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Formoterol reduces muscle
wasting in mice undergoing
doxorubicin chemotherapy
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Sport, University of São Paulo, São Paulo, Brazil
Background: Even though doxorubicin (DOX) chemotherapy promotes intense

muscle wasting, this drug is still widely used in clinical practice due to its

remarkable efficiency in managing cancer. On the other hand, intense muscle

loss during the oncological treatment is considered a bad prognosis for the

disease’s evolution and the patient’s quality of life. In this sense, strategies that

can counteract the muscle wasting induced by DOX are essential. In this study,

we evaluated the effectiveness of formoterol (FOR), a b2-adrenoceptor agonist,
in managing muscle wasting caused by DOX.

Methods and results: To evaluate the effect of FOR on DOX-induced muscle

wasting, mice were treated with DOX (2.5 mg/kg b.w., i.p. administration, twice a

week), associated or not to FOR treatment (1 mg/kg b.w., s.c. administration,

daily). Control mice received vehicle solution. A combination of FOR treatment

with DOX protected against the loss of body weight (p<0.05), muscle mass

(p<0.001), and grip force (p<0.001) promoted by chemotherapy. FOR also

attenuated muscle wasting (p<0.01) in tumor-bearing mice on chemotherapy.

The potential mechanism by which FOR prevented further DOX-induced muscle

wasting occurred by regulating Akt/FoxO3a signaling and gene expression of

atrogenes in skeletal muscle.

Conclusions: Collectively, our results suggest that FOR can be used as a

pharmacological strategy for managing muscle wasting induced by DOX. This

study provides new insights into the potential therapeutic use of FOR to improve

the overall wellbeing of cancer patients undergoing DOX chemotherapy.

KEYWORDS

beta2-adrenergic agonist, doxorubicin, chemotherapy, Lewis lung carcinoma,
muscle wasting
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Introduction

A significant challenge in cancer therapy is to develop

oncological treatments that promote disease management without

negatively affecting the homeostasis of other health systems. Due to

its high effectiveness, doxorubicin (DOX) is a chemotherapy drug

widely used for cancer treatment (1). However, its use also

contributes to muscle wasting (2). Muscle weight loss is a poor

prognosis for cancer survival and quality of life (2, 3). Furthermore,

patients with increased lean body mass have a better tolerance for

chemotherapy treatment (3). Several types of cancers contribute to

the development of cachexia (4), which may be potentiated during

chemotherapy treatment. DOX is commonly employed to treat

several malignancies, including lung cancer (5), breast cancer,

lymphoma, and sarcomas (6). Therefore, approaches that

promote the maintenance of lean body mass by counter-

regulating chemotherapy- and cancer-induced muscle dysfunction

are essential.

The molecular mechanism of DOX-induced muscle wasting has

been widely discussed in recent decades, with several studies

showing intense activation of proteolytic signaling pathways and

a decrease in anabolic signaling (7). DOX treatment not only

activates the ubiquitin-proteasome system (UPS) (8, 9) and the

lysosomal autophagy system (ALS) (10) but also results in a

decrease in protein synthesis (11). UPS is a highly regulated

process in which E3 ligases play a crucial role in the

polyubiquitination of proteins that will be degraded in the

proteasome (12). During muscle wasting, there is upregulation of

muscle-specific E3 ligases such as muscle ring finger1 (MuRF1/

Trim63) and muscle atrophy F-box (Atrogin-1/MAFbx)(13, 14)

and more recently demonstrated the role of MUSA1/Fbxo30 and

SMART/Fbxo21 (15).

Progress in understanding the mechanisms that lead to the

development of muscle atrophy in pathological conditions has

enabled advances in interventions to combat muscle wasting.

Among them, targeting b2 signaling has been proposed as a

potential therapeutic approach to control muscle wasting in

different diseases (16, 17). It is known that the activation of b2
receptor signaling promotes muscle mass and function regulation

by stimulating pathways that promote muscle protein synthesis

and inhibition of protein degradation (17). Formoterol (FOR) is a

long-acting b2-adrenoceptor agonist drug, which has been shown

to have critical anticachectic effects in experimental models (18).

It regulates muscle mass by reducing proteolysis by the ubiquitin-

dependent proteolytic system and apoptosis and activating

anabolic signaling pathways (18). Furthermore, FOR can

decrease muscle wasting in tumor-bearing animals without

negatively altering heart function (18, 19). Considering the

therapeutic potential of b2-adrenergic agonists for treating

muscle wasting, this study aimed to investigate the effectiveness

of FOR in reducing muscle wast ing caused by DOX

chemotherapy and to identify the role of atrogenes in

this process.
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Materials and methods

Animals

Male mice aged between 8 and 10 weeks were used for the in

vivo experimental protocols. The animals were kept in a room with

a light–dark cycle of 12–12 h and a temperature of 22 ± 2°C, with a

regular diet and water ad libitum. All procedures in this study

followed the ethical principles of animal experimentation and were

submitted to the Ethics Committee on Animal Experimentation of

the University of São Paulo (CEUA No. 4368290920) and the

University of Barcelona (CEEA 150/19). All animal manipulations

were made in accordance with the European Community guidelines

for the use of laboratory animals (20).
Experimental protocol

Balb/c mice and beta(2)-adrenergic receptor knockout mice

(b2-AR −/−) received doxorubicin hydrochloride (DOX)

(Eurofarma, Campinas, SP, Brazil) (2.5 mg/kg of b.w.,

intraperitoneally, twice a week) associated or not to the FOR

fumarate dihydrate treatment (Sigma-Aldrich, St. Louis, MO,

USA) (1 mg/kg b.w., subcutaneously, daily). Animals that were

not submitted to DOX or FOR treatment received saline solution

(0.9%) by the corresponding route of administration. The mice were

euthanized for sample collection after 4 weeks. Tumor implantation

was performed by subcutaneous inoculation of 3.75×105 viable

Lewis lung carcinoma (LLC) cells (100 ml) into the right flank of

male C57BL/6 mice. Cells were obtained from exponentially

growing tumors, and cell viability was determined by Trypan Blue

exclusion. The non-tumor-bearing mice group received saline

solution (0.9%). These animals then underwent treatment with

DOX and FOR, as described above, and after 3 weeks, they were

euthanized to obtain tissue samples. Muscles, tumor, and the

adipose tissue cushions were weighed and stored at −80°C

until analysis.
Grip‐force assessment

The grip‐force test quantified the strength of the forelimbs. The

grip‐force device comprised a pull bar connected to an isometric

force transducer (dynamometer). Once the mice were stable

holding the bar, they were pulled back into the horizontal plane.

Each animal was tested three times, and the average peak of tension

was used for the analysis (21).
C2C12 cell culture

C2C12 cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM, GIBCO, Invitrogen, NY) supplemented with
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penicillin (100 U/ml), streptomycin (100 µg/ml), and 10% fetal

bovine serum (FBS, Atlanta Biological, Lawrenceville, GA). They

were grown and maintained in culture bottles at 37°C in a

humidified atmosphere containing 5% CO2. Upon reaching 90%

cell confluence, these cells were subjected to differentiation for 7

days in a 2% horse serum (HS, Biowest, Nuaillé, FR) in DMEM

solution. The culture medium was changed every 2 days.

Differentiated C2C12 cells received DOX (100 nM) or vehicle

solution (DMSO). To evaluate the relevance of b2 adrenergic

signaling, part of the cells that received DOX were treated with

FOR (200 nM) combined or not with ICI 118,115 hydrochloride

(300 nM). The administration of ICI 118,115 (ICI) occurred 30 min

before the administration of DOX or FOR. One hour after, the

samples were collected for biomolecular analysis. Differentiated

C2C12 cells were treated with DOX (100 nM) or vehicle solution

(DMSO) to evaluate cell morphology. After 24 h, part of the cells

was treated with FOR alone or combined with DOX for another 24

h. Cell morphology was done using Olympus microscopy

(Olympus, Inc.). Myotube diameters were measured in at least

200 cells using the ImageJ software (National Institute of Health,

Bethesda, MD, USA).
Gene expression

The samples (gastrocnemius muscle and C2C12 cells) were

homogenized in TRIzol reagent (Life Technologies Corporation,

Carlsbad, CA, USA) for total RNA extraction following the

manufacturer’s recommendations (22). cDNA was synthesized

from 2 µg of extracted total RNA using reverse transcriptase

(High-Capacity cDNA Reverse Transcription Kit, Thermo Fisher,

Carlsbad, CA, USA, 4368814). Gene expression was quantified by

real-time PCR (23) using the StepOnePlus Real-Time PCR System

(Applied Biosystems, CA, USA) and SYBER Green (Fast SYBR™

Green PCR Master Mix, Applied Biosystems, CA, USA) as a

fluorescent label. Gene expression was performed using the

comparative Ct method (24), with the expression of Rpl-19 used

as an internal control. The sequence of primers used is described in

Supplementary Table S1.
Western blotting

The gastrocnemius muscle was homogenized in an extraction

buffer containing protease and phosphatase inhibitors (Roche

Diagnostics GmbH, Sandhoferstrasse, Mannheim, Germany). After

centrifugation, the supernatant was subjected to protein

quantification determined by the Bradford assay (Bio-Rad,

Hercules, CA, USA) using an albumin standard curve. Samples

were diluted in Laemmli’s buffer and submitted to SDS

polyacrylamide gel electrophoresis (Sodium dodecyl sulfate (SDS)-

PAGE) (25), transferred to a Polyvinylidene fluoride (PVDF)

membrane, and incubated with primary antibodies against Akt (ref.

4685), Akt Ser473 (ref. 4058), total FoxO3a (ref. 9467), FoxO3a

Ser253 (ref. 9466) (Cell Signaling Technology Danvers, MA, USA), or
Frontiers in Oncology 03
GAPDH (Santa Cruz Biotechnology, Santa Cruz, CA, USA, ref. SC

25778). They were then incubated with a peroxidase-conjugated anti-

IgG antibody and after incubated with the peroxidase substrate (ECL

Clarity TM, Bio-Rad, Hercules, CA, USA). GAPDH expression was

used as an internal control. Images were obtained using the

Amersham Imager 600 equ ipment (GE Hea l thcare ,

Buckinghamshire, UK) and quantified by optical densitometry

using Image J software (National Institute of Health, Bethesda,

MD, USA).
Statistical analysis

Statistical analysis was performed using GraphPad Prism

software version 6.0 for Windows (GraphPad Software, San

Diego, CA, USA). As appropriate, data were analyzed using one-

or two-way ANOVA test, followed by the Bonferroni post-test. Data

are expressed as mean and standard error. The significance level

adopted was p < 0.05.
Results

FOR treatment reverses muscle wasting
caused by DOX

We demonstrated that when FOR is added to DOX treatment, it

effectively mitigates muscle wasting. Initially, we used a tumor-free

in vivo experimental model to unravel the isolated effect of

chemotherapy on induced atrophy, evaluating underlying

molecular pathways and testing a potential therapeutic target. It is

well established that DOX treatment activates catabolic pathways in

skeletal muscle. We demonstrated that DOX reduced the body

weight (p < 0.001) and muscle mass (p < 0.001) of mice submitted to

fractionated doses of DOX chemotherapy, also confirmed by the

worsening of the functional capacity of the upper limbs (p < 0.05)

(Figures 1A–D). These effects were, however, abolished by the

combination of FOR (Figures 1A–D). The DOX treatment

decreased the phosphorylation of Akt and FoxO3, an effect that

was abolished when the mice received FOR concomitantly

(Figure 1E). Additionally, FOR treatment protected against DOX-

induced increase in Fbxo32 and Trim63 gene expression

(Figure 1F). The lower food intake promoted by DOX treatment

was recovered by FOR treatment (p < 0.001), although it showed no

protective effect on the loss of adipose tissue mediated by

chemotherapy (p > 0.05) (Supplementary Table S2).
The protection of FOR over DOX-induced
muscle catabolism depends on b2
adrenergic activation

We then confirmed that FOR treatment prevented the

reduction in C2C12 myotube diameter caused by DOX (p<0.05)

(Figure 2A). In order to better understand this mechanism, we
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evaluated the effect of the combination of FOR and DOX in the

presence of ICI, a potent, selective b2 adrenergic receptor

antagonist. While acute treatment with DOX upregulated the

gene expression of Fbxo32, Fbxo30, and Fbxo21 (p<0.05), these

effects were reversed by the combination with FOR (p <0.05). We

also demonstrated that in C2C12 myotubes, the downregulation of

Fbxo32 and Fbxo30 gene expression by FOR were entirely

dependent on b2 adrenergic activation, while Fbxo21 expression

was only partial (Figure 2B).

b2-AR −/− animals were then used to confirm the importance

of b2 adrenergic activation in FOR protecting from DOX-induced

muscle wasting. In these animals, FOR treatment was not able to

abolish the body weight and gastrocnemius muscle loss caused by

DOX (p > 0.05) (Figures 2C, D). In addition, in b2-AR −/− animals,

FOR was not able to impair the upregulation of Trim63 and Fbxo32

caused by DOX treatment (Figure 2E). Although chemotherapy

treatment also caused significant loss of adipose tissue (p<0.001),
Frontiers in Oncology 04
muscle wasting in b2-AR −/− mice was less sensitive to DOX-

induced anorexia and muscle catabolism (Supplementary Table S3).
FOR also protected against DOX-induced
muscle wasting in tumor-bearing mice

Finally, we evaluated the efficacy of FOR treatment in an

experimental cancer-cachexia model during chemotherapy

treatment. The LLC is a widely used experimental cancer model

for studying cancer cachexia and evaluating chemotherapeutic

agents’ effects. We hypothesized that FOR could also attenuate

the muscle mass loss in cachectic mice on chemotherapy. Although

FOR did not recover body weight in the presence of DOX treatment

(Figure 3A) or potentiate the tumor weight reduction (Figure 3B), it

was able to recover the grip strength and the muscle mass (p<0.05)

(Figure 3C–E), in addition to reducing the gene expression of
B C

D E

F

A

FIGURE 1

Formoterol inhibits doxorubicin‐induced muscle atrophy. Muscle wasting in Balb/c mice was analyzed by measuring the (A) body weight change,
(B) grip force (g/100g IBW), (C) gastrocnemius muscle weight (mg/100g IBW), and (D) TA muscle weight (mg/100g IBW). (E) FOR prevents the
reduction in Akt and FoxO3 phosphorylation caused by DOX, and (F) blocks the increase of atrophy‐related gene expression in skeletal muscle. The
data are presented as mean ± SEM and analyzed by a two-way ANOVA test followed by the Bonferroni post-test *p < 0.05; **p<0.01; ***p<0.001.
DOX, doxorubicin; FOR, formoterol; SAL, saline (0.9%); GAS, gastrocnemius muscle; TA, tibialis anterior muscle; IBW, initial body weight.
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Trim63 (p < 0.01) and Fbxo32 (p < 0.05) (Figure 3F). As expected,

benefits were also observed in the absence of chemotherapy, where

the cachexia was minimized by the FOR treatment, which recovered

body weight (p <0.05), muscle mass (p < 0.05), and grip force (p <

0.01) caused by the presence of the tumor (Supplementary Figures

S1A–E), in addition to reducing the gene expression of Trim63 (p <

0.01) and Fbxo32 (p < 0.05) in the skeletal muscle (Supplementary

Figure S1F).
Discussion

Over the years, there has been a significant advancement in

understanding muscle loss caused by chemotherapy (3, 26–28).

Possible therapeutic targets have been studied to alleviate muscle

loss during cancer treatment, which extensively impairs the

prognosis of the treatment and the quality of life of patients. In

the present study, we explored the role of FOR in attenuating
Frontiers in Oncology 05
muscle wasting caused by DOX chemotherapy. A potential

mechanism by which FOR prevents DOX-induced muscle

wasting is through the regulation of the Akt/FoxO3a pathway and

regulation of expression of atrophy‐related genes in skeletal muscle.

The UPS is a critical system activated during muscle wasting

and is responsible for directing proteins to be degraded in the

proteasome, including contractile components of skeletal muscle

(29). We demonstrated that FOR restores Akt/FoxO3 signaling

impaired by DOX treatment, a pathway that has a central role in

UPS regulation. DOX chemotherapy impaired Akt signaling, which

contributes to reduced FoxO phosphorylation and facilitates FoxO

translocation to the nucleus (15, 30). FoxO is a crucial transcription

factor that positively regulates the expression of E3 ligases (15),

which are responsible for promoting the ubiquitination of proteins

directed to the proteasome. MuRF-1/Trim63 and Atrogin1/Fbxo32

are well-known E3 ligases that are upregulated in conditions that

lead to muscle wasting, such as those seen in chemotherapy, cancer

cachexia, glucocorticoid treatment, and muscle disuse (9, 31).
B

C D

E

A

FIGURE 2

Blockade of b2-adrenergic receptor signaling impairs the atrophy‐related gene downregulation caused by FOR. (A) FOR treatment inhibits DOX-
induced myotube diameter reduction. Scale bar = 100 mm. (B) Downregulation of atrogenes by FOR is partially dependent on b2-adrenergic
receptor signaling activation. C2C12 myotubes were submitted to ICI, or vehicle solution, 30 min before DOX and FOR treatment. Muscle wasting in
b2-AR −/− mice submitted to DOX and FOR treatment was analyzed by measuring the (C) body weight change, (D) gastrocnemius muscle weight
(mg/100g IBW), and (E) atrophy‐related gene expression in skeletal muscle. The data are presented as mean ± SEM and analyzed by one- or two-
way ANOVA, followed by the Bonferroni post-test. *p < 0.05; **p<0.01; ***p<0.001. DOX, doxorubicin; FOR, formoterol; SAL, saline (0.9%); GAS,
gastrocnemius muscle; IBW, initial body weight; ICI, ICI 118,551.
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Prior studies have already shown that DOX chemotherapy

reduces insulin sensitivity in skeletal muscle, inhibiting Akt

phosphorylation (32) and upregulating the expression of the

atrogenes MuRF1 and Atrogin1 (2, 9). However, it is worth

noting that some studies reported differences; Nissinen et al. (11)

did not detect a significant alteration in MuRF1 expression

following DOX treatment (11). The anti-catabolic and

hypertrophic effects of FOR are partly mediated by the

impingement of b2-adrenergic signaling with insulin/IGF-1

receptor signaling (33). b2-Adrenergic agonists cause increased

phosphorylation of Akt, which promotes muscle anabolism

through regulation of the Akt/mTOR axis (16, 34). Furthermore,

b2-adrenergic receptor signaling can also directly influence skeletal

muscle atrophy, mediated by transcriptional modulation of

atrogenes under FoxO regulation. Anorexia is a classic clinical

symptom observed in cancer cachexia (35). The intervention with

FOR also caused a rescue in the food intake of mice treated with

DOX, which may have contributed to creating a protective

environment, mitigating the adverse effects of DOX on body

weight and muscle mass. Here, we demonstrated that FOR

protection in DOX-induced upregulation of E3 ligases partly

depends on the b2-adrenergic receptor activity. Although a

definitive mechanism explaining the differential expression of in

vivo and in vitro approaches remains elusive, a compelling

hypothesis revolves around variations in experimental conditions,

specifically the chronic treatment in vivo versus the acute treatment

in vitro. In addition to the modulation of the Akt/FoxO3 signaling
Frontiers in Oncology 06
pathway as a mechanism for protecting muscle wasting in our

study, it is crucial to acknowledge that alternative pathways, such as

the modulation of protein synthesis and autophagy, may also be

implicated in this model.

Previous studies have already demonstrated that b2-
adrenergic receptor agonists have an inhibitory effect on the loss

of muscle mass in cancer cachexia models (18, 36, 37). By directly

affecting skeletal muscle, DOX chemotherapy further complicates

the management of cachexia. This is a common condition, as

many chemotherapy drugs do not have enough specificity to act

only on tumor cells and, consequently, also cause systemic adverse

effects (38–41). Our results, however, shed light on the anti-

proteolytic effects of FOR during chemotherapy, even during

cancer cachexia. Sorafenib chemotherapy treatment, for

example, reduces tumor cell content and improves survival in

Yoshida AH-130 tumor-bearing rats but does not reduce the

cachectic features (42). However, the combination of FOR and

megestrol acetate mitigated muscle wasting, improved physical

activity, and reduced protein degradation (42). Furthermore,

DOX causes a significant loss of white adipose tissue (43), which

FOR could not protect. This is due to the importance of the b2-
adrenergic receptor signaling for increasing fatty acid

mobilization, energy expenditure, and adipogenesis regulation

(44, 45). In addition, although we know from experimental data

that FOR does not impair cardiac function (19), DOX is known for

its cardiotoxic effects (46), so future studies may address these

knowledge gaps.
B C

D E F

A

FIGURE 3

Formoterol inhibits doxorubicin‐induced muscle wasting in tumor-bearing mice. LLC tumor-bearing mice under DOX chemotherapy, associated
with or not to FOR treatment, were evaluated by muscle wasting by measuring (A) body weight change—without tumor, (B) tumor weight, (C) grip
force (g/100 g IBW), (D) TA muscle weight (mg/100g IBW), and (E) gastrocnemius muscle weight (mg/100g IBW). (F) FOR reduced the DOX-induced
Trim63 and Fbxo32 expression. The data are presented as mean ± SEM and analyzed by one-way ANOVA test followed by the Bonferroni post-test.
*p < 0.05; **p<0.01; ***p<0.001. DOX, doxorubicin; FOR, formoterol; SAL, saline (0.9%); control group—non-tumor bearing mice (CT); GAS,
gastrocnemius muscle; TA, tibialis anterior muscle; IBW, initial body weight.
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Conclusions

In conclusion, our findings demonstrate that combining FOR

with DOX treatment reduces muscle wasting by mitigating

chemotherapy-induced muscle catabolism. Furthermore, FOR

treatment exerts its protective effects by regulating Akt/FoxO3a

signaling and downregulating the expression of atrogenes in skeletal

muscle, although other potential mechanisms may also be involved.

These results highlight the significance of FOR treatment as a

potential therapeutic strategy to combat muscle wasting during

DOX chemotherapy, including cancer cachexia.
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