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Objective: We apply the superiorization methodology to the constrained

intensity-modulated radiation therapy (IMRT) treatment planning problem.

Superiorization combines a feasibility-seeking projection algorithm with

objective function reduction: The underlying projection algorithm is perturbed

with gradient descent steps to steer the algorithm towards a solution with a

lower objective function value compared to one obtained solely through

feasibility-seeking.

Approach: Within the open-source inverse planning toolkit matRad, we implement

a prototypical algorithmic framework for superiorization using the well-established

Agmon, Motzkin, and Schoenberg (AMS) feasibility-seeking projection algorithm and

common nonlinear dose optimization objective functions. Based on this prototype,

we apply superiorization to intensity-modulated radiation therapy treatment

planning and compare it with (i) bare feasibility-seeking (i.e., without any objective

function) and (ii) nonlinear constrained optimization using first-order derivatives. For

these comparisons, we use the TG119 water phantom, the head-and-neck and the

prostate patient of the CORT dataset.

Main results: Bare feasibility-seeking with AMS confirms previous studies,

showing it can find solutions that are nearly equivalent to those found by the

established piece-wise least-squares optimization approach. The superiorization

prototype solved the linearly constrained planning problem with similar

dosimetric performance to that of a general-purpose nonlinear constrained

optimizer while showing smooth convergence in both constraint proximity

and objective function reduction.

Significance: Superiorization is a useful alternative to constrained optimization in

radiotherapy inverse treatment planning. Future extensions with other

approaches to feasibility-seeking, e.g., with dose-volume constraints and more

sophisticated perturbations, may unlock its full potential for high performant

inverse treatment planning.

KEYWORDS

radiation therapy treatment planning, inverse planning, constrained treatment plan
optimization, IMRT, superiorization method, feasibility-seeking algorithm
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1 Censor (http://arxiv.org/abs/1506.04219) provides a continuously

updated bibliography of works using superiorization to present the state of

research (30).
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1 Introduction

Numerical optimization methods lie at the heart of state-of-the-

art inverse treatment planning for intensity-modulated radiation

therapy (IMRT) (1). Usually, a clinical prescription of the treatment

goals forms the input to a nonlinear multi-criteria optimization

(MCO) problem with or without additional constraints, depending

on the desired patient dose distribution.

During the translation of the clinical goals into an MCO

problem, one distinguishes between objectives, i.e., soft goals that

compete with each other, and hard constraints designed to ensure,

for example, maximal tolerance doses in an organ-at-risk (OAR)

and minimal dosage of the target. This versatile approach enables

the treatment planner to employ arbitrary combinations of suitable

(convex) nonlinear objective functions along with any choice of

constraints on the voxels’ doses.

This mathematical modeling allows numerical optimization of the

fluence of beam elements (beamlets) using a pre-computed normalized

dose mapping (2). The resulting constrained nonlinear optimization

problem is frequently solved by applying an extended (quasi-)Newton

approach with sequential quadratic programming (SQP) and/or

interior-point methods (1–7). Until now, the capabilities of inverse

planning have been substantially extended through multi-criteria

Pareto optimization with subsequent exploration of the Pareto

surface (8, 9) or stochastic/robust optimization (10).

Computational difficulties may arise in the constrained nonlinear

optimization approach. First, optimal convergence for problems of

typical size in radiotherapy is tied to the availability of

computationally efficient second-order derivatives. While, for

example, van Haveren and Breedveld (11) showed that for many

typical functions efficient formulations can be found, current research

persistently adds new quantities, optimization strategies, and new

types of problem formulations to inverse planning for photons and

particles (see, e.g., 12–18) to which such strategies might not be

directly applicable. Second, a common approach among successful

optimizers for nonlinear constrained optimization is to transform the

constrained problem into an unconstrained problem using, for

example, barrier functions (in the case of interior point methods,

e.g., 3, 19) and the method of Lagrange multipliers in combination

with slack variables (3, 19, 20). This creates a computational burden

when the number of constraints increases. Handling many

constraints as, for example, linear inequalities for many or all

individual voxel dose bounds, can inflate the computational effort

because each constraint requires a Lagrange multiplier and an

additional slack variable. Possible “workarounds” include minimax-

optimization in combination with auxiliary variables or usage of

continuous and differentiable maximum approximations like the

LogSumExp and softmax functions (5).

Taking a step back, however, to the starting days of treatment

planning research, shows that one does not necessarily need to use a

mathematical optimization approach to solve the purely linearly

constrained IMRT problem but could use feasibility-seeking

projection algorithms instead (21, 22).

In the context of IMRT, such bare feasibility-seeking translates

to seeking a feasible solution that will obey the prescribed lower and

upper dose bounds on doses in voxels, without aiming to optimize
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any objective function. While, in general, a bare feasibility-seeking

task can be translated to a constrained optimization problem with a

zero objective function, the literature demonstrates a wide spectrum

of many efficient feasibility-seeking algorithms not derived from

translation of the bare feasibility-seeking task to a constrained

optimization problem (see, e.g., 23). If no feasible solution is

found, these algorithms find a proximal solution, similar to the

piece-wise least-squares approach. Even though they have seen

further development over the last decades (24) and, more

recently, also extension to dose-volume constraints (25–27),

numerical optimizers have been the preferred choice in the field

due to their abilities to handle the nonlinear objective functions,

e.g., (generalized) equivalent uniform dose (EUD), which are often

desired when prescribing treatment goals.

The work presented here now combines nonlinear objective

functions as used in optimization with feasibility-seeking within

linearly constraining dose bounds by applying the superiorization

method (SM). To do so, the SM uses a superiorized version of the

basic algorithm, the latter being a user-chosen iterative feasibility-

seeking algorithm, which is perturbed by interlacing reduction steps

of the chosen (nonlinear) objective function. This practically steers

the iterates of the feasibility-seeking algorithm to a feasible solution

point with a “superior”, i.e., smaller or equal objective function

value, which is not necessarily a constrained minimization point.

The superiorization method thus works with the constraints

data and the user’s choice of objective function, much alike

constrained optimization methods would. But it does not aim at

an optimal point that minimizes the objective over all constraints

like the latter do. In contrast, the SM aims at a point that will fulfill

all constraints and have a reduced – not necessarily minimal –

objective function value. Not finding the optimal solution, but

instead aiming for a satisfactory or adequate result, is a

reasonable decision strategy (“Satisficing”, see 28), particularly

considering the degeneracy of the IMRT optimization problem

(29). Hence, this aim suffices for the purpose of generating

acceptable treatment plans. Combined with the simplicity of the

gradient descent steps (i.e., not relying on second-order derivatives),

superiorization can find a solution, in general, faster and with less

investment of computing resources, and fewer conditions

concerning design of the objective function.

Application of the SM to treatment planning is encouraged by

the flexibility it has shown for applications in multiple fields:1 It has

demonstrated its effectiveness for image reconstruction in single-

energy computed tomography (CT) (31, 32), dual-energy CT (33)

and, more recently, in proton CT (34, 35), by reducing total

variation (TV) during image reconstruction. The SM has also

been successfully applied to diverse other fields of applications,

such as tomographic imaging spectrometry (36) or signal

recovery (37).

This work is – to the best of our knowledge – the first in-depth

investigation of the SM as a potential alternative to constrained
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minimization algorithms for inverse radiotherapy treatment

planning using common objective functions. To date, we could

only identify an initial study of the applicability of SM in IMRT

utilizing TV as objective function (38), which does not represent

common choices in objective function design for treatment

planning. Another work considering the use of SM in IMRT used

superiorization to boost a specific lexicographic planning

approach (39).

Expanding on those preliminary works, we develop, tune, and

evaluate a prototypical superiorization solver for radiotherapy

treatment planning problems. To show how this SM solver is able

to replace a constrained minimization approach, and to maximize

reproducibility and re-usability of our work, our superiorization

approach is implemented into the validated open source radiation

therapy treatment planning toolkit matRad (5) together with an

instructive set of scripts to execute and reproduce the results of this

work (see section 2.5). Within matRad and its included phantoms

and patient cases, the SM is evaluated and tested on full-fledged

IMRT and intensity-modulated proton therapy (IMPT) treatment

planning problems. We compare to using non-linear constrained

optimization using only first-order derivatives like the SM, that is, a

quasi-Newton method construction a Hessian approximation.

This paper is structured as follows: In section 2, we describe the

approaches and present the specific version of the SM that we use

along with the feasibility-seeking algorithm embedded in it. Section

3 includes our computational results. Finally, in section 4, we

discuss the potential of SM with possible future developments

and conclude our work in section 5.
2 Materials and methods

This work compares three approaches to model the treatment

planning problem in IMRT: (i) a nonlinear constrained

minimization approach of minimizing an objective function

subject to constraints with a quasi-Newton method relying on

first-order derivatives, (ii) the feasibility-seeking approach

searching for a feasible solution adhering to constraints without

considering any objective functions to minimize, and finally, (iii)

the superiorization approach, which perturbs the feasibility-seeking

algorithm to reduce (not necessarily minimize) an objective

function by gradient descent steps. Before introducing these

approaches, we briefly recap the discretization of the inverse

treatment planning problem.
2.1 Discretization of the inverse treatment
planning problem

Computerized inverse treatment planning usually relies on a

spatial discretization of the particle fluence, the patient anatomy,

and, consequently, the radiation dose.

The patient is represented by a three-dimensional voxelized grid

(image) with n voxels numbered i = 1, 2,…, n. Based on this image,

Q volumes of interest (VOIs) Sq,   q = 1, 2,…,Q are segmented. This

allows us to represent the dose as a vector d = (di)
n
i=1, whose i-th
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component is the radiation dose deposited within the i-th voxel. For

each of the segmentations Sq, we can then easily identify its dosage

by finding di for all i ∈ Sq.

The radiation fluence is represented as a vector intensities x =

(xj)
m
j=1, whose j-th component is the intensity of the j-th beamlet.

The dose deposition aji for a unit intensity of beamlet j to voxel i can

then be precomputed and stored in the dose influence matrix A =

(aji)
n,m
i=1,j=1, mapping x to d   via   d = Ax.
2.2 The constrained minimization approach

In the optimization approach to IMRT treatment planning, the

clinically prescribed aims are represented by various (commonly

differentiable) objective functions which map the vector of beamlet

intensities to the positive real numbers (2).

For our purposes, we limit ourselves to objective functions fp :

Rn → ½0,∞), p = 1, 2,…, P, operating on the radiation dose d as

surrogates for clinical, dose-based goals.

A comprehensive, exemplary list of such common objective

functions can be found in Wieser et al. (5, Table 1) and, for the

reader’s convenience, also in Supplementary Data Sheet below. These

objective functions, which depend on the dose, are related to the

intensities x   via   d = Ax, which is computed at each iterate/change of

x during optimization.

Wishing to fulfill or decide between multiple clinical goals, the

resulting multi-objective optimization problemmay be scalarized using

a weighted sum of several different individual objective functions for

the various VOIs Sq. This approach, first introduced for least-squares

(as introduced by 40), can today explore a plethora of objective

functions (2, 5) while also satisfying hard constraints (3, 5):

x* = arg  min
x

o
P

p=1
wpfp(d(x))

such   that cLt ≤ ct(d(x)) ≤ cUt , t = 1, 2,…,T ,

x ≥ 0   :

(1)

Here wp ≥ 0, for all p = 1, 2,…, P, are user-specified weights

reflecting relative importance, fp are user-chosen individual objective

functions, x is the beamlet radiation intensities vector (which is

physically bound to the nonnegative real orthant), and ct are user-

chosen individual constraints with lower and upper bounds cLt and c
U
t ,

respectively. While the constraints ct can, in principle, be nonlinear

constraints, we focus here on linear inequality constraints representing

upper and lower dose prescription bounds.

The inverse planning problem from eq. (1), solved with

numerical optimization techniques, is commonly used today
TABLE 1 Dose inequalities/prescriptions and penalty weights used for
minimization and for AMS feasibility-seeking.

VOI wp tolerance/inequality constraint

Target 1000 59 Gy < d < 61 Gy

Core 100 d < 20 Gy

Body 30 d < 30 Gy
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across treatment modalities (among others 2, 3, 5, 40, 41). SQP or

interior point methods with a (quasi-)Newton approach are often

used to solve the resulting constrained optimization problems (1–7,

42). In this work, we focus on a quasi-Newton approach using first-

order derivatives only, since the superiorization approach (as

described further below in section 2.4) has so far only been

investigated using gradient descent steps itself.
2.3 The feasibility-seeking approach

Since the bare feasibility-seeking approach is the backbone of

the SM, it will be outlined below using the notation from sections

2.1 and 2.2. Prior work has already suggested the feasibility-seeking

approach to address the treatment planning problem (see, e.g., 43,

and references therein).

To solve the treatment planning problem with feasibility-

seeking, dose prescriptions are modeled as a system of linear

inequalities: In general, the dose in every voxel is constrained

with a lower and upper bound. Feasibility-seeking now seeks a

solution, i.e., a beamlet intensity vector fulfilling these prescriptions.

With d(x) = Ax, the beamlet radiation intensities vector x now

has to be recovered from a system of linear inequalities of the form

cLi ≤o
m

j=1
ajixj ≤ cUi , i = 1, 2,…, n : (2)

In principle, individual lower and upper bounds cLi and cUi can

be chosen for each voxel i. Since prescriptions are usually grouped

per VOI Sq, the system can be rewritten as:

For all   q = 1, 2,…,Q : ‘q ≤o
m

j=1
ajixj ≤ uq for all i ∈ Sq, (3)

with ‘q and uq representing the lower and upper dose bounds

per VOI Sq, respectively. Since it does not make sense to prescribe

positive lower bounds to OARs, these are generally chosen to be

equal to zero.

Geometrically, depending on which structure Sq a voxel i

belongs to, each physical dose constraint set Ci in each voxel i =

1, 2,…, n, is a hyperslab (i.e., an intersection of two half-spaces) in

the m-dimensional Euclidean vector space Rm.

Aiming at satisfaction of all physical dose constraints along with

the nonnegativity constraints is, thus, the following (which is a

special case of the convex feasibility problem see, e.g., 23):

Find an   x* ∈ W : =

x ∈ Rmjfor all,  q = 1, 2,…,Q,   ‘q ≤o
m

j=1
ajixj ≤ uq,  for all i ∈ Sq, and   x ≥ 0

( )

(4)

Such feasibility-seeking problems can typically be solved by a

variety of efficient projection methods, whose main advantage,

which makes them successful in real-world applications, is

computational (see, e.g., 23, 44).

They commonly can handle very large-size problems of

dimensions beyond which other, more sophisticated currently
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available, methods start to stutter or cease to be efficient. This is

because the building blocks of a projection algorithm are the

projections onto the given individual sets. These projections are

actually easy to perform, particularly in linear cases such as

hyperplanes, half-spaces, or hyperslabs.

For the purpose of this paper, we define such an iterative feasibility-

seeking algorithm via an algorithmic operator A : Rm → Rm ,

x0 ∈ Rm,   xk+1 = A(xk),   k = 1, 2,…  , (5)

whose task is to (asymptotically) find a point in W .

The algorithmic structures of projection algorithms are

sequential, simultaneous, or in-between, such as in the block-

iterative projection (BIP) methods (see, e.g., 45, 46, and references

therein) or in the more recent string-averaging projection (SAP)

methods (see, e.g., 47, and references therein). An advantage of

projection methods is that they work with the initial, raw data and

do not require transformation of, or other operations on, the sets

describing the problem.

For our prototype used here in conjunction with the SM, we rely

on the well-established Agmon, Motzkin, and Schoenberg (AMS)

relaxation method for linear inequalities (48, 49). Implemented

sequentially and modified for handling the bounds x ≥ 0, it is

outlined in Algorithm 1. We denote ‘ : = (‘q)
Q
q=1 and u : = (uq)

Q
q=1.
1: function AAMS(x,A, u, ‘, l, n)
2: I = CS(n) *Select control sequence*

3: for all i ∈ Ido

4: if ai, x > uq  then *uq for containing i-th voxel*

5: x← x − lni
〈 ai ,x 〉−uq
∥ ai ∥22

ai

6: else if 〈 ai, x 〉 < ‘qthen *‘q for containing i-th voxel*

7: x← x − lni
‘q−〈 a

i ,x 〉
∥ ai ∥22

ai

8: else *Do nothing*

9: end if

10: end for

11: for j = 1, 2,…m do *Ensure nonnegativity of x*

12:
xj ←

xj , for   xj ≥ 0

0, for   xj < 0

(

13: end for

14: return x

15: end function
Algorithm 1. The AMS Sequential Relaxation Method’s algorithmic
operator AAMS.

During an iteration, Algorithm 1 iterates over all rows of the dose

matrix A and handles sequentially the right-hand side and the left-

hand side of individual constraints from eq. (3). The control sequence

(CS) (50, Definition 5.1.1) determines the order of iterating through

the matrix rows/constraints. When a corresponding voxel dose

inequality is violated, the algorithm performs geometrically a

projection of the current point x onto the violated half-space with

a user-chosen relaxation parameter 0 < l ≤ 2. The original AMS

algorithm is modified in Algorithm 1 to allow the relaxation for each
frontiersin.org
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voxel i to be weighted with ni and by performing projections onto the

nonnegative orthant of Rm (in steps 11–13) to return only

nonnegative intensities x. The vector ai = (aji)
m
j=1 is the i-th row of

the dose matrix A and is the normal vector to the half-space

represented by that row and ‖ ai ‖22 is its square Euclidean norm.

In summary, the algorithmic operator in Algorithm 1 describes

a single complete sweep of projections sequentially over all

constraints (half-spaces) followed by a projection onto the

nonnegative orthant thus ensuring the nonnegativity constraint.

Such sweeps will be executed iteratively.

The theory behind this algorithm guarantees that, under

reasonable conditions, if the feasibility-seeking sweeps are

performed endlessly then any sequence of iteration vectors fxkg∞k=0
converges to a point that satisfies all constraints.

Choosing to define an algorithmic operator A in Algorithm 1,

allows us to concisely display the superiorization approach

independent from the chosen projection algorithm below (see

step 21 inside Algorithm 2).
2.4 The superiorization method
and algorithm

The SM is built upon application of a feasibility-seeking

approach (section 2.3) to the constraints in the second and third

lines of eq. (1). But instead of handling the constrained

minimization problem of eq. (1) with a full-fledged algorithm for

constrained minimization, the SM interlaces into the feasibility-

seeking iterative process (i.e., “the basic algorithm”) steps that

reduce locally in each iteration the objective function value.

Accordingly, the SM does not aim at finding a constrained

minimum of the combined objective function f (x) =oP
p=1wpfp(x)

of eq. (1) over the constraints. It rather strives to find a feasible

point that satisfies the constraints and has a reduced – not

necessarily minimal – value of f .

In the following, we give a brief and focused introduction to SM.

A more detailed explanation and review can be found in, e.g.,

Censor et al. (51, Section II) and references therein (see also 31, 35,

45, 52–55).

In general, the SM is intended for constrained function

reduction problems of the following form (55, Problem 1):

Problem 1. The constrained function reduction problem of

the SM

Let W be a given set (such as in eq. (4)) and let f :Rm → R be an

objective function (such as in eq. (1)). Let A from eq. (5) be an

algorithmic operator that defines an iterative basic algorithm for

feasibility-seeking of a point in W. Find a vector x* ∈ W whose

function value is smaller or equal (but not necessarily minimal) than

that of a point in W that would have been reached by applying the

basic algorithm alone.

The SM approaches this question by investigating the perturbation

resilience (52, Definitions 4 and 9) of A, and then proactively using

such perturbations, to locally reduce the values f of the iterates, in

order to steer the iterative sequence generated by algorithm A to a

solution with smaller or equal objective function value. The structure
Frontiers in Oncology 05
of the superiorization algorithm implemented here is given by

Algorithm 2 with explanations here and in section 2.4.1.

Except for the initialization in steps 1–3, Algorithm 2 consists of

the perturbations phase (steps 5–19) and the feasibility-seeking

phase (steps 20–23).

In the perturbation phase, the objective function f is reduced

using negative gradient descent steps. The step-size b of these

gradient updates is calculated by a s where a is a fixed user-chosen

constant, called kernel, 0 < a < 1 so that the resulting step-sizes are

nonnegative and form a summable series. The power s is incremented

by one until the objective function value of the newly acquired point

is smaller or equal to the objective function value of the point with

which the current perturbations phase was started.

The parameter N determines how many perturbations are

executed before applying the next full sweep of the feasibility-

seeking phase. The basic Algorithm 1 with algorithmic operator

AAMS, used throughout this work, is indeed perturbation resilient (56).

The superiorization approach has the advantage of letting the

user choose any task-specific algorithmic operator A that will be

computationally efficient, independently of the perturbation phase,

as long as perturbation resilience is preserved.
1: k← 0

2: xk ← x0

3: s←−1

4: while stopping rule not met do

5: t← 0 *start of perturbation phase*

6: xk,t ← xk

7: while t < N do *apply N function reductions*

8: loop← true

9: while loop do

10: s← s + 1

11: b←as *Step size adaptation*

12: z← xk,t − b∇ f (xk,t) *Function reduction step*

13: if f (z) ≤ f (xk,t) then *Function reduction check*

14: t← t + 1

15: xk,t ← z

16:                   loop← false

17: end if

18: end while

19: end while

20: nk ←hkn *start offeasibility-seeking phase*

21: xk+1 ←AAMS(xk,t ,A, u, ‘, l, nk)
22: k← k + 1

23: end while

24: return xk
Algorithm 2. Superiorization of the feasibility-seeking basic algorithm
described by the operator A = AAMS.

For our IMRT treatment planning problem using voxel dose

constraints as introduced in eqs. (2) – (4), A can be – besides the

chosen AMS algorithm – any of the wide variety of feasibility-

seeking algorithms (see, e.g., 23, 44, 50, 57).
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The principles of the SM have been presented and studied in

previous publications (consult, e.g. 31, 52, 54), but, to the best of our

knowledge, this is the first work applying the SM to a treatment

planning problem with an objective function of the general form

f (x) : =oP
p=1wpfp(x) from eq. (1).

2.4.1 Modifications of the prototypical
superiorization algorithm

To control the initial step-size, we warm start the algorithm

with larger kernel powers s within the first iteration, which

substantially improves the algorithm’s runtime. For our purposes,

we chose an initial increment of s ← s + 25.

In the feasibility-seeking phase, instead of weighting all

projections onto the half-spaces equally via the relaxation

parameters, each projection can also be given an individual

weight 0 < ni < 1 representing the importance of the i-th

inequality constraint (i. e., voxel).

Further, as shown in step 20 of Algorithm 2, weights can be

reduced after each iteration to improve stability. Similar to how the

step-sizes are reduced in the perturbation phase, we utilize another

kernel 0 < h < 1 and use its powers hk to reduce the weights in step

20 by incrementing k after each feasibility-seeking sweep. The new

weights are then calculated by hk · n , where n are the initial weights.

Finally, we integrate four different control sequences to iterate

through the rows ofA. Apart from following the cyclic order according

to voxel indices, we experimented with a random order and with

sequences choosing rows with increasing or decreasing weights ni.

2.4.2 Stopping criteria
The algorithm was terminated after a given maximal number of

iterations was reached or after a certain time limit was exceeded, or

when the stopping criterion formulated below was met. The default

number of maximum iterations was 500 and the default wall-clock

duration was set to 50min.

The stopping criterion that we used consists of two parts, both

of which must be met for three consecutive iterations for the

algorithm to stop. The first part of the stopping criterion is that

the relative change of the objective function f defined by

f (xk+1) − f (xk)j
max   1, f (xk)

� �
�����

����� (6)

becomes smaller than 10−4.

For the second part of the stopping criterion, we define the

square of the weighted L2-norm of the constraints violations by2

V xð Þ : = 1
no

n

i=1

(‘q − 〈ai, x〉)2+ + (〈ai, x〉 − uq)
2
+

‖ ai ‖22
(7)

where ‘q and uq depend on which structure the i-th voxel

belongs to. This second part of the stopping rule is met if the relative

change of V defined by

V(xk+1) − V(xk)j
max   1,V(xk)

� �
�����

����� (8)

is smaller than 10−3 :
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All tolerances of the stopping criteria can be customized and

also set to a negative number to turn off single stopping criteria or

early stopping altogether.
2.5 Implementation

The superiorization prototype described above was implemented

in the open-source crossplatform software “matRad” (5, 58, 59), which

is a multi-modality radiation dose calculation and treatment planning

toolkit written in Matlab. The implementation is publicly available on

the matRad GitHub repository on a research branch.3

The superiorization solver is implemented as the class

matRad_OptimizerSuperiorization.m within matRad's optimization

framework. The class defines various user-configurable properties

such as the maximum number of iterations, maximum wall time,

different warm-start settings, two different feasibility-seeking

algorithms, and various control sequences. Once the optimizer has

been initialized, the optimize method can be called to generate a

solution to the plan. The optimize method requires the following

inputs: a starting point, the objective function with its gradient, the

linear constraints, and the dose projection matrix. The perturbation

phase, as well as the two provided feasibility-seeking algorithms, are

implemented as additional methods. Furthermore, within the class, an

additional method PlotFunction is available. This method facilitates the

visualization of key metrics, such as the objective function value, the

maximum constraint violation, and the proximity of the solution to

the set of feasible solutions. Multiple scripts to reproduce the results

presented herein are provided in an additional GitHub repository.4

The implementation in matRad facilitates comparison against

plans generated on the same datasets with a nonlinear optimizer, as

matRad implements a number of common objective functions used

in treatment planning (compare to Supplementary Data Sheet and

Wieser et al. (5, Table 1)). While matRad provides interfaces to both

the open-source Interior Point OPTimizer (IPOPT) (19) as well as

to Matlab’s built-in interior-point algorithm from fmincon, only the

first was used for our comparisons.

We chose to use matRad’s optimization implementation as a

benchmark for mainly two reasons: First, matRad has been used in

numerous research works demonstrating its ability to create acceptable

treatment plans. Second, as an open-source tool, matRad does allow

direct modifications of the algorithms and respective parameters and

stopping criteria, running them under truly similar conditions. This

means that the evaluation of the objective function and its gradient

itself use exactly the same code. Benchmarking against other closed-

source treatment planning systems would be inconsequential due to

hidden computational optimizations, simplifications, and unknown

mathematical formulations of objectives and constraints.
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As motivated in section 2.2, no second-order derivatives were

used in the nonlinear optimization approach, but instead a limited-

memory Hessian approximation using first-order derivatives was

chosen. While second-order derivatives can be used within matRad,

it does not make use of fast exact Hessian computation strategies

(11), reducing the value of a runtime comparison.

matRad performs all computations in a fully-discretized model

with a voxel grid. The “dose matrix” A is stored as a compressed

sparse column matrix computed for all analyses using matRad’s

singular value decomposed pencil-beam algorithm (60) for photons

and a singleGaussian pencil-beam algorithm for protons, both

validated against clinical implementations (5).
3 Results

3.1 Proof-of-work: Phantom plan

To demonstrate the applicability of superiorization to the IMRT

treatment planning problem, we first evaluate a small example using

the horseshoe phantom defined in the AAPM TG119 Report (61).

The phantom is part of the CORT dataset (62) and consequently

available with matRad.

We created an equidistantly spaced 5-field IMRT photon plan

with 5mm × 5mm beamlet doses (resulting in 1918 pencil-beams

and a corresponding sparse dose influence matrix with 9.3 × 107

non-zero entries in 3.5 × 106 voxels).

With this setup, we generated treatment plans using three

different approaches: (i) constrained minimization with IPOPT,

(ii) the AMS algorithm for feasibility-seeking only, and (iii) the SM
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with the AMS algorithm. Different combinations of nonlinear

objective functions and linear inequality constraints on dose were

evaluated and compared across these approaches.

For analysis, we use dose-volume histograms (DVHs) and axial

dose (difference) slices, as well as the evolution plots of the objective

function values and the constraint violations.

3.1.1 General usability of the AMS feasibility-
seeking projection algorithm

We first validate that our implemented projection algorithm

AMS is capable of finding comparable treatment plans to those

found by established optimization algorithms when applied to a

straightforward piece-wise least-squares objective function for the

unconstrained minimization of residuals.

The setup prescribes 60 Gy to the C-shaped target. To achieve

this prescription, we bound the dose in the target by (60 ± 1) Gy. To

the two OARs, “Core” and “Body”, upper bounds (a.k.a. tolerance

doses) are prescribed, resulting in the parameters given in Table 1.

For nonlinear minimization with IPOPT, the tolerance doses

serve as parameters for respective penalized piece-wise least-squares

objective functions while for AMS the tolerances directly translate

into linear inequalities and the weights proportionally increase the

relaxation parameters.

Figure 1 confirms that feasibility-seeking with weighted AMS is

able to find dose distributions of similar quality as conventional

nonlinear unconstrained minimization of a piece-wise leastsquares

objective function. While resulting in different intensity-

modulation patterns, nearly congruent DVHs are observed.

A crude performance analysis though measures substantially

longer runtimes for the AMS approach (about five times slower
B

C D

A

FIGURE 1

Comparison of treatment plans obtained by nonlinear minimization with IPOPT (A) and by feasibility-seeking with AMS (B), using the tolerances from
Table 1. (C) shows the dose difference in the slice from (A, B, D) the corresponding DVH, in which the optimization result (solid) and feasibility-seeking
result (dashed) are nearly overlapping.
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than unconstrained minimization). This difference is mainly driven

by the fact that AMS does sequential iteration by iterations through

the matrix rows in each sweep.

This investigated scenario is, however, not intended to display any

performance advantages of the AMS algorithm, but only to validate its

behavior and confirm the long-known ability of such feasibility-

seeking algorithms to yield acceptable treatment plans (21, 22).

3.1.2 Inverse planning with superiorization
Using the same phantom and irradiation geometry as in section

3.1.1, the feasibility problem used in 3.1.1 wasmodified to enforce some

hard linear inequality constraints while minimizing an objective

function. When the constraints are feasible, superiorization using

AMS as the basic algorithm will find a feasible point while

perturbing the iterates of the feasibility-seeking algorithm towards

smaller or equal (not necessarily minimal) function values with

objective function reduction steps.
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As reference, nonlinear constrained minimization with IPOPT

with a logistic maximum approximation for minimum/maximum

(compare (5), Table 1), was used. Three prescription scenarios were

investigated: (I) linear inequalities on the target (59 Gy < d < 61 Gy),

(II) additional linear inequalities on the “Core” structure (d < 30 Gy),

and (III) only linear inequalities on the “Core” (d < 30 Gy). The

parameters are detailed in Table 2.

Figure 2 compares dose distributions and DVHs after

superiorization and after constrained minimization. The

respective evolution of the objective function values and the

constraint violations (calculated by the infinity norm over all

inequality constraint functions, corresponding to the maximum

residual) is exemplarily shown in Figure 3 for plan I.

Comparing plan quality, both plans adhere to the linear

inequality constraints when the problem is feasible (which is the

case for plans I & III) as seen in the DVHs. In plan I, superiorization

appears to reach better OAR sparing with reduced mean and

maximum dose, while in plan III constrained minimization

achieves better OAR sparing. For plan II, which poses an

infeasible problem, both target coverage and mean OAR sparing

are improved for superiorization, yet at higher OARmaximum dose

than obtained through constrained minimization.

The evolution of the objective function and constraint violation

for plan I in Figure 3 exhibits a “typical” behavior of superiorization,

seeing a strong decrease in the objective function values within the

first iterations, followed by a slower slight increase as the

perturbations’ step-sizes diminish. Both approaches were stopped

after the maximum number of iterations (1000) was reached.

Nearly similar constraint violation is achieved by both methods,

while constrained minimization resulted in higher objective
B C

D E F

G

A

H I

FIGURE 2

Comparison of treatment plans obtained by superiorization and by constrained minimization. The top row (A–C) shows axial dose distribution slices
after constrained minimization, and the middle row (D–F) shows axial dose distribution slices after superiorization. The corresponding DVHs are
shown in the bottom row (G–I), with dashed lines showing the superiorization result and solid lines showing the optimization result.
TABLE 2 Dose inequality constraints, objective functions, and penalty
weights used separately for constrained minimization and for
superiorization.

VOI wp c(d) f(d)

Target 1000 59 Gy < d < 61 Gy (I & II) fsqdev (d; 60 Gy)

Core 100 d < 30 Gy (II & III) fsqdev+ (d; 20 Gy)

Body 30 – fsqdev+ (d; 30 Gy)
The Roman numerals in parentheses for the inequality constraints describe their usage in the
plans, respectively. The functions in the right-hand column stem from Wieser et al. (5,
Table 1) and are identified here in Supplementary Data Sheet below.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1238824
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Barkmann et al. 10.3389/fonc.2023.1238824
function values than superiorization, which can be attributed to the

difference in OAR sparing. For all investigated plans I–III,

superiorization showed a much “smoother” evolution of objective

function and constraint violation than observed in the constrained

minimization approach.
3.2 Head-and-neck case

To prove the usability of superiorization in a conventional

planning setting, we applied the SM to a head-and-neck case with

a wider range of available objective functions, i.e., including

common DVH-based objectives.

Coverage of the planning target volumes (PTVs) was enforced using

voxel inequality constraints. Again, the results of superiorization were

compared to those obtained by solving the constrained minimization

problem. All objectives and constraints are given in Table 3.

Both solvers use the same stopping criteria for the maximum

constraint violation (smaller than 0.01 Gy is acceptable) and
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objective function change of value (smaller than 0.1% in three

consecutive iterations/sweeps).

Figure 4 shows exemplary axial dose slices and the DVHs for

the plans generated with constraint minimization and with the SM.

Quantitative runtime information and evolution of objective

function and constraint violation are provided in Figure 5.

Both techniques were able to generate a plan that satisfies the

linear inequalities up to the allowed violation threshold. Considering

absolute runtime, the plan generated with the SM satisfied the

stopping criteria after 400s, with constrained minimization failing

to converge until the maximum number of iterations was reached.

SM spent most of the time in the first sweep/iteration, where it

focuses on multiple objective function evaluations to generate a

large initial decrease (as already observed above). It continuously

decreases the objective function values together with decreasing

constraints violation, reaching acceptable constraints violation

more slowly than the run with constrained minimization.

However, using the same stopping criteria, the SM reached a

solution with a much lower objective function value (approximately

one-third of the value achieved by the constrained minimization

plan). This is also visible in the dose slices and DVH, which show

more normal tissue/OAR sparing for the SM plan. All results are,

naturally, only valid for the experiments we performed. Further

work, with varying algorithmic parameters, initialization points,

and stopping criteria, is necessary to make more general statements.
3.3 Prostate case

To demonstrate how the superiorization approach translates to

a second patient, using a different irradiation modality, we create

prostate IMPT plans with opposing fields on a 5mm spot grid using

both superiorization and constrained minimization.

Figure 6 shows exemplary axial dose slices and the DVHs for

the plans generated with constraint minimization and with the SM

for the objective and constraint functions stated in Table 4.

The superiorized plan matches the dosimetric performance of

the constrained minimization approach. Little increased dose in the

rectum and bladder are traded against a slightly more homogeneous

target coverage and reduced dose in the femoral heads.
BA

FIGURE 3

Objective Function values (A) and maximum constraint violation (B) over time for plan I shown in Figure 2. Each cross indicates a full iteration.
TABLE 3 Dose inequality constraints, objective functions and penalty
weights used for optimization and for superiorization on the head-and-
neck case.

VOI wp c(d) f(d)

PTV70 1000 66.5 Gy < d < 77 Gy fsqdev(d; 70 Gy)

PTV63 1000 fsqdev(d; 63 Gy)

PTV63 1000 fminDVH(d; 60 Gy, 95%)

Spinal Cord PRV 100 d < 50 Gy fsqdev+(d; 15 Gy)

Parotid L & R 100 fsqdev+(d; 10 Gy)

Optic Nerve L & R 100 fmaxDVH(d; 50 Gy, 10%)

Larynx 300 fsqdev+(d; 15 Gy)

Chiasm 100 fmaxDVH(d; 50 Gy, 10%)

Cerebellum 100 fsqdev+(d; 15 Gy)

Brainstem PRV 100 d < 30 Gy fsqdev+(d; 15 Gy)

NT/Body 100 fmean(d)
The functions in the right-hand side column are identified here in Supplementary Data Sheet.
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4 Discussion

In this work, we applied the novel superiorization method,

which solves a system of linear inequalities while reducing a

nonlinear objective function, to inverse radiotherapy treatment

planning. On a phantom and on a head-and-neck case, we
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demonstrated that superiorization can produce treatment plans of

similar quality to plans generated with constrained minimization.

Superiorization showed a smooth convergence behavior for both

objective function reduction and constraint violation decrease,

including the “typical” behavior of strong initial objective function

reduction with subsequent diminishing objective function reduction
B

C D

A

FIGURE 4

Comparison of head-and-neck treatment plans after (A) constrained minimization and after (B) superiorization (with AMS as the basic algorithm)
using the tolerances from Table 3. (C) shows the dose difference in the same slice displayed in (A, B). (D) compares the resulting DVHs after
optimization (solid) and superiorization (dashed).
BA

FIGURE 5

Evolution of objective Function values (A) and constraint violation (B) with runtime for the plan shown in Figure 4.
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– including potential slight increase – while proximity to the feasible

set within the dose inequality constraints is achieved.
4.1 The mathematical framework of
constrained minimization and of
superiorization for treatment planning

At the heart of the superiorization algorithm lies a feasibility-

seeking algorithm (in this work, the AMS relaxation method for linear

inequalities). This means that superiorization handles the treatment
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planning problem as a feasibility-seeking problem for linear inequality

dose constraints that should be fulfilled while reducing (not

necessarily minimizing) an objective function along the way.

Constrained optimization algorithms, on the other hand, tackle

the same data, i.e., constraints and objective function, as a full-fledged

optimization problem. With the IPOPT package, for example,

inequality constraints become logarithmic barrier functions and are

incorporated as a linear combination into the Lagrangian function,

whose minimization then enforces the constraints (19).

When the problem is hardly feasible, finding the right Lagrange

multipliers may then dominate the optimization problem in its initial

stages. Superiorization with a feasibility-seeking projection algorithm

will smoothly reduce the proximity to the constraints, even for

infeasible constrained problems, while the perturbations in the

objective function reduction phase reduce the objective function value.

Our current implementation is, however, specifically geared for

linear constraints. Yet other works on feasibility-seeking have

shown that other relevant constraints, like, e.g., DVH constraints,

can be incorporated into the feasibility-seeking framework, since

they can still be interpreted as linear inequalities on a subset

(relative volume) of voxels (25–27).
4.2 Comparability of runtime, convergence
and stopping criteria

We demonstrated that feasibility-seeking for inverse IMRT

treatment planning is practically equivalent to the least-squares
B

C D

A

FIGURE 6

Comparison of prostate proton treatment plans after (A) constrained minimization with IPOPT and after (B) superiorization (with AMS as the basic
algorithm) using the tolerances from Table 4. (C) shows the dose difference in the same slice displayed in (A, B). (D) compares the resulting DVHs
after optimization (solid) and superiorization (dashed).
TABLE 4 Dose inequality constraints, objective functions and penalty
weights used for optimization and for superiorization on the prostate
proton case.

VOI wp c(d) f(d)

PTV68 5000 68 Gy < d < 72 Gy fsqdev(d; 68 Gy)

PTV56 3000 56 Gy < d < 72 Gy fsqdev(d; 56 Gy)

Rectum 100 fsqdev+(d; 30 Gy)

Rectum 300 fmaxDVH(d; 50 Gy, 20%)

Bladder 100 fsqdev+(d; 30 Gy)

Bladder 300 fmaxDVH(d; 50 Gy, 20%)

Femoral Heads 100 fsqdev+(d; 30 Gy)

NT/Body 100 fmean(d)
The functions in the right-hand side column are identified here in Supplementary Data Sheet.
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approach if similar prescriptions are set. However, obtaining the final

solutionwith feasibility-seeking tookmore time thanwith unconstrained

minimization with our prototype implementation in Matlab.

Stopping criteria, convergence and runtimes are more comparable

when considering the constrained minimization vis-à-vis

superiorization. Our prototype superiorization algorithm “converged”

as fast as the used constrained nonlinear minimization algorithm when

using the same objective functions and linear inequalities, exhibiting

smoother progress during the iterations. It is interesting to note that

even so SM is not guaranteed to find an optimal solution it sometimes

exhibits better initial behavior than the constrained minimization

algorithm. A similar phenomenon has been observed in the past by

Censor et al. (53), wherein the SM was compared with a projected

subgradient method (PSM) on a CT image reconstruction problem

from projections in computerized tomography.

Recognizing the limited scope of the experiments presented here,

our results about the superiorization method need further work to

become well established. For example, the stopping criteria play a

substantial role in both optimization and superiorization. Further

modification of the respective parameters may lead to earlier or later

stopping of either of the algorithms. Particularly the quasi-Newton

algorithm will likely improve on its solution when allowing more

iterations/longer runtimes. However, we suspect that the Lagrangian

is particularly difficult to navigate when using a Hessian

approximation over exact Hessian computations in these heavily

constrained examples. This suspicion is supported by a solver

benchmark performed by ten Eikelder et al. (63).

Consequently, runtime and convergence of a constrained nonlinear

optimization algorithm would expectedly improve when incorporating

second derivatives, such as proposed by van Haveren and Breedveld

(11), instead of relying on a low-memory approximation to the quasi-

Newton approach. In addition, alternative nonlinear minimum/

maximum dose constraint implementations are possible. An

advantage of the SM is that such “workarounds” are not necessary.

For superiorization, computational complexity and convergence

are heavily dependent on the chosen feasibility-seeking algorithm.

While the function reduction in superiorization has the

computational complexity of gradient descent steps, the basic AMS

algorithm used as a starting point performs sequential projections over

all constraints. The complexity is thus principally comparable to the

corresponding submatrix-vector products, however, the algorithm’s

sequential structure complicates parallelization and other

computational optimizations. Thus, modifications of the AMS

algorithm are still actively researched (e.g., 64). Computational

complexity and convergence properties of projection algorithms are a

topic of ongoing research (see, e.g., 65, where it is discussed in a more

general setting).

Despite these limitations, we demonstrated that a straightforward

superiorization implementation was able to solve the given treatment

planning problem arriving at dosimetrically comparable treatment plans.
4.3 Dosimetric performance

The treatment plans obtained with constrained minimization

and with superiorization show some dosimetric differences. For the
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three different linearly constrained setups on the TG199 phantom,

these differences were most pronounced on the OAR, and less

pronounced for the target dosage.

In the setups with target dose inequality constraints,

superiorization reached better OAR sparing. This may be a result

of multiple interacting factors: the strong initial objective function

decrease in superiorization pulling down the dose in the OAR, and

potential too early stopping of the constrained minimizer.

Further, in the infeasible setting with linear inequality

constraints on both target and OAR, superiorization has the

advantage that the feasibility-seeking algorithm will still smoothly

converge to a proximal point.

The improved OAR sparing did not occur when only using dose

inequality constraints on the OAR. However, in this case, the

differences in DVHs of the OAR are only substantial below a

dose of 20Gy and, thus, of limited significance, since a piece-wise

least-squares objective was used that does not contribute to the

objective function at dose values below 20Gy.

The head-and-neck case also reproduces the better OAR

sparing for all evaluated OARs, at slightly reduced target coverage

for the non-constrained CTV63 and PTV63. Here, the difference in

convergence speed was most significant. Through all cases, the

superiorization exhibited the smooth evolution of both objective

function value and constraint violation, which in turn suggests

robustness against changes in the stopping criteria as well. This

behavior of superiorization could be underlined by translating it to

IMPT on a prostate case.

These encouraging results show that superiorization can create

acceptable and apparently “better” treatment plans. Additional

work on more cases or planning benchmarks, with varying tuning

parameters of both constrained minimization and superiorization

approaches is needed to assess the convergence, runtime, and

dosimetric quality of the solutions.
4.4 Outlook

With the proof-of-concept put forward in this work, there are

many possible directions to further investigate the application of

superiorization algorithms to the radiotherapy inverse treatment

planning problem. From the perspective of a treatment planner, one

may focus on enabling further constraints, e.g., DVH-based

constraints, that are often used in treatment planning.

Some of these constraints are also representable as modified

linear inequalities or convex and non-convex sets and, thus, can

efficiently be solved using a feasibility-seeking algorithm. Even

nonlinear constraints that are based, for example, on normal-

tissue complication probability or equivalent uniform dose could

be incorporated in the current definition of the superiorization

algorithm if the “basic algorithm” in the feasibility-seeking phase of

the SM is replaced by any other perturbation resilient projection

method that can handle nonlinear constraints. Such algorithms

exist in the literature.

Moreover, superiorization might also be extended to use more

complex function reduction steps and inherent criteria. For

example, a “true” backtracking line search could be performed,
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similar to approaches in optimization, since a perturbation resilient

“basic algorithm” might be able to handle much more complex

function reduction steps.

Considering these algorithmic and application-focused

improvements, the SM should also be rigorously tested on

radiotherapy optimization/inverse planning benchmark problems,

like the TROTS dataset (66), as soon as it is able to handle the

respective problem formulations. With this, transferability to other

modalities like ion therapy or volumetric modulated arc therapy

(VMAT) is also within reach.
5 Conclusions

We introduced superiorization as a novel inverse planning

technique, merging feasibility-seeking for linear inequality dose

constraints with objective function reduction. Our initial

comparison of superiorization with constrained minimization

using linear dose-inequalities suggests possible dosimetric benefits

and smoother convergence. Superiorization is thus a valuable

addition to the algorithmic inverse treatment planning toolbox.
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