify exhausted CD8+ T cells by
their marker genes including CTLA4, TIGIT and PDCD1 (G). (H). UMAP plot of

exhausted CD8+ T cells.
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