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Purpose: To evaluate the diagnostic performance of a deep learning model

based on multi-modal images in identifying molecular subtype of breast cancer.

Materials and methods: A total of 158 breast cancer patients (170 lesions, median

age, 50.8 ± 11.0 years), including 78 Luminal A subtype and 92 non-Luminal A

subtype lesions, were retrospectively analyzed and divided into a training set (n =

100), test set (n = 45), and validation set (n = 25). Mammography (MG) and

magnetic resonance imaging (MRI) images were used. Five single-mode models,

i.e., MG, T2-weighted imaging (T2WI), diffusion weighting imaging (DWI), axial

apparent dispersion coefficient (ADC), and dynamic contrast-enhancedMRI (DCE-

MRI), were selected. The deep learning network ResNet50 was used as the basic

feature extraction and classification network to construct the molecular subtype

identification model. The receiver operating characteristic curve were used to

evaluate the prediction efficiency of each model.

Results: The accuracy, sensitivity and specificity of a multi-modal tool for

identifying Luminal A subtype were 0.711, 0.889, and 0.593, respectively, and

the area under the curve (AUC) was 0.802 (95% CI, 0.657- 0.906); the accuracy,

sensitivity, and AUC were higher than those of any single-modal model, but the

specificity was slightly lower than that of DCE-MRI model. The AUC value of MG,

T2WI, DWI, ADC, and DCE-MRI model was 0.593 (95%CI, 0.436-0.737), 0.700

(95%CI, 0.545-0.827), 0.564 (95%CI, 0.408-0.711), 0.679 (95%CI, 0.523-0.810),

and 0.553 (95%CI, 0.398-0.702), respectively.

Conclusion: The combination of deep learning and multi-modal imaging is of

great significance for diagnosing breast cancer subtypes and selecting

personalized treatment plans for doctors.
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1 Introduction

Breast cancer is the most common cancer in women and the

second cause of death after cardiovascular diseases (1). In 2020,

more than 2.2 million new breast cancer cases were diagnosed in

women worldwide. In recent years, due to increased awareness of

early breast cancer screening and the development of effective

targeted therapy techniques, the overall mortality rate of breast

cancer has decreased; however, the incidence rate continues to rise,

especially in the younger population (1). Breast cancer can be

classified into four molecular subtypes, i.e., Luminal A, Luminal

B, human epidermal growth factor, and triple-negative breast

cancer (2). Patients with different subtypes require different

treatment plans and have different prognoses. The Luminal A

subtype, also known as estrogen receptor-positive and

progesterone receptor-positive cancer, accounts for about 40% of

all breast cancers and is the most common subtype, more common

in postmenopausal women with low histological grades (3).

Luminal A subtype is early-stage breast cancer, less aggressive

and more sensitive to endocrine therapy than Luminal B, and less

sensitive to chemotherapy, with the lowest recurrence rate and the

best prognosis among the four subtypes (4). Therefore, early and

accurate identification of Luminal A breast cancer patients is of

utmost importance.

Currently, imaging and pathological examination are the major

means for diagnosing breast cancer. The most common imaging tool is

mammography imaging; yet, its sensitivity tends to decrease when

screening middle-aged people with higher mass density (5).

Conventional magnetic resonance imaging (MRI) is also often

applied; although highly sensitive, this method can potentially detect

false positives (6). Pathological examinations are mainly based on

examination on direct examination of breast cancer tissue collected by

biopsy. Yet, the major drawbacks of this method are its invasive and

limited sample collection. Thus, searching for a more accurate and less

invasive breast cancer subtype screening tool is urgently needed.

In recent years, with the rapid development of artificial intelligence,

deep learning has also been used to identify breast cancer molecular

subtypes. Zhang et al. (7) and Sun et al. (8) used deep learning models

based on breast ultrasound images and three dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) sequences to

identify molecular subtypes obtaining good results. Yet, these studies

were based on a single model of breast imaging.

Multi-modal imaging is a comparative analysis method that can

simultaneously produce signals for more than one imaging

technique, thus increasing accuracy and qualitative diagnosis of

tumors through complementary and cross-validation. Recently, few

studies have applied machine learning or deep learning to

determine benign and malignant breast tumors based on breast

multi-modal images. Li et al. (9) used a combination of digital breast

tomosynthesis and mammography (MG) to improve the accuracy

of the deep learning-based classification model of benign and

malignant breast tumors. Hadad et al. (10) used the transfer

learning method to classify benign and malignant lesions on

breast MRI images with the pre-trained network based on MG

images, achieving cross-modal effects. However, there is still a lack
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of research on deep learning in identifying breast cancer molecular

subtypes based on breast multi-modal images.

The present study analyzed the value of deep learning methods

in identifying molecular subtypes of breast cancer by combining X-

ray and magnetic resonance multimodal images of breast cancer

with AI.
2 Materials and methods

2.1 Patients

Institutional Review Board approved this study. Informed

consent was waived because of the retrospective nature of the

study. Anonymous clinical data were used in the analysis.

A total of 158 breast cancer patients (170 lesions) were enrolled

from the First Affiliated Hospital of Shandong First Medical

University. Inclusion criteria were the following (1): patients who

underwent mammography and MRI scan for suspected breast

cancer; (2) breast cancer confirmed by surgical pathology; (3)

complete pathologic examination immunohistochemistry results.

Exclusion criteria were the following: (1) those who received biopsy

or neoadjuvant chemotherapy before the examination; (2) poor

image quality, where condition and position were not up to

standard, or there was a lack of part of the sequence; (3) imaging

of lesions without one-to-one correspondence with postoperative

pathologic results (Figure 1).
2.2 Mammography

MG examination was performed with digital mammography

(Hologic Selenia Dimensions). During the examination, the breast

was placed on the detector and flattened by the compressor. The

bilateral breast’s medial and lateral-oblique and cranial-caudal

images were collected. If the observation was not satisfactory,

other positions, such as lateral or cleavage, were added.
2.3 MRI examination

Breast MRI was performed using a 3.0T MRI scanner

(Magnetom Skyra) from Siemens, Germany, and a 1.5T MRI

scanner (Signa Explorer) from GE, USA, with the dedicated

breast coil. The patient was placed in a prone position. The

following four sequences were collected by the two instruments:

axial T2-weighted image (T2WI), diffusion weighting imaging

(DWI), apparent diffusion coefficient (ADC) images, and DCE-

MRI sequences. The parameters of T2WI sequence in 3.0T MRI

scanner are as follows: repetition time (TR) = 7600 ms, echo time

(TE) = 102 ms, inverse Angle = 120°, slice gap = 0.8 mm, layer

thickness = 4mm, field of view (FOV) = 34 cm × 34 cm, matrix =

576 × 576. The parameters of DWI in 3.0T MRI scanner are as

follows: TR = 5030 ms, TE = 56 ms, reverse Angle = 180°, slice

gap = 1.1 mm, slice thickness = 5.5 mm, FOV = 13.6 cm × 5.5 cm,
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matrix = 224 × 224, DWI b value = 50/1000 s/mm2. The

parameters of DCE in 3.0T are as follows: TR = 5.6 ms, TE =

1.7 ms, reverse Angle = 10°, layer thickness = 1.5 mm, FOV =

17.3cm × 8.8 cm, matrix = 512 × 512. The parameters of T2WI

sequence in 1.5T MRI scanner are as follows: TR = 5269 ms, TE =

79.7 ms, inverse Angle = 160°, slice gap = 1.0 mm, layer

thickness = 5 mm, FOV = 32 cm × 32 cm, matrix = 288 × 224;

The parameters of DWI sequence in 1.5T MRI scanner are as

follows: TR = 5722 ms, TE = 98.4 ms, slice gap = 1.0 mm, layer

thickness = 5.0 mm, FOV = 32 cm × 32 cm, matrix = 128 × 128, b

value of DWI = 50/800 s/mm2. The parameters of DCE sequence

parameters in 1.5T MRI scanner are as follows: TR = 4.6 ms, TE =

2.1 ms, inverse Angle = 15°, layer thickness = 2.2 mm, FOV =

32 cm × 32 cm, matrix = 114 × 224. DCE-MRI sequence imaging

was obtained after injecting 20 ml gadolinium contrast medium

(Magnevist, Bayer Schering, Germany) at a rate of 4.0 ml/s. The

3.0T MRI machine had a duration of 5 minutes and 10 seconds

with a total of 10 phases, and the 1.5T MRI machine had a

duration of 6 minutes and 37 seconds with 10 phases.
2.4 Breast image analysis and region of
interest (ROI) labeling

Two physicians specializing in breast imaging diagnosis with 7

years of experience who were blinded to the clinical and

pathological data analyzed the breast MRI and MG images of 170

lesions, determined the location, size and boundary of tumors,

evaluated the imaging characteristics of tumors, and recorded key

signs. In case of disagreements, a senior doctor with 15 years of
Frontiers in Oncology 03
experience was invited. For breast MRI, T2WI, DWI, ADC and

DCE-MRI were selected, and the sequence with the most obvious

lesion enhancement contrast was selected for the DCE-MRI

sequence. All lesion images were included.

ROI segmentation was performed in raw images of enrolled

breast cancer lesions using the software Matlab-R2018b (Math

works, Massachusetts, USA). First, the smallest square bounding

box covering the tumors was determined as the input ROI for deep

learning, as indicated by the radiologist analysis, as shown in

Figure 2. Then, all the segmented ROI images were unified into a

224×224 size. Finally, the image was normalized by formula (1) so

that the pixel value falls in the interval [0,1].

Norm =
xi −min (x)

max (x) −min (x)
          (1)

where xi represents the image pixel value, while max(x) and

min(x) represent the maximum and minimum values of the image

pixels, respectively.
2.5 Construction of deep learning model
and training

Python and the open-source deep learning library torch and math

were used to construct the deep residual network (ResNet). ResNet50

architecture and specific structure are shown in Figure 3. The training

and testing were carried out on a Windows image workstation using

NVIDIA GeForce GTX 2080ti GPU for parallel computing, as follows:

(1) image preprocessing was completed on Matlab_R2018b

(Mathworks, Massachusetts, USA), and the annotated image input
FIGURE 1

Process of enrolling patients with inclusion and exclusion criteria.
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was used to extract ROI; (2) the ROI images were randomly divided

into a training set (n = 100), a testing set (n = 45), and a validation set

(n = 25). The training set contained 50 lesions of Luminal A and 50

lesions of non-luminal A, the testing set contained 18 lesions of

Luminal A and 27 lesions of non-luminal A, and the validation set

contained 10 lesions of Luminal A and 15 lesions of non-luminal A.

The validation set in our study belongs to an internal validation set, in

order to choose the appropriate parameters for the deep learning
Frontiers in Oncology 04
model. The training times epoch was set to 300 times, and the size of

the training set batch_size was set to 64 frames each time. The learning

rate was between 0.001 and 0.0001. (3) Data augmentation was

performed on the dataset, and only the training set data was

expanded, mainly by performing random geometric image

transformation on the original ROI image, to expand the training

samples of deep learning, which is conducive to better model

generalization and prevention of overfitting. (4) Under the guidance
FIGURE 2

Example of ROI segmentation from raw MRI and MG images of breast cancer. (A) T2WI of the breast; (B) DWI of the breast; (C) ADC of the breast;
(D) Period with the most significant enhancement in DCE-MRI of the breast; (E) MG of the breast. ROI, region of interest; MG, mammography; T2WI,
T2-weighted imaging; DWI, diffusion weighting imaging; ADC, Apparent dispersion coefficient; DCE-MRI, dynamic contrast-enhanced magnetic
resonance imaging.
FIGURE 3

ResNet50 architecture and specific structure of each stage of ResNet50.
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of the theory of residual learning, the alternate connection of the

residual network structure Conv Block and Identity Block not only

increases the depth of the network but also solves the degradation

problem of deep learning caused by the deepening of the network.

Finally, the average pooling layer and the full connection layer were

used to integrate the category discriminative information extracted by

the previous layer. The data were input into the feature classifier

Softmax for classification, and five classification models based on MG,

T2WI, DWI, ADC and DCE-MRI images of the same lesion were

constructed. The classifier finally outputs the predicted probability

values of the image for the Luminal A subtype. When the predicted

probability value of Luminal A was > 0.5, it was classified as a Luminal

A subtype; when the probability value of Luminal A was< 0.5, it was

judged as a non-Luminal A subtype. (5) The classification results of

the five modalities were fused by the majority voting method of the

idea in ensemble learning, i.e., the category with more classification

results in the five modalities is output as the final classification result of

the multimodal model (Figure 4). The multi-modal model fusion

process is shown in Figure 5.
2.6 Statistical analysis

SPSS 22.0 and MedCalc 15.2.2 software were used for statistical

analysis. Kolmogorov-Smirnov test was used to evaluate the

normality. Quantitative data conforming to normal distribution

were expressed as mean ± standard deviation, while qualitative data
Frontiers in Oncology 05
were expressed as frequency. An independent sample t-test was

used to compare age and maximum lesion diameter differences

between Luminal A and non-Luminal A lesions. c² test was used to

compare the pathological grade, lesion margin, calcification, lymph

node metastasis and time-signal intensity curve (TIC) types

between Luminal A and non-Luminal A patients. P< 0.05 was

considered statistically significant. Confusion matrix and receiver

operating characteristic (ROC) curve analysis were used to evaluate

the efficiency of single - and multimodal molecular typing. DeLong

test was used to evaluate the ROC curve and area under the curve

(AUC) between different models, and P< 0.05 was considered

statistically significant.
3 Results

3.1 General information

A total of 422 patients who underwent mammography, breast

MRI scan and enhancement examination for suspected breast cancer

between December 2015 and February 2022 were included in the

study. Among these, the breast cancer patients confirmed by surgical

pathology and who completed pathologic examination IHC results

(n = 219) were included in the study. Moreover, 49 patients were

excluded because of the following reasons: receiving biopsy or

neoadjuvant chemotherapy before the examination (n = 37), poor

image quality, condition, and position were not up to standard, lack
FIGURE 4

Workflow of breast cancer molecular subtypes classification.
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of part of the sequence (n = 7), imaging of lesions without one-to-one

correspondence with postoperative pathologic results (n = 5). Finally,

a total of 158 breast cancer patients (170 lesions, median age, 50.8 ±

11.0 years), among which 12 females had 2 lesions, were included in

the final analysis. Pathological types included 146 lesions of invasive

breast cancer, 12 of ductal carcinoma in situ, 5 of papillary carcinoma,

4 of non-invasive lobular tumor, and 3 of mucoepidermoid

carcinoma. After the immunohistochemistry examination, patients

were divided into 78 Luminal A subtype cases and 92 non-Luminal A

subtype cases (including the 60 Luminal B lesions, 11 HER-2 lesions,

and 21 triple-negative lesions). Compared with non-Luminal A
Frontiers in Oncology 06
subtype, Luminal A subtype lesions had a smaller tumor size (2.0 ±

0.8 cm versus 2.5 ± 1.4 cm; p = 0.007), a higher prevalence of old age

(53.0 ± 11.7 years versus 48.9 ± 10.0 years; p = 0.015), a lower

prevalence of axillary lymph node metastasis (ALMN) (21.8% versus

42.4%; p = 0.001), a lower pathological grade (I 39.7% versus 12.0%, II

56.4% versus 63.0%, III 3.8% versus 25.0%; p< 0.001).There were

statistically significant differences in the age of breast cancer onset, the

maximum diameter of the lesion, pathological grade and lymph node

metastasis between the two groups (all P< 0.05), while the margin of

the lesion, calcification, and TIC type were similar (all P >

0.05) (Table 1).
TABLE 1 Population characteristics.

Characteristics Total
n = 170

Luminal A n = 78 Non-Luminal A n = 92 P

Age, years 50.8 ± 11.0 53.0 ± 11.7 48.9 ± 10.0 0.015

Tumor size, cm 2.2 ± 1.2 2.0 ± 0.8 2.5 ± 1.4 0.007

Calcification 95 (55.9) 42 (53.8) 53 (57.6) 0.622

ALNM 56 (32.9) 17 (21.8) 39 (42.4) 0.004

Tumor margin 0.929

Regular 66 (38.8) 30 (38.5) 36 (39.1)

Irregular 104 (61.2) 48 (61.5) 56 (60.9)

TIC curve type 0.939

II 91 (53.5) 42 (53.8) 49 (53.3)

III 79 (46.5) 36 (46.2) 43 (46.7)

Pathological grade <0.001

I 42 (24.7) 31 (39.7) 11 (12.0)

II 102 (60.0) 44 (56.4) 58 (63.0)

III 26 (15.3) 3 (3.8) 23 (25.0)
frontie
Continuous variables are described as mean ± standard deviation (SD), and categorical variables are presented as numbers (%). ALMN, axillary lymph node metastasis; TIC, time-intensity curve.
FIGURE 5

Workflow of breast cancer multi-modal fusion.
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3.2 Diagnostic efficacy of single-mode and
multi-mode models in identifying
molecular subtypes of breast cancer

Five models, i.e., MG, T2WI, DWI, ADC, and DCE-MRI, were

applied for each patient. The accuracy, sensitivity, specificity, and

AUC value of the model based onMG images were 0.533, 0.667, 0.444,

and 0.593 (95%CI, 0.436-0.737), respectively; the accuracy, sensitivity,

specificity, and AUC value of T2WI models were 0.667, 0.833, 0.556,

and 0.700 (95%CI, 0.545-0.827), respectively; the accuracy, sensitivity,

specificity, andAUC value of DWI image prediction were 0.060, 0.722,

0.519, and 0.564 (95%CI, 0.408-0.711), respectively; the accuracy,

sensitivity, specificity and AUC value of ADC image prediction

were 0.622, 0.722, 0.556, and 0.679 (95% CI, 0.523-0.810),

respectively; the accuracy, sensitivity, specificity, and AUC value of

DCE-MRI images were 0.667, 0.556, 0.741, and 0.553 (95%CI, 0.398-

0.702), respectively; the accuracy, sensitivity, specificity, and AUC

value of the multimodal fusion model were 0.711, 0.889, 0.593, and

0.802 (95%CI, 0.657-0.906), respectively.

Among the five single-mode models, the accuracy, sensitivity,

specificity and AUC values of T2WI models were optimal, with an

accuracy of 0.667 and an AUC of 0.700 (95%CI, 0.545-0.827). Yet,

the multi-modal model had the best diagnostic performance in

discriminating Luminal A and non-Luminal A breast cancer, with

higher accuracy and sensitivity than any single-modal model but

slightly lower specificity than the DCE-MRI model, as shown in

Table 2; the AUC value obtained by the five single- modalities (MG,

T2WI, DWI, ADC, and DCE-MRI) and multi-mode model was

(0.593, 0.700, 0.564, 0.679, and 0.553) and 0.802, respectively, as

shown in Table 2. The results showed that the AUC value of the

multi-modal model was higher than that of any of the five single

modalities, and the differences between the AUC values of a multi-

modal model with MG, DWI, and DCE-MRI were statistically

significant (P< 0.05). However, the differences between the AUC

values of the multimodal model, the T2WI model, and the ADC

model were not obvious (P > 0.05), as shown in Figure 6.
4 Discussion

In the present study, we found significant differences in the

treatment and prognosis of patients with different molecular
Frontiers in Oncology 07
subtypes of breast cancer. Differentiating Luminal A breast cancer

from non-Luminal A molecular subtype is very important to guide

clinical treatment and improve prognosis. Although several

diagnostic methods have been developed, the accuracy and

sensitivity of those tools for differentiating breast cancer subtypes

need to be further improved. This study used a deep learning model

based on multimodal imaging (mammography plus MRI) to

distinguish Luminal A from non-Luminal A molecular subtypes,

and good diagnostic efficacy was achieved, which was superior to

MG and MRI modality alone. Therefore, the deep learning method

has a certain value in the differential diagnosis of molecular

subtypes of breast cancer, and multimodal image information can

complement each other, providing a new idea for predicting

molecular subtypes of breast cancer.

The general clinical data of breast cancer have a certain role in

the differentiation of molecular subtypes of breast cancer. In this

study, patients with Luminal A breast cancer showed smaller

maximum diameter, lower pathological grade, and fewer axillary

lymph-node metastasis than non-A breast cancer, suggesting a less

aggressive type of tumor, which is consistent with the results of Szep

et al. (11). However, no differences in imaging features such as

tumor margin, calcification and TIC type were found, which may be

related to the non-A type, including the other three subtypes and

the unbalanced distribution of molecular subtypes in the enrolled

patients. MG and MRI features of breast cancer with different

molecular subtypes are different, which is helpful for the

preliminary prediction and analysis of molecular subtypes. Other

studies have found that Luminal A subtype patients’ tumor margins

are more irregular than those of triple-negative breast cancers, with

MG presenting stellar-shaped edges (12) and MRI presenting burr

edges and unclear boundaries. Also, intralesional dark internal

septation and no edema around the lesion were observed in

patients with the Luminal A subtype, while type II TIC was more

common (13, 14). However, these methods rely on limited human-

extracted clinical and imaging features. More studies on deeper

imaging features invisible to the naked eye are necessary.

Computer-aided diagnosis based on artificial intelligence has

become a hot field in medical imaging research. At present, the

reports on the identification of molecular subtypes of breast cancer

based on artificial intelligence have mainly focused on radiomics.

For example, machine learning technology has been used to extract

radiomics features from MG, ultrasound, and DCE-MRI to
TABLE 2 Diagnostic performance of the single models and multimodal.

Modality ACC SEN SPE AUC (95%CI) P Value*

MG 0.533 0.667 0.444 0.593 (0.436-0.737) <0.05

T2WI 0.667 0.833 0.556 0.700 (0.545-0.827) 0.2882

DWI 0.060 0.722 0.519 0.597 (0.440-0.740) <0.05

ADC 0.622 0.722 0.556 0.679 (0.523-0.810) 0.2778

DCE-MRI 0.667 0.556 0.741 0.553 (0.398-0.702) <0.05

Multi-modal 0.711 0.889 0.593 0.802 (0.657-0.906) –
fr
MG, mammography; T2WI, T2-weighted imaging; DWI, diffusion weighting imaging; ADC, apparent dispersion coefficient; DCE-MRI, dynamic contrast-enhanced magnetic resonance
imaging; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the receiver operating characteristic curve; CI, confidence interval.
*The P-value is the result meaning of comparing the AUC of each single modal and multi-modal according to the Delong’s test.
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establish a model that can non-invasively and quantitatively predict

molecular subtypes, but the accuracy must be improved (15–18).

Deep learning is a feature learning method in machine learning,

which simulates the mechanism of the human brain neural network

and converts input data into multiple abstract layers in the deep

neural network that can automatically learn the required abstract

deep features (19). It does not require the feature extraction steps of

traditional machine learning, thus reducing the dependence on the

artificial selection of key features. It can also directly achieve the

end-to-end effect and may improve the accurate discrimination

ability of breast cancer subtypes.

So far, a few studies have reported on molecular typing based on

deep learning methods using MRI data sets (20–24). For example, a

previous study (25) found that MRI-enhanced features and textures

contribute to identifying molecular types of breast cancer. Ha et al.

(21) demonstrated that combining deep learning-enhanced MRI

images and immunohistochemical indicators is useful for

identifying breast cancer subtypes, as it provides a reliable basis

for the treatment, management, follow-up and prognosis of breast

cancer patients. Zhang et al. (22) designed a hierarchical learning

structure based on convolutional neural network, which achieved a

sensitivity of 0.750 and a positive prediction rate of 0.773 in tumor

segmentation. This model can be used for molecular typing of

breast cancer to distinguish Luminal A breast cancer from the other

three subtypes at the same time. Also, the study compared the

diagnostic performance of the model with the reading results of four

radiologists and concluded that the performance of the model was

equal or even better than that of the radiologists. Moreover, Zhu

and colleagues (23) used the transfer learning method in their study

to identify Luminal A type and non-Luminal A with the pre-trained

VGGNet on ImageNet, and the AUC was 0.64. Zhang et al. (24)

used the DCE-MRI sequence, and based on traditional

convolutional neural network and convolutional long short-term

memory network, the accuracy of the deep learning model was

significantly improved by the transfer learning method. Yet, the

above studies only used MRI images as the research object, while the

deep learning model of multi-modal images is still lacking.
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In the present study, a deep learning network based on

ResNet50 was used to combine the multi-modal images of MG

and MRI. The accuracy, sensitivity, and AUC value of the multi-

modal model were higher than those of any single-modal model,

but the specificity was slightly lower than that of the DCE-MRI

model. Sensitivity refers to the accuracy of the true-positive

prediction of the Luminal A type, while specificity refers to the

accuracy of the true-negative prediction of the non-Luminal A type.

The purpose of this study was to identify Luminal A breast cancer,

and non-Luminal A breast cancer includes three molecular

subtypes. Therefore, as an evaluation index of diagnostic ability,

sensitivity was of great significance in this study, while the

evaluation of specificity was limited. Meanwhile, we found that in

the five single models, the AUC of the T2WI model was relatively

high, almost close to the result of the multi-modal model, which

indicates that the T2WI model is relatively effective in identifying

Luminal A subtype breast cancer among the deep learning models

based on single-mode images. The reasons may be as follows: first,

the T2WI sequence is sensitive to identifying Luminal A subtype

breast cancer. T2WI images can clearly show the necrosis and low

signal separation in breast cancer lesions and determine whether

there is peritumoral edema (14), which is consistent with the results

of Gao et al. (26). Second, the Resnet50 neural network used in this

study may be more suitable for T2WI images and can extract more

in-depth features. In our previous study (27), T2WI combined with

the Resnet50 network model also showed superior performance in

predicting breast cancer lymph node metastasis. While T2WI

model showed good perfomance in the single models, the

accuracy, sensitivity, and specificity of the multi-modal model

were higher than that of the T2WI model. In comprehensive

evaluation, the multi-modal model was still a better performing

model. On the other hand, and our study also found that the

specificity of the DCE-MRI model showed comparative advantages

in the five single models, which also suggests the potential of the

DCE-MRI model in differentiating three types of non-Luminal A

breast cancer, and will be the focus of our further research.

Compared with the practical application of radiologists, the
FIGURE 6

The receiver operating characteristic curves of the single models and multi-modal.
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diagnostic efficacy of DWI, ADC and DCE-MRI models was

relatively low. This may be related to the low spatial resolution

and signal-to-noise ratio of DWI and ADC images and the fact that

the DCE-MRI model only selects one phase image with

enhancement. The Resnet50 network may have difficulty

extracting enough information from these three modalities.

Convolutional neural network (CNN) is currently the most

commonly used network for deep learning in image analysis

applications. In 1993, CNN was firstly introduced for medical

image analysis (28). Early CNNs were relatively shallow, but

demonstrated the feasibility of their ability to analyze medical

images. In 2012, Hinton et al. (29) designed a CNN with five

convolutional layers (also known as the “AlexNet”) that won the

ImageNet Large-scale Visual Recognition Challenge with a far

higher accuracy rate. Due to the breakthrough performance of

AlexNet, a wide upsurge of deep learning has been set off in the

academic community. VGG (Visual Geometry Group) network is a

pre-trained CNN model proposed by Simonyan of Oxford

University in 2014 (30). VGG pre-trained on the ImageNet

dataset, which contains 1.3 million images across 1,000 categories,

100,000 for training and 50,000 for validation. The structure of

VGGNet is very simple. The model consists of highly connected

convolutional and fully-connected layers which enables better

feature extraction and, the use of Maxpooling (in the place of

average pooling) for downsampling prior classification using

SoftMax activation function. But the disadvantage is that it

consumes more computing resources and uses more parameters,

which leads to more memory usage.

In this study, we selected ResNet50 as the basic network to

conduct the deep learning model. ResNet50 is a 50-layer deep

convolutional neural network. Generally, deep networks can extract

more abstract information from low-level feature maps, which

enables them to perform better than shallow networks (31). The

residue strategy of ResNet provides a skip connection to solve the

degradation problem, making it possible to train a very deep

network (31). Meanwhile, ResNet has smaller parameters, faster

speed and higher accuracy, which provides more feasibility for

advanced feature extraction and classification. To make full use of

the multi-modal image features, ResNet50 was used as the basic

network for feature extraction in our method. At present, it has

been used in many breast cancer image classifications. Al-Tam (32)

et al. utilized the ResNet50 to identify benign and malignant breast

issue. In our latest work (27), Resnet50 network model also got good

result in predicting breast cancer lymph node metastasis. Therefore,

we chose 50-layer ResNet for this deep learning multi-

modal imaging.

In this study, we adopted the idea of ensemble learning and

performed multi-modal fusion on the diagnostic results of five

single modalities, i.e., MG, T2WI, DWI, ADC and DCE-MRI,

which were constructed using a deep learning network. Ensemble

learning requires training multiple individual learners and

combining multiple individual learners to form a powerful learner

through a certain combination strategy. Its advantage is that the

classification results of different models are independent and do not

affect each other, and the judgment errors of a single model do not
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cause further accumulation of errors. The majority voting method

in the ensemble learning strategy adopted in this study was based on

the results of five single-mode classification models and adopted the

principle of the obedience of the minority to the majority to

determine the category label predicted by the model. In this

study, the ensemble learning method was used to combine the

five modalities, which made full use of the image information of

each sequence and complemented and verified the information of

different modalities. It improved the accuracy of identifying breast

cancer molecular subtypes and was more in line with the clinical

application of radiologists.

The present study has some limitations: (1) the classification

proposed in this paper only focused on Luminal A and non-

Luminal A breast cancer; thus, it cannot accurately distinguish

the four subtypes, which is also the common limitation of most of

the studies based on deep learning in breast cancer molecular typing

mentioned above; (2) This was a retrospective analysis with a

relatively small sample size. For our next work, we plan to use a

multi-center external validation dataset and prospective validation

to further confirm these findings.

These data suggest that the deep learning method has a certain

value in the differential diagnosis of molecular subtypes of breast

cancer, and multimodal image information can complement each

other, providing a new idea for predicting molecular subtypes of

breast cancer.
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