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Histopathological image analysis plays an important role in the diagnosis and

treatment of cholangiocarcinoma. This time-consuming and complex process is

currently performed manually by pathologists. To reduce the burden on

pathologists, this paper proposes a histopathological image classification

method for cholangiocarcinoma based on spatial-channel feature fusion

convolutional neural networks. Specifically, the proposed model consists of a

spatial branch and a channel branch. In the spatial branch, residual structural

blocks are used to extract deep spatial features. In the channel branch, a multi-

scale feature extraction module and some multi-level feature extraction

modules are designed to extract channel features in order to increase the

representational ability of the model. The experimental results of the

Multidimensional Choledoch Database show that the proposed method

performs better than other classical CNN classification methods.
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1 Introduction

Cholangiocarcinoma (CCA) is an aggressive malignant tumor originating from the

epithelium of the biliary system. Its incidence has been increasing over the last few decades

(1, 2). Despite the advances in diagnosis and treatment, cholangiocarcinoma remains a

devastating cancer with a 5-year overall survival rate of only 6.8%, and this value has not

changed in recent decades (2). Available studies have shown that parasitic liver flukes,

primary sclerosing cholangitis, chronic viral hepatitis B and C, bile duct cysts, hepatobiliary

stones, and toxins are all risk factors for the development of cholangiocarcinoma (3).

Current diagnostic methods for cholangiocarcinoma include ultrasound, CT scan, MRI,

fluorodeoxyglucose positron emission tomography (FDG-PET), histopathological
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1237816/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1237816/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1237816/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1237816/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1237816/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1237816&domain=pdf&date_stamp=2023-08-18
mailto:kokohhu@126.com
mailto:yzx10000@163.com
https://doi.org/10.3389/fonc.2023.1237816
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1237816
https://www.frontiersin.org/journals/oncology


Zhou et al. 10.3389/fonc.2023.1237816
examination, and tumor marker testing. Although it has been

suggested that the diagnosis of cholangiocarcinoma may be based

on a combination of clinical presentation, laboratory analysis, and

radiological assessment, most patients require a pathological

diagnosis to confirm the diagnosis because radiological studies are

nonspecific (4–6). In conclusion, the study of the histopathological

examination of cholangiocarcinoma is essential and of great

interest.

Traditional pathological diagnosis is a pathologist’s visual

examination of a histological specimen under a microscope to

determine whether a pathological section contains abnormal tissue.

When the above process is digitally transformed (7), pathologists can

remotely analyze pathological sections on a computer screen.

Currently, histopathology is still largely a manual process (8).

Pathologists’ diagnostic performance is based on their expertise and

can be affected by decreased attention span due to fatigue. In order to

reduce the workload of pathologists and improve the accuracy of

diagnosis, it is of great clinical importance to develop an automatic

classification algorithm for histopathological images. In the early

stages of research, researchers commonly used two-stage image

processing to develop algorithms. First, a set of features specific to

that image type is extracted from the image using a series of one or

more hand-crafted feature descriptors, which are then used to train

the classifier (9). It should be noted that while this strategy is very

commonly used in leukemia, breast cancer, and oral cancer (10–14),

the accuracy of the classification task is highly dependent on the

design and robustness of the specific feature extraction algorithms

used. This means that expert knowledge and complex feature

engineering are required to obtain reliable discriminatory features.

In recent years, it has been shown that deep learning (DL)

overcomes these challenges (15). It can automatically abstract

feature information in images from shallow to deep and achieve

better classification results (16). In past biomedical competitions,

Convolutional Neural Networks (CNN) and a variety of other DL-

based algorithms have shown strong performance and achieved

excellent results that surpass traditional algorithms (17, 18). Pre-

training is a common tool for histopathological image classification.

For example, Abunasser et al. (19) used the pre-trained ResNet50

model as a feature extractor and swapped a new densely connected

classifier for prediction. In (20), a two-layer deep neural network

has been proposed to classify breast cancer using the extracted

features of a pretrained VGG16 model feature extractor from breast

ultrasound images. Although these methods have made some

progress, they have neglected the channel features in

histopathological images. In addition, due to the wide variation in

the morphology and size of biological tissues in histopathological

images, it is difficult to extract discriminative features for classifying

biological tissues with the previous methods. Based on this, this

paper outlines a spatial channel feature fusion convolutional neural

network (DCFCNN) for histopathological image classification of

cholangiocarcinoma to assist pathologists in diagnosing

malignancy. The proposed work contributes as follows.
Fron
1. This paper presents a classification approach for

cholangiocarcinoma pathological images based on channel
tiers in Oncology 02
feature fusion that classifies cholangiocarcinoma pathological

images using both spatial and channel data. Experimental

results on a multidimensional cholangiocarcinoma

histopathology dataset show that the fusion of spatial

features and channel features can effectively improve the

classification performance of the model.

2. In order to cope with the problem of large variations in

cancer areas in histopathological images, this paper

develops a Multiscale Feature Extraction (MSF) module

to enhance the extraction of channel features. The results of

the feature map visualization show that the method can

significantly enrich feature information and reduce

meaningless features, leading to better classification results.

3. To extract more representative channel discriminatory

features, a Multi-Level Feature extraction module (MLF)

was developed. Based on 1×1 convolution and feature reuse,

the module can improve model representation by reusing

channel features extracted from different levels of

convolution to achieve better classification results.
The rest of the paper is organized as follows: The proposed

methodology is detailed in Section 2. Experimental results and

model evaluation are given in Section 3. Finally, conclusions and

future work are presented in Section 4.
2 Proposed method

This section provides details of the proposed method. First, the

Multidimensional Choledoch Database used to verify the method is

described. Then the overall structure and detailed parts of the

proposed method are described.
2.1 Dataset

The dataset used in this paper was derived from the

Multidimensional Choledoch Database (21). It was created by the

Shanghai Key Laboratory of Multidimensional Information

Processing, East China Normal University in China. The choledoch

tissues are collected at Changhai Hospital, Shanghai, China, with

permission from the Ethics Committee. Each choledoch tissue is

stained with hematoxylin-andeosin and the slide thickness is 10 µm.

Among all slides, there are a total of 880 effective scenes of images.

Note that all these images are collected using a magnifying factor of

20× and are acquired in two formats: 3-channel RGB, 8-bit depth in

each channel, with a spatial dimension of 2304 ×1728 pixels, and 30-

channel microscopic hyperspectral images, 16-bit depth per pixel,

with 1280×1024 pixels per channel. For the qualitative comparisons,

the RGB and microscopic hyperspectral images are taken in the same

field of view. The images of the former format are used for

experiments in this paper. In these multidimensional scenes, 690

scenes from 125 patients contain parts of cancer areas, 48 scenes from

14 patients are filled with cancer areas, and 142 scenes from 35

patients contain no cancer areas. We combine complete cancer
frontiersin.org
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region scenes and scenes partially containing cancer regions into one

image class, which in turn transforms the problem into a binary

classification problem of 738 malignant samples with images of

cancer regions and 142 benign samples without cancer regions.

Figures 1A–D shows four samples from the Multidimensional

Choledoch Database.
2.2 Framework

Several previous studies have demonstrated the extraordinary

performance of CNN in histopathological image classification tasks

(21, 22), but most of these approaches are based on classic network

architectures with insufficient classification performance. Inspired by

the above approach, this paper outlines a novel DCFCNN for

histopathological image classification of cholangiocarcinoma.

Figure 2 illustrates the framework of the proposed method. As

shown in the figure, the input image is first pre-processed. Due to

the large spatial dimensionality in histopathological images of

cholangiocarcinoma, dimensionality reduction of the images is

required to reduce the computational cost and to ensure that the

algorithm is not interrupted by the memory limitations of the device

(23). Therefore, the proposed method first reduces the spatial

dimensionality of the input image by resizing and center cropping,

and then normalizes and standardizes the reduced image to accelerate
Frontiers in Oncology 03
the convergence of the model. The processed images are then fed to

DCFCNN to train the network. Finally, the trained network model

predicts the pathological images of cholangiocarcinomas in the test

dataset. The structure of DCFCNN includes the spatial branch and

the channel branch. The spatial branch consists of 5 residual layers

(RS_1-5), which are responsible for the extraction of the deep spatial

features in the image. The channel branch consists of the MSF and 3

MLFs, which are responsible for extracting the channel features in the

image. In addition, batch normalization is applied after the

convolution layer and before the activation function to speed up

the convergence of the network. The details of the RS, MSF and MLF

structures are shown in Figure 2.

2.2.1 RS
RS consists of residual structures (24) that are good at

mitigating the degradation occurring in deeper networks and are

able to extract discriminating features in deeper layers. Among

these residual layers, RS_1 to RS_4 contain two residual structures.

RS_5 contains three residual structures. Figure 3 illustrates the

specific parameters of the residual structure. As can be seen from

the figure, each residual block contains two layers of convolution

with 3x3 kernels and a shortcut connection (also known as a skip

connection). Furthermore, in the residual structure shown in

Figure 3A, the 3x3 kernel’s stride is 1 and padding is 1 to

maintain the consistent dimensionality of the input and output
A B

DC

FIGURE 1

Multidimensional Choledoch Database (RGB images): (A, B) malignant samples, (C, D) benign samples.
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feature maps. In the structure shown in Figure 3B, the 3×3 kernels

in the first convolution layer have a stride of 2 and padding of 1. The

3×3 kernels in the second convolution layer have a stride of 1 and

padding of 1. The feature map, after going through the structure

shown in Figure 3B, halves the spatial dimension and doubles the

channel dimension. In addition, in the shortcut connection shown

in Figure 3B, a convolution layer with a 1×1 kernel is used to ensure

dimensional matching. Compared to using the maxpool operation,

Figure 3B can mitigate the loss of features due to downsampling. In
Frontiers in Oncology 04
the method proposed in this paper, the first residual structure in

each residual layer is shown in Figure 3B, and the remaining

residual structures are shown in Figure 3A.

2.2.2 MSF
To address the problem of significant changes in the size and

morphology of biological tissues in pathological images, an MSF

was developed. It uses multiple scales of convolution kernels to

extract multiscale features from histopathological images of bile
A B

FIGURE 3

Residual structure. (A) Shortcut connection does not contain 1x1 convolution (B) Shortcut connection contain 1x1 convolution.
FIGURE 2

Framework of the proposed DCFCNN-based histopathological image classification of cholangiocarcinoma method.
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duct cancer, thus capturing more comprehensive and detailed

feature information (25). Figure 4 shows the details of the MSF.

As shown in the figure, convolutional kernel sizes of 3×3, 5×5, 7×7

and 1×1 are used to simultaneously extract feature information

from the input image. Each convolution layer contains 64 kernels,

and each layer uses a padding strategy to ensure that the input and

output feature maps have the same dimension. Except for the 1x1

convolutional kernel, which has stride of 1, the rest of the kernels

have a stride of 2. Finally, the feature maps extracted from the

convolution of different kernel sizes are output after fusion.

2.2.3 MLF
The MLF uses 1×1 convolution for channel feature extraction

and reuses the feature maps extracted from each convolution layer.

This design allows the channel features extracted from each

convolution layer to be fully utilized without additional

computation, which can improve the model’s representation and

classification performance. As shown in Figure 5, the feature maps

pass through Conv1×1_1, Conv1×1_2 and Conv1×1_3 in sequence.

The feature maps extracted by the convolution of the above layers

are fused and then fed to Conv1×1_4 for feature extraction. The

output feature map has twice the number of channels as the input

feature map after Conv1x1_4. A maxpool layer with a kernel size of

3×3, stride of 1, and padding of 1 dimensionally reduces the feature

map extracted by the convolution layer 4 to obtain the final output.

In DCFCNN, 3 multilevel feature extraction modules are used for

channel feature extraction. In order to better illustrate the detailed

structure of the DCFCNN, the parameters of the overall model are

listed in Table 1.
3 Experiment results

This section details the experimental setup, evaluation methods,

and results of the proposed method as follows: In Section 3.1 we

describe in detail the experimental environment, hyperparameters,
Frontiers in Oncology 05
and evaluation methods of the proposed method. In Section 3.2, we

perform ablation experiments using the proposed method to verify

the effectiveness of the modules in DCFCNN.

In Section 3.3, we explore the effect of the fusion level of spatial

features and channel features on the final classification results.

Section 3.4 shows the effect of resizing and center cropping on the

final classification results. Finally, in Section 3.5, the proposed

DCFCNN is compared with the classical CNN to validate the

advanced classification performance of the proposed method in

this paper on the Multidimensional Choledoch Database.
3.1 Experimental setup

The method proposed in this paper is based on the Python and

Pytorch framework. The experiments were performed on a cloud

server with a 14-core Intel(R) Xeon(R) Gold 6330 CPU@ 2.00 GHz,

30 GB RAM, and RTX A5000 24 GB GPU. Five-fold cross-

validation was used to prevent bias from different training

samples. The distribution of samples in each fold is shown in

Table 2. The method uses stochastic gradient descent (SGD) to

update the weights with a learning rate of 0.001, an impulse of 0.9,

and a decay of weights dropoing to 1e-6, a batch size of 16, and an

epoch of 200. The weight with the highest overall classification

accuracy in the training set was used as the optimal weight for

prediction in the test set.

The evaluation metrics used in this paper include the area under

the receiver operating characteristic curve (AUC), accuracy (Acc),

sensitivity (SN), specificity (SP), and macro F1-score (F1).
3.2 Ablation experiments

In order to verify the effectiveness of the proposed method, this

section performs an ablation study on the reuse of features, MSF

and MLF, respectively. The relevant experimental results are listed
FIGURE 4

Multiscale feature extraction module.
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in Table 3. In the table, √ means that the module is used, and ×

means that the module is not used. Note that in experiments 2 and

3, the stride of ResBlock1_1 in the spatial branch is set to 1 to ensure

the fusion of spatial features with channel features.

The experiment is divided into three groups. The first group

compares Experiment 1 and Experiment 2 to test the influence of

MLF. The second group compared Experiment 2 and Experiment 3,
Frontiers in Oncology 06
Experiment 4 and Experiment 5 to check the effect of the feature

reuse module. The third group compares Experiment 2 and

Experiment 4, Experiment 3 and Experiment 5 to verify the

impact of MSF.

GROUP 1: The effect of MLF

It is clear from Table 3 that Experiment 1, which uses a single

spatial branch to extract features for classification, has the worst
TABLE 1 DCFCNN parameters.

Moduel name Layer (Type) Filter shape Input size Output size

Resize 2304×1728×3 682×512×3

CenterCut 682×512×3 448×448×3

MSF

1×1 Conv
Maxpool
3×3 Conv
5×5 Conv
7×7 Conv

1×1×64
3×3
3×3×64
5×5×64
7×7×64

448×448×3
448×448×64
448×448×3
448×448×3
448×448×3

448×448×64
224×224×64
224×224×64
224×224×64
224×224×64

MLF_1
1×1 Conv1-4
Maxpool

1×1×64
3×3

224×224×64
224×224×64

224×224×64
112×112×64

MLF_2
1×1 Conv1-4
Maxpool

1×1×128
3×3

112×112×64
112×112×64

112×112×128
56×56×128

MLF_3
1×1 Conv1-4
Maxpool

1×1×256
3×3

56×56×128
28×28×128

56×56×128
28×28×256

RS_1
Residual structure1
Residual structure2

3×3×32;1×1×32
3×3×32

448×448×3
224×224×32

224×224×32
224×224×32

RS_2
Residual structure1
Residual structure2

3×3×64;1×1×64
3×3×64

224×224×32
112×112×64

112×112×64
112×112×64

RS_3
Residual structure1
Residual structure2

3×3×128;1×1×128
3×3×128

112×112×64
56×56×128

56×56×128
56×56×128

RS_4
Residual structure1
Residual structure2

3×3×256;1×1×256
3×3×256

56×56×128
28×28×256

28×28×256
28×28×256

RS_5
Residual structure1
Residual structure2
Residual structure3

3×3×512;1×1×512
3×3×512
3×3×512

28×28×256
14×14×512
14×14×512

14×14×512
14×14×512
14×14×512

Conv 3×3×1024 14×14×512 14×14,1024

AdaptiveAvgPool2d 1×1 14×14,1024 1×1024

Fully connect 1024 1×1024 1×2

Trainable params: 20,949,378
FIGURE 5

Multilevel feature extraction module.
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results on all five metrics. Experiment 2 achieved 93.31%, 87.35%,

96.48%, 76.87%, and 0.944 in ACC, F1, SN, SP, and AUC,

respectively, after adding the MLF module without feature reuse to

extract channel features, which exceeded the classification results of

Experiment 1 by 3.33%, 7.28%, 0.97%, 15.71%, and 0.035. It can be

seen that better classification performance can be achieved when both

deep spatial features and deep channel features are used for

classification than when only deep spatial features are used. In

other words, MLF contributes to the improvement of classification

accuracy.

GROUP 2: The effect of feature reuse

As shown in Table 3, the ACC, FC, SN, and SP metrics of

Experiment 3 are significantly better than those of Experiment 2,

and for the AUC indicators, the difference between the two is very

small and can be ignored. Therefore, the classification effect of

experiment 3 is better than that of experiment 2. Experiment 4

and Experiment 5 are also similar. The ACC, F, SP, and AUC

metrics of Experiment 5 are 94.89%, 90.10%, 78.86%, and 0.952,

respectively, exceeding the corresponding metrics 0.46%, 1.09%,

2.83%, and 0.004 of Experiment 4. The SN value, which is 0.01%

slightly lower, can also be neglected compared to improving other

metrics. The experimental results show that the performance of the

model is better after adding the feature reuse module.

GROUP 3: The effect of MSF

From Table 3, it can be seen that, with the exception of the SP

index of Experiment 4, which is 0.84% lower than that of

Experiment 2, the other four metrics are all better than those of

Experiment 2. The comparison between Experiment 3

and Experiment 5 is also very similar. All of the metrics from

Experiment 5 are better than Experiment 3. ACC, F1, SN, SP, and

AUC increased by 0.9%, 1.6%, 0.87%, 0.61%, and 0.009,

respectively. Therefore, the above experimental results

demonstrate the effectiveness of MSF in classification.

To better illustrate the performance improvement achieved by

MSF, this paper shows the feature maps captured from each

convolutional layer in MSF and the final output feature map of
Frontiers in Oncology 07
MSF in Figure 6. The brightness of the image represents the

information in which the convolution kernels are interested. The

higher the brightness, the more information the convolution kernels

focus on and learn from the area. The lower the luminance, the less

attention the kernel pays to the information contained in the region,

and the less information it learns. Figure 6A shows the

histopathological image of a cholangiocarcinoma. Figures 6B–F

shows the feature maps extracted from the convolution kernels of

1×1, 3×3, 5×5, 7×7 and the final output feature maps after fusing

feature maps extracted from different convolution layers.

Comparing Figure 6F with Figures 6B–E, it can be found that

compared with the feature maps extracted from a single-size

convolutional layer, there are fewer low-brightness feature maps

in the fused feature map, and there are significantly more “bright

regions” in each feature map of Figure 6F. This means that MSF

helps the model capture richer feature information from the

original Cholangiocarcinoma histopathological images. It should

be noted that although the increase of “bright areas” can bring more

abundant feature information, not all feature information is

beneficial to the model. This puts forward higher requirements

for the design of the subsequent channel feature extraction module.

MLF with the feature reuse module reuses the feature information

extracted in each convolutional layer to obtain a better feature

representation, thereby suppressing the noise and redundancy

caused by MSF.

The above experimental results show that regardless of MSF,

MLF, or feature reuse, they all contribute to the improvement of the

classification accuracy of the cholangiocarcinoma histopathology

image dataset.
3.3 Effect of fusion layers on
classification results

This section studies the influence of spatial and channel features

on the final classification results when merged at different layers.
TABLE 3 Ablation experiments.

No Residual
Branch

Feature
reuse

Multilevel feature
extraction

Multiscale feature
extraction ACC F1 SN SP AUC

1 √ × × × 89.98% 80.07% 95.51% 61.16% 0.909

2 √ × √ × 93.31% 87.35% 96.48% 76.87% 0.944

3 √ √ √ × 93.99% 88.50% 97.01% 78.25% 0.943

4 √ × √ √ 94.43% 89.01% 97.98% 76.03% 0.948

5 √ √ √ √ 94.89% 90.10% 97.97% 78.86% 0.952
frontier
TABLE 2 Five-fold cross-validation sample size distribution.

Fold K1 K2 K3 K4 K5

label 0 1 0 1 0 1 0 1 0 1

Train set 113 590 113 590 113 587 114 592 115 593

Test set 29 148 29 148 29 151 28 146 27 145
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For this purpose, four experiments were designed. In experiments 1

to 4, the spatial branches remain the same, and the number of MLFs

in the channel branches is adjusted. Specifically, Experiment 1

contains one MLF, Experiment 2 contains two MLFs, Experiment

3 contains three MLFs, and Experiment 4 contains four MLFs. Note

that in Experiment 4, the number of channels of the last MLF is 512.

The experimental results are shown in Figure 7.

As shown in Figure 7, the ACC, F1, SN, SP, and AUC curves

generally showed an upward trend with increasing fusion level, but

the trend slowed down with increasing fusion level. Overall, in the

task presented in this paper, the performance of fusing deep spatial

features with deep channel features is higher than that of fusing

shallow spatial features with shallow channel features. In this paper,

the fusion strategy in Experiment 3 is selected from the viewpoint of

saving computation costs.
3.4 Effect of different resize and center
crop sizes on classification results

In order to solve the problem of the extremely high

spatial dimensionality of the histopathological images of

cholangiocarcinomas, resize transformation and center cropping
Frontiers in Oncology 08
are used in the method proposed here. However, while the above

operation results in a reduction in the dimensionality of the spatial

input, it also results in a loss of feature information. To measure the

effect of different resizing and center cropping sizes on the

classification performance of the model, four experiments are

performed in this section. In Experiment 1, the short edges were

first scaled to 256 (the long edges were scaled the same), and the

input image was then spatially sized to 224×224 using center

cropping. For the sake of simplicity, this process is written as

256-224 in this paper. Experiment 2 is 384-336, Experiment 3 is

512-448 and Experiment 4 is 640-560. To avoid misleading

expressions in section 3.3, we use 256-224, 384-336, 512-448 and

640-560 to represent experiment 1, 2, 3, and 4, respectively, in

this section.

As shown in Figure 8, the ACC, F1, and AUC curves roughly

show an increasing trend, but the trend tends to weaken as the size

of the input image increases. This indicates that modestly increasing

the input image size can help improve the model’s classification

accuracy for ACC, F1, and SP. However, excessively increasing the

input image size does not bring significant improvements in ACC,

F1, or SP. In general, excessive resizing and center cropping will lose

most of the feature information in the original image, reducing the

model’s classification performance. Taking into account the
A B

D E F

C

FIGURE 6

Cholangiocarcinoma images and visualization of feature maps in MSF. (A) Cholangiocarcinoma images; (B) Feature maps extracted from Conv1x1;
(C) Feature maps extracted from Conv3x3; (D) Feature maps extracted from Conv5x5; (E) Feature maps extracted from Conv7x7; (F) The final output
feature maps.
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computational cost of the model, this paper selects the resizing and

center cropping strategy of 384-336 mentioned above, where the

short edges were first scaled to 384 (the long edges were scaled the

same), and the input image was then spatialized to 336×336 using

center cropping.
3.5 Comparison with other methods

In this section, the DCFCNN is compared to four classic

convolutional neural networks, including AlexNet, Vgg19_bn,

ResNet152, and DesNet161, in the Multidimensional Choledoch

Database. AlexNet is a milestone algorithm for deep learning.

Though overtaken by more efficient architectures, it is an

important step from shallow to deep networks, and its proposed

dropout, ReLU, and preprocessing are still the key steps for many

improved algorithms. VGG is a successor to AlexNet. It is a deep

convolution model based on small convolutional kernels. This type

of model includes Vgg 16, Vgg 19, Vgg 16_bn, and Vgg 19_bn.

Vgg19_bn is a VGG 19-layer model with batch normalization that

typically gives better results for most image classification tasks.

ResNet is a short name for a residual network. It has fewer filters
Frontiers in Oncology 09
and less complexity than VGG nets. Each ResNet block is either two

layers deep (used in small networks such as ResNet 18, 34) or three

layers deep (ResNet 50, 101, 152). The deeper ResNet achieves

better training results as compared to the shallow network and

significantly outperforms it when the network is deeper. Therefore,

we chose ResNet152 in our experiments. DesNet is a densely

connected convolutional network based on short paths and

feature reuse. Considering the size and accuracy of the model, the

Densenet 161 model was chosen for our experiments. All of the

above networks are pre-processed in the same way. That is, they go

through the same four steps: resizing, center cropping,

normalization, and standardization. The learning rate, weight

decay, momentum, and batch size are consistent with the method

proposed in this paper.

Table 4 shows the ACC, F1, SN, SP, and AUC values of different

models, as well as the training and test time. As can be seen from the

table, AlexNet is a shallow structure compared to other models, so

its five metrics are all the worst. Vgg19_BN improves classification

performance by increasing network depth. Classification accuracy is

higher for the five metrics than AlexNet. The ResNet152 model uses

residual learning to alleviate network degradation and overfitting

problems, so Acc, F1, SP, and AUC are further improved, but the
FIGURE 8

Experimental results on different of cholangiocarcinoma histopathological image sizes.
FIGURE 7

Experimental results of different fusion layers.
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SN metric is slightly lower than Vgg19_bn. DesNet161 deepens

the network structure while enhancing the model representation, so

the classification performance is improved. However, this method

ignores channel features, so its classification performance is lower

than that of the DCFCNN proposed in this paper. The ACC, F1, SP,

and AUC values of the DCFCNNmodel are better than those of the

DesNet161 model, which are 0.45%, 1%, 2.71%, and 0.006 higher,

respectively. The SN indicators are equivalent to 97.97%.

The training time and test time of each model are also shown in

Table 4. Although the network depth of DesNet161 is similar to

ResNet152, its training time and testing time are the longest among

all models. Compared with the DCFCNN, Vgg19_bn takes less test

time but much longer training time. Although AlexNet’s test time and

training time are lower than DCFCNN’s, the classification performance

of DCFCNN is much better than AlexNet’s. In general, the proposed

DCFCNN model has the best comprehensive performance.
4 Conclusion

In this paper, we propose a histopathological image classification

method for cholangiocarcinoma based on a convolutional neural

network with spatial-channel feature fusion. In particular, both

spatial and channel features are used to classify histopathological

images of cholangiocarcinoma, and a multiscale feature extraction

module is used to obtain richer features from the original image. In

addition, multi-level feature extraction modules are designed to take

full advantage of the channel features extracted from different

convolutional layers to enhance the model representation. The

results of a multidimensional cholangiocarcinoma dataset show

that the proposed method outperforms the widely used classical

CNN model.

Cholangiocarcinoma has three distinct stages of differentiation:

low, intermediate, and high. The method in this paper only focuses

on classifying cancerous and non-cancerous images. In future

research, we can make a more detailed classification based on the

differentiation of different stages. Furthermore, a multi-branch,

multi-level fusion strategy will be introduced to further

investigate the influence of spatial features and channel features

on the final classification performance under different fusion states.

In addition, it is assumed that attentional mechanisms and a long

short-term memory should be introduced to explore the local

channel features.
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TABLE 4 Experimental results of different methods on Multidimensional Choledoch Database.

Network
Evaluation

Acc F1 SN SP AUC Train time(s) Test times(s)

AlexNet 85.54% 73.00% 91.19% 56.08% 0.821 2668.98 6.79

Vgg19_bn 91.14% 81.43% 97.43% 58.50% 0.901 4187.19 7.82

ResNet152 92.04% 84.42% 96.47% 69.10% 0.904 4453.33 9.11

DesNet161 94.44% 89.10% 97.97% 76.15% 0.946 4988.35 12.54

DCFCNN 94.89% 90.10% 97.97% 78.86% 0.952 2975.05 8.27
frontiersin.org

https://doi.org/10.3389/fonc.2023.1237816
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhou et al. 10.3389/fonc.2023.1237816
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Oncology 11
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Oliveira IS, Kilcoyne A, Everett JM, Mino-Kenudson M, Harisinghani MG,
Ganesan K. Cholangiocarcinoma: classification, diagnosis, staging, imaging features,
and management. Abdominal Radiol (2017) 42(6):1637– 49. doi: 10.1007/s00261-017-
1094-7

2. Xiong J, Wang Y, Huang H, Bian J, Wang A, Long J, et al. Systematic review and
meta-analysis: cholecystectomy and the risk of cholangiocarcinoma. Oncotarget (2017)
8(35):59648–57. doi: 10.18632/oncotarget.19570

3. Palmer WC, Patel T. Are common factors involved in the pathogenesis of
primary liver cancers? A meta-analysis of risk factors for intrahepatic
cholangiocarcinoma. J Hepatol (2012) 57(1):69–76. doi: 10.1016/j.jhep.2012.02.022

4. Vilana R, Forner A, Bianchi L, Garcıá-Criado Á, Rimola J, Rodrıǵuez de Lope C,
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