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This review aims to summarize the putative role of histone deacetylases (HDACs)

in rhabdomyosarcoma (RMS) and the effects of HDAC inhibitors (HDACi) on RMS

by elucidating and highlighting known oncogenic pathways, mechanisms of

resistance, and the synergistic potential of histone deacetylase inhibitors. We

searched two databases (PubMed and Google Scholar) for the keywords

“Rhabdomyosarcoma, histone deacetylase, histone deacetylase inhibitors.” We

excluded three publications that did not permit access to the full text to review

and those that focus exclusively on pleiomorphic RMS in adults. Forty-seven

papers met the inclusion criteria. This review highlights that HDACi induce

cytotoxicity, cell-cycle arrest, and oxidative stress in RMS cells. Ultimately,

HDACi have been shown to increase apoptosis and the cessation of

embryonal and alveolar RMS proliferation in vivo and in vitro, both

synergistically and on its own. HDACi contain potent therapeutic potential

against RMS. This review discusses the significant findings and the biological

mechanisms behind the anti-cancer effects of HDACi. Additionally, this review

highlights important clinical trials assessing the efficacy of HDACi in sarcomas.

KEYWORDS
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Introduction

Rhabdomyosarcoma (RMS) is an aggressive soft tissue cancer, accounting for most soft

tissue sarcomas in the pediatric population. Although RMS can present across all age

groups, this malignancy is most prevalent in children between the ages of 0 and 14 (1). RMS

accounts for 3.5% of all pediatric cancers and 50% of all soft tissue sarcomas in children

between 0 and 14 years of age with an incidence rate of approximately 4.5 cases for every 1

million children in the United States under the age of 20 (2, 3).
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The two most common subtypes of RMS are embryonal RMS

(ERMS) and alveolar RMS (ARMS). ERMS is commonly found in

the head, neck, and reproductive organs and accounts for 60% of

RMS diagnoses. ARMS is the more aggressive form of RMS with a

poorer prognosis and is found in the limbs and trunk of the body,

accounting for approximately 20% of RMS cases (4).

The phenotypic features of RMS resemble the biological

characteristics and behavior of embryonic skeletal muscle,

suggesting that the pathogenesis of the disease is linked to errors

in the differentiation of myoblasts in embryos (4). This disease is

typically marked by rhabdomyoblasts, which are early forms of

mesenchymal cells that experience incomplete myogenesis in the

differentiation process to become skeletal muscle cells (5). As such,

RMS primarily exists in skeletal muscle, but the disease can also be

found in hollow organs, including the bladder, bile ducts, and

uterus (6).

Current treatments for RMS involve multimodal approaches

that involve a combination of cytotoxic chemotherapies in addition

to radiation and surgery, as appropriate. Although recent advances

in RMS research have led to significant improvements in the

prognosis for patients, the 5-year survival rate for this disease

remains at about 70% (7). However, the survival rate also

depends on the tumor type and, more importantly, translocation

status, which will be discussed in greater detail in subsequent

sections. The outcomes for patients with recurrent, refractory

and/or metastatic RMS are dismal, with 5-year event-free survival

at less than 20% and little incremental improvements in outcome in

the past four decades (7). Thus, there is a significant need for novel

approaches to treat RMS.

Histone deacetylases (HDACs) are proteins that serve as

epigenetic regulatory factors that remove acetyl groups from

lysine residues of histones, resulting in more repressive chromatin

structures (8). As such, HDACs can regulate cellular processes by

modifying chromatin conformation to decrease gene expression. In

general, acetylation leads to a decondensed chromatin state,

favoring transcription. As such, HDACs reverse the open

configuration. These epigenetic factors have been associated with

genes related to tumorigenesis, including regulation of apoptosis,

cell growth, and differentiation (8).

Due to HDACs having various mechanisms for different types

of cancers, histone deacetylase inhibitors (HDACi) have been

investigated across several different clinical indications in

oncology as a novel anticancer treatment in combination with

other drugs or radiotherapy. HDACi are small molecule

inhibitors of HDAC activity, retaining decondensed chromatin

states that promote gene expression. At present, the FDA has

approved four HDACi for cutaneous/peripheral T-cell lymphoma

(9, 10). Additionally, there are ongoing studies utilizing HDACi as a

cancer treatment for solid tumors, blood cancers, lung cancers,

thyroid cancers, inflammatory breast cancer, glioblastoma,

melanoma, and myeloma (11–13). More pertinent to this review,

two clinical trials are currently investigating RMS (Table 1).

Although the exact mechanisms behind the pathogenesis

of the RMS are yet to be elucidated, there is a growing body of

evidence that suggests HDACs contribute to the proliferation of

RMS (8). As a result, with the improved understanding of the
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molecular and genetic background of HDACi and ongoing clinical

investigation, HDACi may be a promising new class of drugs

in the treatment of RMS. In this review, we evaluate the current

findings and understanding of the antineoplastic activity of HDACi

in RMS.
Review

Molecular pathogenesis of
rhabdomyosarcoma, translocation status
and implications for HDAC inhibitors

As mentioned, RMS can be divided into two major histologic

subtypes - embryonal (ERMS) and alveolar (ARMS). However, it is

now widely recognized that translocation status rather than

histology alone (i.e. embryonal vs. alveolar) is the most important

factor for risk stratification and overall prognosis. Whole-genome

sequencing of tumor and normal somatic pairs revealed genotypes

of RMS that are characterized by the fusion of PAX3 or PAX7 with

FOXO1 (PAX-FOXO1) or those without these fusions (14). For

ERMS, although it is fusion-negative (FN-RMS), it is often found to

have a mutation in Ras signaling and loss of heterozygosity at the

11p15 chromosomal region (4). Regarding fusion-positive (FP-

RMS), which is typically ARMS, PAX3 fuses with FOXO1 t(2;13)

(q35;q14) to produce PAX3-FOXO1 and t(1;13) (p36;q14) produces

PAX7-FOXO1 (1, 4, 15).

Although, generally, ARMS is PAX-FOXO1 FP-RMS and

ERMS is FN-RMS, this is not always the case. Roughly only 80%

of patients with ARMS are FP-RMS (11). Due to the distinction

between FP- and FN- RMS, there are notable variations regarding

the types of HDACi that exhibit activity in RMS. Altered

susceptibilities to therapeutic approaches, including HDACi,

depend on these distinctions as well as the broad spectrum of

HDACi, which act on diverse HDAC classes (Table 2).

Interestingly, FP-RMS cases showed an increased sensitivity to

treatments targeting HDACs compared to FN-RMS. For example,

the HDACi, valproic acid, in combination with the small molecule

inhibitor PKC412 (midostaurin), was shown to downregulate PAX-

FOXO1 activity, demonstrating antineoplastic activity against

ARMS (16).

This is primarily the result of the prevalence of fusion

oncogenes, where the HDAC limits their function by genetic

suppression. Furthermore, HDACi (TSA and vorinostat) were

also able to downregulate key oncogenes associated with

translocation events (17). The BCOR gene, a corepressor for the

BCL6 protein that plays a crucial role in immune system cells has

been found in up to 15% of cases of FN-RMS (18). This mutation is

particularly susceptible to class I and II HDACi (17).

The decreased susceptibility of FN-RMS to HDACi compared

remains unknown. Although FN-RMS usually contains a mutation

in Ras signaling, other cancers with Ras mutations have shown

vulnerability to HDACi. This includes non-small-cell lung

carcinoma, colorectal carcinoma, and pancreatic carcinoma (19).

Clinical investigations of the HDACi RMS are challenging,

because the differing biological and molecular subtypes can also
frontiersin.org
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differ the activity of specific HDACi and classes. However, past and

ongoing trials suggest the potential for HDACi to mitigate the

progression of RMS.
Histone deacetylase classes and complexes

As noted previously, HDACs regulate transcription by

removing acetylation on histones, which makes the chromatin

less accessible to transcription factors. HDACs, however, do not

perform DNA catalytic and localization activity in isolation. They

require interactions with large transcriptional regulation complexes

to confer precise DNA recruitment, remodeling, and co-repression

(20). These interactions are outlined in Table 2.
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Class I HDACs interact with Sin3, Co-REST, Nucleosome

Remodeling and Deacetylating (NuRD) complex, and mitotic

deacetylase (MiDac) complex (Table 2) (20, 21). Ultimately, these

interactions are required for modulating catalytic activity and

localization. The Sin3 complex serves an integral role in histone

deacetylation and transcriptional repression (22). The Co-REST

complex, upon associating with HDACs, functions as a chromatin

remodeling complex, conferring repression (20, 23). NuRD is

driven by protein subunits, including MBD2 and MBD3, to

localize to DNA (24). When interacting with HDACs, the NuRD-

HDAC complex can inhibit gene expression through the catalytic

removal of acetyl marks on histones (24). MiDAC has been

associated with a direct interaction with the catalytic portion of

HDAC complexes to modulate target specification (21).
TABLE 1 HDACi for the treatment of sarcomas under clinical investigation.

HDACi Class Dose Frequency Sarcoma Phase Status Sponsor NCT#

Belinostat
I, II,
IV

600-1000
mg/m2 5 days/week

Soft Tissue
Sarcoma

I/II Completed Onxeo NCT00878800

Chidamide I 30mg b.i.w. Sarcoma II Recruiting Sun Yat-sen University NCT04025931

Entinostat I

1) 2mg/
m2

2) 2-
12mg/m2

q.d Solid Tumors I Completed National Cancer Institute NCT00020579

Mocetinostat I, IV 40mg t.i.w RMS I Recruiting Mirati Therapeutics Inc. NCT04299113

Panobinostat
I, II,
IV

40mg b.i.w.
Soft Tissue
Sarcoma

II Completed Centre Leon Berard NCT01136499

Panobinostat
I, II,
IV

15mg t.i.w
Soft Tissue
Sarcoma

I Completed Novartis Pharmaceuticals NCT01005797

Quisinostat
I, II,
IV

1) 2-4mg
2) 6-12mg
3) 15-
19mg

1) q.d.
2) q.d.
3) t.i.w.

Solid Tumors I Completed
Johnson & Johnson Pharmaceutical
Research & Development, L.L.C.

NCT00677105

Romidepsin I 13mg/m2 q.w.
Soft Tissue
Sarcoma

II Completed National Cancer Institute NCT00112463

Valproic
Acid

I, IIa 40mg/kg 5 days/month
Sarcoma/Soft
Tissue Sarcoma

I Completed Genetech, Inc. NCT01106872

Vorinostat I, IIa Information unknown RMS I Recruiting Merck & Co. NCT04308330

Vorinostat I, IIa 400mg q.d.
Soft Tissue
Sarcoma

II Completed Merck Sharp & Dohme LLC NCT00918489

Vorinostat I, IIa 400mg q.d.
Soft Tissue
Sarcoma

II Completed National Cancer Institute NCT00937495

Vorinostat I, IIa

1) 180mg/
m2

2) 230mg/
m2

3) 300mg/
m2

5 days/week Sarcoma I Completed National Cancer Institute NCT01132911

Vorinostat I, IIa
1) 300mg
2) 200mg

t.i.w Sarcoma I/II Completed Merck Sharp & Dohme LLC NCT01879085

Vorinostat I, IIa 270mg/m2 q.d. Sarcoma I/II Completed Merck Sharp & Dohme LLC NCT01294670

Trichostatin
A

I, II No reported clinical trials studying solid tumors to date.
b.i.w., twice a week; q.d., every day; t.i.w., three times a week; q.w., once a week.
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Interactions with silencing mediators for retinoic acid and

thyroid hormone receptors (SMRT) and nuclear receptor co-

repressor (N-CoR) are necessary factors for the activation of class

III HDACs (Table 2) (25). Additionally, this class of HDACs

involves an NAD+ cofactor that other HDAC classes do not.

SMRT and NCoR recruit class III HDACs to the core of the

complex. Upon binding with an inositol tetraphosphate molecule,

the complex becomes stabilized and activated (26).

The N-CoR-SMRT-HDAC complex can also recruit HDAC

Class IIa enzymes at the C-terminal of the HDAC polypeptide

sequence (Table 2) (20). This protein complex does not enhance the

catalytic activity of Class IIa HDACs but contributes to the

recruitment of the larger transcriptional complex. Moreover,

studies have found that this class of HDACs contain zinc-binding

domains that regulate the structure and function of the protein

(20, 27).

Class IV HDACs are not well understood and not well

characterized. However, research has indicated that this class of

HDACs typically interacts with the Survival of Motor Neurons

(SMN) complex, which has important functions in small nuclear

ribonucleoprotein (snRNP) assembly complexes (Table 2) (28).

The HDAC complexes can also be targeted by other

transcription and binding factors including methyl-binding

proteins, DNA methyltransferases, and histone methyltransferases.

These large complexes give HDACs different targets and regulatory

applications. Dysregulation of HDACs, therefore, confers epigenetic

changes that could lead to oncogenesis. As such, aberrant
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localization may result from the interaction between fusion

proteins that arise from chromosomal translocations. In ARMS,

this manifests in the result of PAX-FOXO1 fusion proteins which

work as transcription factors that promote tumor growth and

development (29, 30).

Recent work has also revealed the effects of HDAC on core

regulatory transcription factors (TFs) in FP-RMS. It was found that

Class I HDACs are important for core regulatory transcription

factor circuitry. As such, HDACi that inhibit Class I HDACs were

investigated against other HDACi. In one study, HDACi activity on

FP-RMS and FN-RMS was characterized. The results found that

class I HDACi had the most prominent effect while Class IIa, Class

IIb, and Class III HDACi had little anti-cancer effects (31, 32).
Mechanisms of HDAC inhibitors on RMS

Pro-apoptotic effects of HDAC inhibitors on RMS
RMS, like many cancer types, can proliferate uncontrollably due

to their ability to circumvent programmed cell death. The research

discussed in this review illustrates that HDACi induce apoptosis in

RMS through various mechanisms (Figure 1).

Several studies indicate that suberoylanilide hydroxamic acid

(SAHA) induced apoptosis in RMS cell lines (30, 33). In an analysis

of SAHA, a TUNEL assay elucidated that HDACi treatment led to

an increase in apoptosis in 4 out of 5 RMS cell lines (30). However,

Rh30 cells showed no significant changes in apoptosis, despite
TABLE 2 HDAC classes and interaction complexes.

Family HDAC
Class

Subclass Complex
Interactions

Protein HDACi Cell Compart-
ment

Zn2+
dependent

I Sin3
coREST
NuRD
MiDAC

HDAC1 Belinostat, Chidamide, Entinostat, Mocetinostat, Panobinostat,
Quisinostat, Romidepsin, SAHA/Vorinostat, TSA, Valproic Acid

Nucleus

HDAC2 Belinostat, Chidamide, Entinostat, Mocetinostat, Panobinostat,
Quisinostat, Romidepsin, SAHA/Vorinostat, TSA, Valproic Acid

HDAC3 Belinostat, Chidamide, Entinostat, Mocetinostat, Panobinostat,
Quisinostat, SAHA/Vorinostat, TSA, Valproic Acid

HDAC8 Belinostat, Panobinostat, Quisinostat, SAHA/Vorinostat, TSA, Valproic
Acid

II IIa N-CoR
SMRT

HDAC4 Belinostat, Panobinostat, Quisinostat, Romidepsin, SAHA/Vorinostat,
TSA, Valproic Acid

Cytoplasm/
Nucleus

HDAC5 Belinostat, Panobinostat, Quisinostat, SAHA/Vorinostat, TSA, Valproic
Acid

HDAC7 Belinostat, Panobinostat, Quisinostat, SAHA/Vorinostat, TSA, Valproic
Acid

HDAC9 Belinostat, Entinostat, Panobinostat, Quisinostat, SAHA/Vorinostat,
TSA, Valproic Acid

IIb HDAC6 Belinostat, Quisinostat, Romidepsin, SAHA/Vorinostat, TSA Cytoplasm

HDAC10 Belinostat, Chidamide, Quisinostat, SAHA/Vorinostat, TSA

IV SMN HDAC11 Mocetinostat, SAHA/Vorinostat Cytoplasm/
Nucleus

NAD+
dependent

III SIRT 1-7 SAHA/Vorinostat
NuRD, Nucleosome Remodeling and Deacetylating; MiDAC, mitotic deacetylase; N-CoR, nuclear receptor co-repressor; SMRT, silencing mediators for retinoic acid and thyroid hormone
receptors; SMN, Survival of Motor Neurons.
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seeing increases in apoptosis in Rh41 (both are ARMS cell lines).

The molecular underpinnings behind the distinction in the Rh30

cell lines are yet to be elucidated. Ultimately, however, these studies

were able to associate the increase in apoptosis with

phosphorylation of Histone H2AX, which marks DNA damage,

in the majority of RMS cell lines (30).

Another investigational HDACi (OBP-801) increased apoptosis

levels post-treatment in 8 RMS cell lines (34). The group used

immunostaining to identify that downregulation of survivin and

chromosome misalignment, secondary to treatment, were the cause

of apoptosis, mediated by the introduction of the HDACi.

Furthermore, TSA also induced apoptosis at sufficiently high

doses (500>nM) according to Annexin V staining in Rh30

(ARMS) and RD (ERMS) cell lines (35). Another HDACi, JNJ-

26481585, upregulates Bim, Puma, and Noxa proteins in Rh30 and

RD cells, which promotes programmed cell death (Figure 1) (36).

The putative role of HDACi in promoting apoptosis and

programmed cell death in RMS makes this class of agents exciting

for further clinical exploration.

HDAC inhibitor-induced modulation
of oxidative stress

A recent study found that ROS were present in higher

concentrations in RMS in comparison to other cancer types, and

there is accumulating evidence that RMS may be particularly

susceptible to treatments that increase ROS sensitivit (37, 38).
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There is also evidence that attests to the potency of HDACi in

inhibiting RMS progression through ROS-dependent mechanisms

(4, 39). However, more information regarding the role of HDACi in

sensitizing RMS cells to ROS damage needs to be further explored

to gain a more comprehensive understanding of the reliance of

HDACi on ROS.

There is a growing body of evidence indicating that treatment

using HDACi leads to an increase in reactive oxygen species (ROS)

(4). Subsequently, it was shown that treatment using HDACi

(panobinostat and vorinostat) led to notable increases in various

apoptotic markers, including annexin V, and cleavage of PARP and

caspase 3 in RD and Rh30 cells. Notably, the apoptotic effects were

reversed after treatment with antioxidants. As such, there is

evidence indicating that apoptosis as a result of HDACi may be

attributed to an increase in ROS levels (4).

One such study linking RMS oncogenic behavior with ROS

demonstrated that the inhibition of RMS cell growth and

proliferation by using panobinostat or vorinostat was reversed by

co-treatment with glutathione, which prevents ROS-related damage

(4). This study also found that the HDAC inhibitor treatments

significantly increased ROS in xenografts from RMS patients.

Furthermore, the researchers illustrated that HDACi led to the

downregulation of Sp1, Sp3, and Sp4 transcription factors, similar

to the effects of hydrogen peroxide - a potent source of ROS.

Genetic analysis led them to conclude that Sp TFs were inhibited as

a result of ROS-mediated cMyc repression (Figure 1). These results,
FIGURE 1

An illustration of the putative role of HDAC and HDACi in Rhabdomyosarcoma. ⟂ indicates inhibition, ↑ indicates upregulation or promotion, ↓
indicates down regulation. Ac, Acetylated; TFs, Transcription Factors; ROS, Reactive Oxygen Species; HDACs, Histone Deacetylases; HDACi, Histone
Deacetylase Inhibitors; HATs, Histone Acetyl Transferases.
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coupled with their observations that antioxidants mitigated the

downregulation and antineoplastic activities of HDACi, led them to

conclude that HDACi rely, at least in part, on ROS induction.

Panobinostat and vorinostat were also investigated in clinical trials,

discussed below (Table 1) (4).

Another study investigating the role of HDACi in increasing

oxidative stress in RMS indicated that entinostat caused increased

levels of intracellular ROS in xenograft mouse models (12).

Although this study also highlighted cessation of tumor

progression as a result of treatment using entinostat, it did not

elucidate if the antineoplastic effects were solely attributed to the

increase in intracellular ROS levels. An additional evaluation of

entinostat found that upon treatment, RMS cells experienced

rapid and sustained onset of high levels of ROS for the 12 hours

of the experiment (39). According to the same study, these results

were more sustained than ROS generation as a result of radiation

therapy alone. These results were later validated by a subsequent

study, which showed that belinostat works synergistically

with radiation therapy by preventing the phosphorylation of

extracellular signal-regulated kinases (ERKs) that are known to

confer radioresistance (40).

Cell cycle regulatory capabilities
of HDAC inhibitors

Through the inhibition of HDACs, treatments can induce cell

cycle arrest at various points in interphase prior to cell replication

(Figure 1). The process of cell cycle arrest allows for a stop in the

proliferation process that can serve as a form of treatment for RMS.

A former study into the application of inducing cell cycle arrest in

human cervix carcinoma HeLa cells found the process to occur

during the G1 phase, ultimately supporting the idea that the

progression of cell duplication can be halted, and histone

acetylation is involved in the process of cell cycle control.

Specifically, inhibiting HDAC causes the chromatin of the cell to

become hyperacetylated (41).

Trichostatin A (TSA) was shown to induce G1 arrest by the

induction of the p21 gene. As such, studies have indicated that the

pro-apoptotic, antineoplastic activity of HDACi can be modulated

by cell cycle regulation (42). G1 arrest can also be driven by the

HDAC inhibitor apigenin which induces apoptosis and supports

the expression of the Fas/Fas ligand, a molecule that can bind to the

Fas receptor and initiate a chain of reactions to cell cycle arrest in

CD4+ T cells (43).

Checkpoints between G1 and S are important for preparing the

cell for DNA replication and eventual mitosis. A study conducted

with various HDACs found that defects in HDAC null cells

removed the ability for double-stranded breaks in the DNA to be

repaired, resulting in S phase-associated DNA damage and forcing

the cell into S phase arrest after the checkpoint is initiated (42).

Furthermore, the HDAC inhibitor, SAHA, plays a follow-up role

with the p21 tumor suppressor gene, pushing the cell into S-phase

cell cycle arrest due to activation of the DNA damage response

pathway (30).

Finally, G2 arrest is driven by G2 cyclin inactivation. Using a

yeast G2 checkpoint model, it was found that belinostat is able to
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activate the G2 checkpoint in the cell cycle, which presents the

opportunity for cell cycle arrest and potential apoptosis (38, 40, 44).

This checkpoint is usually defective in tumor cells, which can

contribute to uncontrolled proliferation. Specifically, HDACi

induce the cell into a G2 phase checkpoint, which has been found

to be defective in tumor cells (41).

Synergistic potential of HDAC inhibitors
(with chemotherapy, radiation therapy,
and small molecules)

Cancer is a multifaceted disease with various epigenetic, genetic,

and pathological factors. As such, multiple combinatorial

treatments are often required. Synergistic approaches to cancer

treatment utilize various mechanisms to target the disease,

minimizing the risk of adverse side effects while increasing

treatment efficacy by encompassing a wide range of targets. RMS

is no exception to this paradigm, where the treatment paradigm

consists of combination chemotherapies, radiation in many

instances, and often surgery when feasible. Thus, it is important

to analyze the effects of HDACi in combination with standard-of-

care treatments and other novel approaches. In this review, we have

identified studies that analyze the anti-cancer effect of HDACi in

combination with other drugs and chemotherapeutic approaches.

Standard-of-care chemotherapeutics are well-studied with a

history of providing high response rates and overall cures for

patients with RMS. So, it is unlikely that a novel treatment will

replace the current treatment paradigm. However, for a subset of

RMS patients with translocation positive, metastatic, refractory

and/or recurrent disease the outcomes are dismal, and survival is

the exception rather than the rule. Addition of new targeted agents

to the current standard RMS armamentarium are ongoing. Studies

have investigated the effect of HDACi when combined with current

treatments. HDACi in combination with cisplatin also

demonstrated additive anti-cancer effects (45). In another study,

SAHA in combination with treatments currently used in clinics

(Doxorubicin, Etoposide, Vincristine and Cyclophosphamide) led

to significant increases in apoptosis in RMS cell lines, as indicated

by a combination index (CI) (46, 47).

Many preclinical studies have indicated that HDACi synergize

with radiation therapy to amplify anti-cancer effects on RMS (39,

40, 48, 49). In an in vitro and in vivo study, MS-275 (entinostat) was

shown to radio-sensitize RH30 (FP) cell lines (39). Interestingly,

however, the results from these studies indicate that RD (FN) cell

lines did not experience significant radiosensitization (39, 49). This

was marked by expression of PI3K, Akt, mTOR, and MAPK, which

are genes involved in chemoresistance. However, there is an

indication of a decrease in c-Myc expression in RD cells,

potentially indicating slower proliferation rates of RD cells due to

radiation combined with entinostat (39). Similar studies using other

HDACi, such as SAHA and PXD-101 (belinostat), indicated that

HDACi decrease clonogenic survival when combined with

radiation therapy to a greater extent than either of the two

treatments on their own (40, 49). The results from these studies

indicate a statistically significant increase in predisposing RMS cell

lines to respond to radiation therapy. A clinical trial investigating
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the clinical potential of belinostat is discussed in the following

section of this review (3.4, Table 1).

As mentioned previously, HDACi exhibit pro-apoptotic effects

on cancer cells. As such, several studies have investigated the

combined effects of HDACi with BCL-2 inhibitors, which are

known anti-apoptotic proteins (50–52). These studies have

demonstrated a significant reduction in RMS cell viability upon

co-treatment with HDACi and BCL-2 inhibitors with more

efficiency than either candidate used in isolation.

As discussed earlier, valproic acid, in combination with

midostaurin, was shown to downregulate PAX-FOXO1 activity

and ARMS proliferation. The investigation into this drug also

showed that a combination of an HDACi with midostaurin led to

a more potent effect than a midostaurin-only treatment (16). Thus,

HDACi may improve the efficacy of other mechanistic approaches.

Valproic acid was involved in a clinical investigation for its use in

treating sarcomas (3.4, Table 1).

Synergistic treatments using HDACi and other agents not only

improves the efficacy of treatments, but mitigates potential risks

associated with broad epigenetic modifiers. One study found that

Ezrin, a protein linker that regulates complexes associated with the

membrane and cytoskeleton, was in high levels of metastatic RMS

and correlated with hyperacetylation (45). As such, despite the

demonstrated benefits of HDACi, there is concern that subsequent

hyperacetylation may increase the likelihood of metastasis of the

cancer upon treatment. In order to mitigate the undesirable “off-

target” effects, the same study showed that a combinatorial

approach using Ezrin-specific shRNA with TSA prevented Ezrin’s

upregulation while maintaining the antineoplastic activity of TSA.

Thus, combinatorial approaches not only confer synergistic benefits

but may be necessary to mitigate adverse side effects. Taken

together, current research attests to the potential of HDACi to be

used as an adjunct therapy with novel and standard-of-care

approaches and chemotherapeutics.
Evaluation of HDACi and clinical
investigation statuses

Currently, two active trials are studying the efficacy of HDACi

for RMS patients (Table 1). The first is a Phase 1 trial studying the

effects of the HDACi, vorinostat (Merck & Co., Inc., New Jersey,

USA), and the combination of vorinostat, vincristine, irinotecan,

and temozolomide on patients with relapsed or refractory solid

tumors, like RMS (NCT04308330). The second is a Phase 1 trial

investigating the effects and best dose of a combination of

Vinorelbine and the HDACi, vocetinostat (Mirati Therapeutics,

California, USA) (NCT04299113) on a schedule of 40mg, 3 days a

week, in children, adolescents, young adults with refractory and/or

recurrent RMS (Table 1). Preliminary results of this early phase trial

have been presented at American Society of Clinical Oncology

Annual Meeting (Chicago, US, June 2022) and are encouraging for

early activity in both translocation positive and negative RMS. The

most common dose-limiting toxicities observed were grade 5

neutropenia and anemia, and grade 4 nausea. Early results have

shown that out of 8 subjects, 2 subjects had stable disease and 1
Frontiers in Oncology 07
subject had progressive disease for a clinical benefit rate of 86%. (53)

Overall, early data supports an acceptable toxicity profile, and

activity of HDAC Class 1 therapeutics in the RMS anti-

cancer armamentarium.

Entinostat (Syndax Pharmaceuticals Inc., Massachusetts, USA),

or MS-275, has been studied in combination with other therapies

for RMS treatment. Preclinical in vitro and in vivo work has

investigated the effects of entinostat as a single agent and in

combination with other therapeutics in RMS (31, 39, 44, 51, 54–

58). Synergistic treatment utilizing entinostat and radiation therapy

in vivo led to a complete prevention of RH30 (FP-ARMS) cell

growth via G2 growth phase cell arrest (52). Entinostat has been

explored in human subjects with relapsed or refractory solid tumors

in a phase 1 clinical trial (NCT02780804).

Panobinostat (Secura Bio, Inc., Nevada, USA) has not been

often utilized in RMS research. However, this HDACi was more

efficient in inducing mitochondrial apoptosis in conjunction with

BET protein inhibitors. By shifting the ratio of pro- and

antiapoptotic BCL-2 proteins in favor of apoptosis, these drugs

displayed anticancer effects in RMS cells (51). Additionally, when

panobinostat was combined with another HDACi, vorinostat, the

treatment inhibited RMS growth in vivo via cancer cell apoptosis

(4). In 2015, Panobinostat was FDA-approved for treating multiple

myeloma in patients whose cancer has progressed after treatment

with at least two prior standard therapies. Panobinostat and

Vorinostat have been involved in clinical trials for the treatment

of sarcomas (3.4, Table 1).

The HDACi OBP-801 (Oncolys BioPharma Inc., Japan) is also

not frequently used in investigations for RMS treatments. However,

a study has revealed that OBP-801 targets p21, the cyclin dependent

kinase inhibitor that regulates cell proliferation, to arrest the cell

cycle of RMS cells. After 24 hours of exposure, OBP-801 inhibited

RMS cell line growth and induced apoptosis and DNA damage (34).

OBP has not been approved by the FDA for any treatments, but in

2014 it received an investigational new drug approval to conduct

Phase 1 clinical trials as a novel epigenetic cancer drug.

When investigated as a treatment for RMS, vorinostat, or

SAHA, successfully inhibited the progression of ERMS and

ARMS cells by inducing apoptosis and activating a DNA damage

response (30). In ERMS cells, tumor growth was inhibited by

inducing myogenic differentiation, thus inhibiting migration

capacity and reducing the proliferative capacities of the cancer

cells (17). vorinostat works synergistically with other HDACi, such

as pyroxamide, and chemotherapeutics like cisplatin to suppress

RMS growth and progression. However, there is no evidence

vorinostat significantly increases radiation-induced apoptosis in

RMS cells (49). Vorinostat, became the first HDACi approved by

the FDA in 2006 for the treatment of cutaneous manifestations of

cutaneous T-cell lymphoma (CTCL) in patients with progressive,

persistent, or recurrent disease on or following two systemic

therapies. Vorinostat was explored in several completed solid

tumor and sarcoma clinical trials. Investigated for the treatment

of metastatic soft tissue sarcoma, three cycles of vorinostat, 400mg

q.d., displayed disease stabilization in 23% patients, and long-lasting

disease stabilization for up to ten cycles in 15% of patients

(NCT00918489). The most common grade ≥ 3 toxicities observed
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included hematological toxicity, gastrointestinal disorders, fatigue,

musculoskeletal pain, and pneumonia (59). As mentioned,

currently, an open and accruing trial is investigating vorinostat in

combination with chemotherapies for the treatment of RMS

(NCT04308330, Table 1).

TSA is a HDACi that induces cell apoptosis and myogenic

differentiation, inhibiting migration and proliferation capabilities of

RMS cells (17, 35). In an attempt to improve immunotherapy

receptivity, a study revealed a combined therapy of TSA and

DNA methyltransferase restores previously silenced CIITA

expression in ARMS cells. As CIITA regulates expression of

MHC class I proteins, TSA may improve the antigen presentation

of RMS cells (60). Overexpression of plakoglobin, a component of

cell-cell adherent junctions, has tumor suppressing properties.

However, a study revealed plakoglobin expression was absent in

ARMS cells. An intervention 5AzadC, a DNA demethylating agent,

and TSA restored plakoglobin expression in ARMS cells (61).

Currently, TSA is not approved by the FDA, but is under active

clinical investigation across various indications.

Quisinostat (Janssen Pharmaceuticals, Belgium), or JNJ-

26481585, activates the mitochondrial apoptosis pathway by

triggering the Bax/Bak complex, which activates enzyme caspase-

9 (36). Studies showed that quisinostat works synergistically with

treatments, such as LSD1 inhibitors or a BH3 mimetic, ABT-199, to

activate apoptosis pathways in RMS cells (50, 62). There are no

current clinical trials investigating quisinostat for treatment

of RMS.

The HDACi valproic acid (Abbott Laboratories Inc., Illinois,

USA) displays antitumor effects by reactivating the p21 gene, which

regulates cell proliferation by inhibiting the cell (46). Additionally,

when combined with the small molecule inhibitor PKC412, valproic

acid induced apoptosis and suppressed growth of RMS (16). In

2008, valproic acid was approved by the FDA for the treatment of

bipolar disorder, seizures, and migraine headaches.

While hundreds of studies are being conducted with HDACi for

other conditions, and some have been approved by the FDA,

currently only two trials are actively investigating HDACi as

treatment for RMS. Past studies have revealed the cellar

mechanisms and the anticancer benefits of HDACi treatments for

RMS. Clearly further exploration of HDACi in RMS is warranted.
Potential side effects and toxicity of HDACi

Given the focus on the pediatric population for the potential use

of HDACi as a treatment option, analyzing their side effects and

toxicity is important. This analysis of the HDACi side effects and

toxicity profile is not specific to the treatment of RMS. Similar to

other therapeutics, there are reported adverse effects associated with

the use of HDACi. Through the analysis of vorinostat and

panobinostat for treating multiple myeloma, adverse effects have

been seen both hematologically and non-hematologically. Anemia,

neutropenia, and thrombocytopenia were the most common

hematological ones and fatigue/asthenia, diarrhea, and nausea

were the most common non-hematological ones, with all found

in similar frequencies for both HDACi (63). For the treatment of
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metastatic neuroendocrine tumors, cardiac toxicity was observed,

with a specific concern of ventricular arrhythmias following the use

of HDACi (64). With using mocetinostat for the treatment of

relapsed classical Hodgkin’s lymphoma, the most common

adverse effects include myelosuppression, fatigue, and pneumonia

(65). HDAC inhibitor-induced thrombocytopenia was also

observed through the use of panobinostat, which has played a

role in determining dose limits for HDACi (66).
Conclusions

Research on RMS has made considerable progress in alleviating

the burden, increase life-expectancy, and decreasing morbidity in

patients. Novel advancements are constantly being pushed to target

RMS and provide adjunct approaches. One particular approach that

has recently garnered attention in the field is to target HDACs with

HDACi which has been proven effective in other cancer types. As

such, our review summarizes the current research in the field. This

review finds that HDACi are a potent inhibitor of RMS

proliferation, as suggested by in vitro and in vivo findings that

highlight the mechanisms, benefits, and efficacy of the treatment

modality. More specifically, our re-view finds that HDACi

successfully modulate oxidative stress, inhibit cell cycle

progression, induce pro-apoptotic effect, and work synergistically

with novel and standard of care treatments to evoke anti-cancer

effects in RMS. Future studies should aim to elucidate the

populations of RMS patients including RMS molecular subtypes,

who would most benefit from the treatment as well as if there are

any notable di fferences between the drugs currently

under investigation.
Current limitations and
future directions

As discussed previously, HDACi have been known to cause

side-effects in the clinic. Although there is extensive research

documenting the tolerability and efficacy of HDACi on

hematologic cancers, historically, HDACi have been ineffective

against solid tumors (67–69). In addition to synergistic treatments

that have been shown to increase the efficacy of HDACi, more

research should be conducted into the specific roles in core

regulatory TFs for RMS and identify the distinguishing features

between efficacy in FP-RMS compared to FN-RMS.
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