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Harnessing the
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B-cell haematological cancers:
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Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell

haematological cancers. The modes of action for these mAbs include: induction

of cancer cell lysis by activating Fcg-receptors on innate immune cells;

opsonising target cells for antibody-dependent cellular cytotoxicity or

phagocytosis, and/or triggering the classical complement pathway; the

simultaneous binding of cancer cells with T-cells to create an immune

synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells;

blockade of immune checkpoints to facilitate T-cell cytotoxicity against

immunogenic cancer cell clones; and direct delivery of cytotoxic agents via

internalisation of mAbs by target cells. While treatment regimens comprising

mAb therapy can lead to durable anti-cancer responses, disease relapse is

common due to failure of mAb therapy to eradicate minimal residual disease.

Factors that limit mAb efficacy include: suboptimal effector cell frequencies,

overt immune exhaustion and/or immune anergy, and survival of diffusely spread

tumour cells in different stromal niches. In this review, we discuss how

immunomodulatory changes arising from exposure to structured bouts of

acute exercise might improve mAb treatment efficacy by augmenting (i)

antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular

phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity,

and (v) direct delivery of cytotoxic agents.
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Introduction

Monoclonal antibodies (mAbs) are standard care for many B-

cell haematological cancers (discussed herein) (1, 2). The modes of

action for these mAbs include: activating Fcg-receptors (FcgR) on
innate immune cells; opsonising target cells for lysis via cell-

mediated cytotoxicity or phagocytosis, and/or initiating the

classical complement pathway; the simultaneous binding of

cancer cells with T-cells to create an immune synapse and

activate perforin-mediated T-cell cytotoxicity (TCC); blockade of

immune checkpoints to facilitate TCC; and direct delivery of

cytotoxic agents following the internalisation of mAbs by target

cells (3, 4). While mAb therapy – often combined with

chemotherapy, radiotherapy and/or stem cell transplant – can

result in a pathological complete response (5–12), inadequate

responses and the persistence of minimal residual disease (MRD)

increases the likelihood of treatment-resistant disease relapse

among a subset of pat ients (13–16) . Mechanisms of

haematological cancer cell survival during mAb therapy are

multifaceted but include: suboptimal immune effector cell

frequency (17, 18); immune checkpoint overexpression (e.g.,

programmed cell death protein (PD)-1) (19); and the presence of

regulatory proteins (e.g., CD47), and complement regulatory

proteins (e.g., CD55, CD59, CD46) on the target cell surface

which inhibit mAb mediated killing (20–22). In addition, the

migration of haematological cancer cells across different lymphoid

tissues (23) can promote their survival and proliferation in local

niches (24).

Exercise might represent a non-pharmacological immunological

adjuvant to mAb therapy, which could be harnessed to overcome

mechanisms of treatment resistance. It is well established that a

single (i.e., acute) bout of structured exercise – for example, aerobic

exercise of 20- to 45-minutes duration – induces profound and

transient changes to immune cell kinetics in humans, as reviewed

elsewhere (25, 26). Indeed, as outlined next in Part 1 of this review,

both immune cell frequency and overall functional competency

have been shown to dramatically, and transiently change in

blood and other tissues. This is primarily due to a leukocytosis

in blood during exercise, and leukocytopenia in the hours after

exercise cessation, which is thought to represent an egress of

leukocytes to peripheral tissues. In Part 2, we outline how these

immunomodulatory changes that arise from individual bouts of

exercise might be harnessed to improve the treatment efficacy of

mAbs – approved by the UK National Institute of Health and Care

Excellence (NICE) (Table 1) – in B-cell haematological cancers.

Specifically, we explain how single bouts of exercise might enhance

mAb therapy efficacy by improving, (i) antibody-dependent cellular

cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii)

complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and

(v) direct delivery of cytotoxic agents. In doing so, we highlight that

these exercise-induced changes may have the potential to improve

mAb clinical responses and limit the persistence of MRD. Lastly, in

Part 3 of this review, we summarise research areas where the

immunomodulatory effects of a single bout of exercise might be
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explored in future as a means to augment the efficacy of mAb

therapies against haematological cancers.
Part 1: immune cell kinetics in
response to a single bout of exercise

The effects of exercise on the immune system can be broadly

categorised as: (i) acute – a transient response to a single bout (or

session) of exercise; or (ii) adaptive – a cumulative (‘chronic’) effect of

repeated exercise bouts. It is important to acknowledge that

immunological adaptations to exercise training – for example,

maintenance of T-cell repertoire and/or persistence – may augment

the direct elimination of tumour cells, and indeed it is theorised that

this is a key mechanism explaining why a physically active lifestyle

lowers cancer risk and cancer mortality (26); this is strongly

evidenced by human epidemiology studies showing that being

physically active does not lower the risk of cancers characterised by

a low mutational burden which may be immunologically ‘cold’ (26).

Adding to the direct anti-cancer effects of regular exercise, we

propose that the temporary immunological perturbations that arise

in response to a single bout of exercise may be harnessed as an

adjuvant that could also result in the elimination of haematological

cancer cells, if undertaken alongside mAb therapy. Next, we discuss

how single bouts of exercise affect effector immune cells that are

instrumental in the cytotoxic effects of mAb therapy, and also how

single bouts of exercise affect haematological cancer cells which may

be susceptible to mAb-mediated killing.

It is well established that a single bout of moderate to vigorous

intensity exercise mobilises immune cells into the blood of humans

(Figures 1A–C). Whilst increased cardiac output and blood pressure

result in a non-specific detachment of leukocytes from the vascular wall

during exercise (42); stimulation of b2-adrenegic receptors

preferentially mobilises lymphocytes capable of cytotoxic

functions (43). Indeed, CD8+ T-cells (+25 to 450%) (44–52)

and CD56dim NK-cells (+88 to 982%) (44, 46, 53) are preferentially

mobilised into blood during exercise, particularly at higher

intensities (44, 46, 53). Furthermore, mobilised cytotoxic

lymphocytes – immunophenotyped as CD158+NKG2A− NK-cells

and CD8+CD45RA+CCR7− T-cells (44, 53) – have strong effector

functions. For instance, an individual bout of cycling exercise augments

NK-cell cytotoxicity against cancer cells in vitro (54). Beyond direct

anti-tumour responses, the preferential mobilisation of highly cytotoxic

lymphocytes is relevant to mAbs eliciting TCC and ADCC, which

depend on T-cells and NK-cells, respectively, to elicit cancer cell killing,

as discussed later in sections ‘T-cell cytotoxicity’ and ‘Antibody-

dependent cellular cytotoxicity’ – in Part 2. Transient changes to the

frequency of other immune cells in response to individual exercise

bouts may also enhance mAb therapy. For example, transient exercise-

induced mobilisation of monocytes (+100-480%) (55–57) into the

circulation may enhance the efficacy of mAb therapies that act via

ADCP (see ‘Antibody-dependent cellular phagocytosis’ – in Part 2).

Additionally, reductions to Treg frequency (−84%) from pre- to post-

exercise (58) may alleviate T-cell anergy to potentiate the effects of
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mAbs that induce TCC, although it should be noted that Treg frequency

has also been shown to be increased or unchanged in response to

individual exercise bouts, as reviewed elsewhere (59), as discussed later

in section ‘T-cell cytotoxicity’ – in Part 2. Furthermore, given that B-cell

lineage cancers comprise the majority of haematological cancers, it is

relevant to consider that CD19+CD20+ B-cells increase (+0 to 99%) in

blood in response to individual exercise bouts (44, 45, 48–50, 60, 61).

An exercise-induced increase in B-cell frequency may have

implications for mobilising clonal cancer cells from protective

stromal niches – which could in turn facilitate binding of mAb to

target cells when infused into the blood, and thus enhance elimination

via ADCC, ADCP, CDC, TCC, or direct delivery of cytotoxic agents

(see ‘Clonal B-cell mobilisation’ – in Part 2).
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In addition to changes to cell frequency, complement system

proteins – a compartment of the innate immune system capable of

lysing cancer cells in the presence of mAb – are activated following

individual sessions of exercise (62). Human studies have shown that

complement proteins (including those of the C1-complex, e.g., C1s)

are increased for up to three days following ultra-endurance and

resistance exercise, respectively (63–65). In addition, rodent studies

have shown that C1q secretion by M2-like macrophages in

damaged skeletal muscle, peaks in serum two to four days post-

injury (Figures 1D, E) (66, 67). The potency of mAb therapies that

elicit cancer cell killing via CDC may therefore be enhanced by

individual exercise bouts that induce skeletal muscle damage (see

‘Complement dependent cytotoxicity’ in Part 2).
TABLE 1 Summary of monoclonal antibody immunotherapies recommended by the UK National Institute for Health and Care Excellence (NICE) and
included in the British National Formulary (BNF) for the treatment of B-cell haematological cancers as of April 2023.

Drug NICE1 Disease1 Isotype Target Effector function(s)

Blinatumomab
(Blincyto®)

2017 Acute
lymphoblastic
leukaemia

Bispecific CD19
CD3

Induces TCC by binding to CD3 in the T cell receptor complex and, subsequently, tethering
CD19 on B cells (27). Blinatumomab is also associated with a transient upregulation of cell
adhesion molecules, release of inflammatory cytokines and T cell proliferation (28).

Brentuximab
vedotin
(Adcetris®)

2018 Hodgkin
lymphoma

IgG1 CD30 As antibody-drug conjugate that is internalised by CD30+ tumour cells, delivering
conjugated monomethyl auristatin E that prevents tubulin polymerization, and results in
cell cycle arrest and apoptosis (29).

Daratumumab
(Darzalex®)

2019 Multiple
myeloma

IgG1 CD38 Induces ADCC, ADCP and CDC against CD38+ tumour cells (30–32). Daratumumab also
induces lysis of CD38+ MDSC, CD38+ Tregs and CD38+ B cells, and increases the absolute
counts of CD8+ T cells (33).

Inotuzumab
ozogamicin
(Besponsa®)

2018 Acute
lymphoblastic
leukaemia

IgG4 CD22 An antibody-drug conjugate that is internalised by CD22+ tumour cells, delivering the
conjugated anti-cancer antibiotic, N-acetyl-g-calicheamicin, which induces double-stranded
DNA breaks leading to cancer cell cycle arrest and apoptosis (34).

Isatuximab
(Sarclisa®)

2020 Multiple
myeloma

IgGk CD38 Induces ADCC, ADCP and CDC against CD38+ tumour cells (35). Similarly to
daratumumab, isatuximab also induces lysis of CD38+ Tregs, and increases the frequency of
CD8+ T cells (36).

Nivolumab
(Opdivo®)

2017 Classical
Hodgkin
lymphoma

IgG4 PD-1 Binds to PD-1 and, therefore, reduces PD-L1/PD-1 mediated immune suppression of T-cells
(37).

Obinutuzumab
(Gazyvaro®,
Gazyva®)

2015
2018

Chronic
lymphocytic
leukaemia
Follicular
lymphoma

IgG1 CD20 Glycoengineered Fc-region that elicits enhanced ADCC and, to a lesser extent, ADCP in
comparison to non-glycoengineered IgG1 antibodies. However, obintuzumab-induced CDC
is impaired versus non-glycoengineered IgG1 antibodies (38).

Pembrolizumab
(Keytruda®)

2018 Classical
Hodgkin
lymphoma

IgG4 PD-1 Binds to PD-1 and, therefore, reduces PD-L1/P-D1 mediated immune suppression of T-cells
(39).

Polatuzumab
vedotin
(Polivy®)

2020 Diffuse Large
B-cell
lymphoma

IgG1 CD79B An antibody-drug conjugate that is internalised by CD79B+ tumour cells, delivering
conjugated monomethyl auristatin E, which prevents tubulin polymerization, and results in
cell cycle arrest and apoptosis.

Rituximab
(Rituxan®,
MabThera®)

2008
2009
2012

Non-
Hodgkin’s
lymphoma
Chronic
lymphocytic
leukaemia
Follicular
Lymphoma

IgG1 CD20 Induces ADCC, CDC and ADCP against CD20+ tumour cells (40).
1 Date of UK approval, and target diseases of the drugs extracted from the National Institute for Health and Care Excellence (41). ADCC, antibody dependent cellular cytotoxicity; ADCP,
antibody dependent cellular phagocytosis; CDC, complement dependent cytotoxicity; TCC, T-cell cytotoxicity; MDSC, myeloid-derived suppressor cell; PD-1, programme cell death protein 1;
PD-L1, programmed cell death ligand 1.
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FIGURE 1

A graphical summary of the immunomodulatory effects of a single bout of aerobic, and muscle damaging eccentric exercise, and how these bouts
might improve the mechanisms of action of monoclonal antibody (mAb) therapy. (A) Mobilisation of lymphocytes by high-intensity continuous
exercise (left side of figure) is regulated by b2-adrenegic receptors, which preferentially mobilises cytotoxic NK- and T-cells, whilst also mobilising
phagocytes (e.g., monocytes) and B-cells to a lesser extent, followed by an extravasation of these cells to peripheral tissues. Whereas complement
system proteins of the classical pathway (e.g., C1q) may be increased two- to four-days following a bout of eccentric muscle damaging exercise
(right side of figure). (B, C) Compares the frequency of immune cells and cancer cells in blood before and after a single bout of aerobic exercise.
(D, E) Compares the frequency of macrophages – which secrete C1q – in muscle tissue following eccentric muscle damaging exercise and the
purported ‘spill-over’ of C1q into blood. (F-I) Effector functions of mAbs that induce cancer cell death through binding to target cells to innate
immune cells (e.g., NK-cells) and complexes (e.g., C1q). Figure created with BioRender.com.
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Part 2: evaluating how exercise
induced immunomodulation can
improve the efficacy of monoclonal
antibody immunotherapy

In Part 2, we summarise the modes of action of mAb therapies

that are used to treat haematological cancers, the mechanisms of

resistance to those mAb therapies, and how individual bouts of

exercise may overcome these mechanisms of resistance to improve

the efficacy of mAb therapies in haematological cancers.
Antibody-dependent cellular cytotoxicity

Antibody-dependent cellular cytotoxicity (ADCC) is a primary

mechanism of several anti-cancer mAbs (Table 1). NK-cells,

monocytes, macrophages, and granulocytes are capable of

inducing ADCC (68, 69); however, most mAbs used to treat

haematological cancers rely on NK-cells as the principal inducer

of ADCC (70, 71) and, therefore, NK-cell mediated ADCC is

discussed herein. ADCC is initiated upon mAb binding to

molecules of a specific target antigen, whereby the Fc-region on

IgG binds to FcgRIIIA/CD16a or FcgRIIC/CD32c on NK-cells (72,

73). mAb-bound NK-cells – primarily of CD56dimCD16+

immunophenotype – lyse target cells through the exocytosis of

perforins and granzymes (Figure 1G), while IFN-g secretion by NK-

cells promotes an adaptive immune response (74).

Treatment of haematological cancers with mAbs often results in

depletion of the total NK-cell count, including CD56dimCD16+ NK-

cells, which are vital for mAb-mediated ADCC, and typically

remain <30% of pre-treatment values throughout therapy (30,

75). This may be the result of mAb targets (e.g., CD38) being

expressed by both target cells and effector cells (30, 76).

Additionally, activation of NK-cells in response to target cells

may induce CD16 shedding mediated by an activation of matrix

metalloproteinases (77, 78) which could limit the ability for

repeated ADCC activity by individual NK-cells. An individual

bout of vigorous intensity exercise has been shown to cause a 10-

fold increase in circulating CD56dim NK-cells (44) and a preferential

increase in the proportion of CD56+CD16+ NK-cells (45), leading

to enhanced NK-cell cytotoxic potential (54). Therefore, it could be

hypothesised that this exercise induced process may counter mAb-

induced lymphopenia of effector cells and recruit NK-cells with

functioning CD16 into blood. It is important to note that although

increased NK-cell frequency may improve the effectiveness of mAb

therapy, it may also result in a greater overall reduction in NK-cells.

Therefore, a ‘trade-off’ between improved treatment efficacy and

reduced NK-cell frequency should be considered in future research.

Immature CD56bright NK-cells, which strongly produce IFN-g
but retain low cytotoxic activity, are characterised by strong

expression of inhibitory receptors (e.g., NKG2A) (79). A loss of

NKG2A, with a concomitant gain of killer-cell immunoglobulin-

like receptors (KIR), is indicative of differentiation to cytotoxic

CD56dim NK-cells (79). In the context of exercise, serum collected
Frontiers in Oncology 05
1-hour after a moderate to vigorous intensity bout of cycling

exercise reduced the proportion of NK-cells with an inhibitory

phenotype (NKG2A+NKG2C−) in vitro. These changes were

associated with reduced cortisol and increased IFN-g in serum,

and resulted in enhanced lysis of multiple myeloma and lymphoma

cell lines (80). Malignant B-cells commonly express human

leukocyte antigen (HLA)-E and evade NK-cell cytotoxic activities

through inhibitory NKG2A/HLA-E signalling. Thus, anti-NKG2A

mAb enhance ADCC against HLA-E+ B-cells (81, 82) and exercise-

induced downregulation of NKG2A may similarly augment ADCC.

A downregulation of inhibitory-KIR has also been observed in the

presence of pro-inflammatory cytokines such as IL-12 and IL-15

(83) – which are elevated in serum following exercise (84–86) – and

may be a further means for individual bouts of exercise to augment

ADCC through preventing NK-cell inhibitory signalling by

haematological cancers (87).

Taken together, there is a clear rationale in haematological

cancers to investigate exercise as an adjunct to mAbs that function

through ADCC, yet, to date, studies that describe NK-cell

mobilisation following individual exercise bouts have been

undertaken in healthy people or patients with solid tumours.

Thus, future research is required to determine NK-cell kinetics

and NK-cell functionality in response to exercise in people with

haematological cancers.
Antibody-dependent cellular phagocytosis

Antibody-dependent cellular phagocytosis (ADCP) is a crucial

contributor to the efficacy of many therapeutic mAbs used to treat

haematological cancers (Table 1). Both macrophages and

monocytes are capable of eliciting ADCP (88–90), however,

macrophages are considered the predominant effector cell, due to

their abundance in tumour microenvironments (91). Macrophages

are typically tissue resident cells (92), and when found in solid

tumours they are often referred to as tumour associated

macrophages (TAMs). In haematological cancers, given the great

diversity in the tumour landscape and thus microenvironment of

different tumours, it is important to note that TAMs may be

referred to as: leukaemia-associated macrophages (LAMs), acute

leukaemia-associated macrophages (AAMs), and nurse-like cells

(NLCs) (93). For the purpose of this review, these haematological

cancer associated macrophages will be referred to as TAMs. ADCP

is induced when FcgR – FcgRIIA/CD32a and FcgRIIIA/CD16a – on
macrophages and monocytes bind to the Fc-region of target cell-

bound mAb, resulting in the internalisation of the mAb and

destruction of the target cell via phagosome acidification (88,

94) (Figure 1H).

In the blood, monocytes are likely to be the primary effector cell

capable of eliciting ADCP (95). Monocyte-mediated ADCP can be

impaired as a result of treatment-related downregulation of CD16

expression (95). However, individual bouts of vigorous intensity

exercise, lasting 35-seconds to 45-minutes, have been shown to

increase CD14+CD16+ monocytes by 100-480% in blood (55–57),

which may temporarily overcome treatment-related CD16
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downregulation and augment mAb-mediated ADCP. It is

important to note that these studies recruited healthy people. In

the context of haematological cancers, patients exhibit greater

frequencies of circulating, immunosuppressive monocytic (M)-

MDSCs (96, 97), which can be distinguished from healthy

monocytes by low or no expression of the MHC class II molecule

– HLA-DR (98). If regular exposure to individual bouts of exercise

during mAb therapy can transiently increase the frequency of

circulating HLA-DR+CD14+CD16+ monocytes in patients with

haematological cancer, then ADCP could be enhanced.

CD14+CD16+ monocytes mobilised by individual exercise bouts

may also express CX3CR1 and CXCR4 (99). Therefore, monocytes

possess migratory potential to some tumour microenvironments –

such as the bone marrow – where haematological cancer cells often

reside and escape mAb-mediated killing (100) – via the CX3CL1/

CX3CR1 (101, 102) and CXCR4/CXCL12 signalling axes (103). As

such, it is plausible that an increased ratio of monocytes to cancer

cells within the tumour microenvironment could result in augmented

mAb-mediated ADCP (104). Monocytes may also differentiate into

haematological TAMs in the tumour microenvironment (105, 106),

which might be capable of individually phagocytosing multiple

haematological cancer cells during an ADCP response (31). Thus,

monocyte differentiation provides another mechanism by which

exercise-induced monocyte mobilisation may bolster the depth of

mAb-mediated ADCP.

Haematological TAMs are typically pro-oncogenic (M2-like),

whilst M1-like macrophages are considered anti-oncogenic (106,

107) and thus, are capable of eliciting greater ADCP (105, 108, 109).

Repeated bouts of aerobic exercise have the potential to manipulate

TAM phenotypes in the tumour microenvironment. For instance, a

7,12-dimethylbenz(a)anthracene (DMBA) induced tumour mouse

model showed tumour bearing mice forced to exercise exhibited

M1-like TAMs, whereas control/inactive tumour bearing mice

exhibited M2-like TAMs (110). However, the tumour

microenvironment of haematological cancers is diverse; thus,

understanding the polarization of TAMs in patient groups is

challenging (107, 111). Future research should consider the

differences in the haematological TAM location and where mAb-

mediated ADCP takes place (e.g., blood, lymphoid tissues).

Nonetheless, it might be hypothesised that repeated bouts of

moderate to vigorous intensity exercise – over the course of mAb

therapy – may re-educate macrophages towards an M1-like

phenotype, thus improving mAb-mediated ADCP (112).

However, ADCP is restricted by cancer cell expression of CD47,

which interacts with signal regulatory protein-a (SIRP-a/CD172a)
on the surface of macrophages, initiating an anti-phagocytic ‘don’t

eat me’ signal (20). This evasion mechanism may limit the ability of

exercise to enhance ADCP, as no studies have explored the effects of

acute or regular exercise on haematological cancer cell

CD47 expression.

Evidence of exercise-induced mobilisation and re-education of

monocytes/macrophages is limited, and studies to date have

recruited healthy people, or have examined solid tumour models

in rodents. Nonetheless, the evidence summarised herein provides

an encouraging rationale for future research to determine

monocyte/macrophage kinetics, function, and phenotype in
Frontiers in Oncology 06
response to individual exercise bouts among people with

haematological cancers.
Complement-dependent cytotoxicity

Complement-dependent cytotoxicity (CDC) is a mode of action

of many mAbs used to treat haematological cancers (Table 1). The

binding of C1q with the Fc-region of target cell-bound mAb

activates a proteolytic cascade of events resulting in the assembly

of a membrane attack complex on the tumour cell surface, causing

altered cell permeability and subsequent cell lysis (113) (Figure 1I).

CDC efficacy in haematological cancers is limited by the

overexpression of fluid phase (e.g., Factor H, C1-inhibitor, C4Bp),

and membrane bound (e.g., CD55, CD59, CD46) complement

regulatory proteins (21, 22), as well as reduced bioavailability of

crucial complement proteins (e.g., C1q) in the blood (114, 115).

Interestingly, CDC is increased when anti-cancer mAb therapy is

combined with: (i) fresh-frozen plasma – a procedure in which

previously frozen plasma containing complement proteins is

infused into patients – to increase C1q bioavailability (116, 117);

(ii) all-trans retinoic acid (ATRA) to modulate complement

regulatory proteins (104, 118, 119); or (iii) complement

regulatory protein blocking antibodies (120–122).

C1q is secreted by monocytes, macrophages, and immature

dendritic cells in vitro (123–125). It has been shown that an

individual bout of moderate to vigorous intensity exercise elicits a

100-480% increase in monocytes (55–57), and up to a 400%

increase in immature dendritic cells (126). The mobilisation of

monocytes and immature dendritic cells is transient, lasting

approximately 20- to 30-minutes, and therefore, elevated C1q

secretion is unlikely to occur prior to immune cell extravasation

from the bloodstream. However, individual bouts of exercise that

induces muscle damage (e.g., resistance training, ultra-endurance

running) increases serum proteins of the C1-complex (e.g., C1s) for

up to 3-days post-exercise (63–65) and further results in an influx of

monocytes into damaged muscle, which differentiate into M2-like

macrophages to facilitate the resolution of muscle injury (127–129).

Thus, it might be hypothesised that increased intramuscular M2-

like macrophage frequency in response to exercise-induced muscle

damage results in increased C1q secretion that may ‘spill-over’ into

the bloodstream 2- to 4-days post exercise (66, 67), improving

mAb-mediated CDC.

Overcoming the restriction of CDC induced by complement

regulatory proteins is a considerable challenge for mAb

immunotherapy (21). Specifically, CD55 and CD59, regulate the

complement classical pathway by accelerating the decay of C3/C5

convertases and preventing membrane attack complex formation,

respectively (130–133). Current in vitro investigations to reduce

complement regulatory proteins have focused on drugs (e.g., ATRA,

anti-CD55, and anti-CD59 antibodies) (104, 118–122, 134) and

cytokines (e.g., IFN-g, TNF-a, IL-1a/b), and have primarily

employed cell line models. However, the effects of cytokines are

heterogenous and dependent on the cell line, cytokine, and

complement regulatory protein investigated (135). The effects of

individual exercise bouts on complement regulatory proteins
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warrants more research. Short (i.e., < 1 hour) and endurance style

exercise (i.e., > 1 hour) of a moderate to vigorous intensity increases

complement C3a (136, 137), which is indicative of elevated

complement C3b. Increased complement C3b may overwhelm

membrane bound complement regulatory proteins, a method

previously suggested to augment mAb-mediated CDC (134).

The potential for exercise to improve mAb therapy through

augmented CDC is an area yet to be explored. Studies investigating

exercise and complement to date are heterogenous in their

experimental and analytical methods and have tended to recruit

healthy people (62). Thus, methodologically robust research is

required to firstly characterise serum C1q kinetics and function

following concentric and eccentric exercise among people with

haematological cancers, and secondly to elucidate the effects of

exercise-induced complement activation on complement regulatory

protein expression.
T-cell cytotoxicity

T-cell cytotoxicity (TCC) is induced by various anti-cancer

therapies, including (i) bispecific antibodies (BsAbs) that combine

the selectivity of a mAb with the therapeutic cytotoxic potential of

T-cells (e.g., blinatumomab), and (ii) immune-checkpoint

inhibitors for PD-1 (e.g., nivolumab), which block PD-1/PD-

ligand(L)1 binding between T-cells and target cells to restore T-

cell cytotoxicity (Table 1).

BsAbs are a form of immunotherapy for haematological cancers

which have an anti-CD3 arm to engage CD3+ T-cells and a target

antigen (e.g., anti-CD19, acute lymphoblastic leukaemia [ALL]; anti-

CD269, myeloma; anti-CD20, non-Hodgkin’s lymphoma) arm to

bind to target cells (27, 138, 139). The simultaneous binding of CD3

with a target antigen creates an immune synapse and induces

perforin-mediated TCC via granzyme entry into malignant cells

(Figure 1F) (140). Currently, blinatumomab – an anti-CD3/CD19

BsAb used to treat relapsed ALL (27) – is the only BsAb that is

recommended by NICE (Table 1) and is therefore discussed herein.

Blinatumomab activity is predominantly mediated by CD8+ effector

memory T-cells (141–143), in a manner dependent upon the effector:

target cell ratio (143). An individual bout of vigorous intensity cycling

for 20-minutes increases the number of circulating effector memory

T-cells by ~450% (44) and circulating CD19+ B-cells by ~100% (44)

in healthy humans, and 30-minutes of vigorous intensity run-walk

treadmill exercise increases total lymphocytes in blood by ~50% in

children with ALL receiving maintenance therapy (144). Thus, the

mobilisation of effector memory T-cells into blood may enhance

blinatumomab responses by increasing the likelihood of

blinatumomab-mediated formation of cytolytic synapses between

CD19+ clonal B-cells and effector memory CD8+ T-cells.

Furthermore, responders to blinatumomab therapy for ALL exhibit

reduced Tregs compared to non-responders (145), and it has been

shown that a single bout of treadmill walking/running at a moderate

intensity can reduce circulating Treg frequency people with CLL 1-

hour after exercise (146). Although conflicting data has been reported

for the effects of individual bouts of various modes of exercise on Tregs

in a range of populations, with studies showing increases, decreases,
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or no change, as reviewed elsewhere (59). We note that three

additional BsAbs: anti-CD3/CD269, teclistamab (138), and

elranatamab (139); and anti-CD3/CD20, mosunetuzumab (147) are

approved for the treatment of myeloma and non-Hodgkin’s

lymphoma, respectively, by the US Food and Drug Administration

(FDA), and are under review by NICE. The efficacy of these therapies

may also be enhanced through an exercise-induced mobilisation of

effector memory T-cells, thus improving TCC.

Blockade of PD-1 by mAbs has also been approved for the

treatment of haematological cancers (Table 1). Chronic exposure of

T-cells to tumour-associated antigens results in upregulated PD-1

expression which is indicative of T-cell exhaustion, and both PD-1

and PD-L1 overexpression on T-cells and target cells, respectively,

is associated with worse survival (148–152) such as in myeloma

(hazard ratio [HR] = 3.143), and diffuse large B-cell lymphoma (HR

= 2.128) (149, 150). However, in the presence of anti-PD-1 therapy,

an increased frequency of PD-L1+ cancer cells – which is associated

with increased PD-1+ T-cells (153) – results in improved survival

following anti-PD-1 therapy (154). A single bout of moderate to

vigorous intensity cycling transiently increased the proportion of

circulating PD-1+ T-cells (+3.2-5.3%) (45). In addition, mobilised

T-cells expressed a greater density of PD-1 (+100-140%) than T-

cells collected at rest (155), thus, increasing the binding potential

between anti-PD-1 mAb and PD-1+ T-cells.

Another mechanism by which individual exercise bouts may

enhance the efficacy of anti-PD-1 mAb is via increased frequency of

stem-cell like memory T-cells (Tscm); a self-renewing T-cell subset

which provides persistent anti-tumour effector responses (156).

Indeed, PD-1+ Tscm appear to mediate the restorative effects of

anti-PD-1 therapy, as these cells proliferate to a greater extent than

terminally-differentiated PD-1+ T-cells in response to anti-PD-1

therapy (157, 158). Tscm are induced by IL-7 and proliferate in

response to IL-15 (159–161), which are myokines that may be

secreted by skeletal muscle during moderate to vigorous exercise

(162–164). Furthermore, Tscm share a naïve T-cell phenotype

(CD45RA+CCR7+) (156), which increase by 42% following a

single bout of vigorous cycling (46). Given that Tscm represent 2-

3% of all circulating T-cells (156) it is plausible that Tscm represent a

proportion (~7.5%) of the 42% increase to naïve T-cells in response

to a single bout of exercise (46).

There are no studies which examine the effects of individual bouts

of exercise on PD-1 therapy in haematological cancers. Investigations

of exercise combined with PD-1 therapy in solid tumour models are

mixed, showing beneficial, and no effects of exercise. For example, in a

rodent model of breast cancer, synergistic benefits of treadmill

running 5-days/week for 30-days combined with anti-PD-1 therapy

and radiotherapy were shown when compared to anti-PD-1 therapy

and radiotherapy without exercise training (165). In contrast,

voluntary wheel running for 5-weeks before tumour cell inoculation,

and then 2-weeks following tumour cell inoculation failed to augment

anti-PD-1 therapy efficacy in a rodent model of melanoma (166).

Conflicting findings in studies to date may be explained by differences

in exercise and/or tumour models (26). The aforementioned studies

rely on mobilised PD-1+ T-cells trafficking to tissues following

exercise, and this may too be the case for B-cell lymphomas where

the cancer cells exist in the lymphoid tissues. Previous research in a
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mouse model showed that following swimming, and running at 80%

of _VO2max until exhaustion, the frequency of labelled T-cells in

primary, and secondary lymphoid tissues increases (167). Thus, it is

plausible that T-cells mobilised into blood during an individual bout

of exercise in humans, may migrate to lymphoid tissues following

exercise cessation. On the other hand, for most haematological

cancers, the migration of T-cells to tissues following exercise is not

necessary given that the cancer cells exist predominately in the blood.

Therefore, individual exercise bouts may improve the effectiveness of

anti-PD-1 therapy both in blood, and in lymphoid tissue in

haematological cancers.

In summary, the exercise-induced mobilisation of T-cells into

blood is a well-known phenomenon that may augment both BsAb

and anti-PD-1 mAb induced TCC against haematological cancers;

yet it remains unknown whether T-cell mobilisation has adjuvant

effects on immunotherapies that elicit their activity via TCC in

haematological cancers. In addition, the ability of an individual

exercise bout or long-term exercise training to modulate myokines

(e.g., IL-7, IL-15) to promote the induction and proliferation of T-

cell subsets (e.g., Tscm) that elicit efficient TCC against

haematological cancers requires further investigation.
Clonal B-cell mobilisation

The efficacy of mAb therapies that elicit their effects via TCC,

ADCC, ADCP, and CDC might be further enhanced by exercise

bouts if target cells – along with effector cells/proteins – can be

mobilised into the blood during treatment. Most haematological

cancers are of B-cell lineage, and given that B-cells express b2-
adrenergic receptors and are susceptible to an exercise-induced

relocation into the blood (168, 169), it may be expected that B-cell

lineage cancer cells may also be susceptible to exercise-

induced redistribution.

In healthy people, CD19+ B-cell frequency in blood has been

shown to increase by 100% in response 30-minutes of vigorous cycling

(44). The most responsive B-cells possess an immature

(CD20+CD27−CD38+) phenotype (+125%), followed by ‘B1’ cells

(CD19+CD27+CD43+CD69−; +84%), memory (CD20+CD27+CD38−;

+78%) and naïve (CD20+CD27−CD10−; +63%) B-cells (170). These

exercise-induced B-cell responses are of interest given that the

phenotype of human chronic lymphocytic leukaemia cells (CLL) –

one of the most common blood cancers – is broadly consistent with the

B1 cell phenotype (171), which appear highly responsive to bouts of

exercise. Diffuse spread of CLL cells across lymphoid tissues can yield

preferential survival of CLL clones in niches where external signals

from the microenvironment promote their growth and survival (24),

and where effector immune cells – such as NK-cells – appear to be

limited in frequency (172). Additionally, rodent models of acute

psychological stress – which induce a similar adrenergic response as

exercise – appear to elicit a redirection of B-cells from the bonemarrow

(173), suggesting that at least some of the B-cells mobilised into blood

during exercise may have lymphoid origins. These findings imply that

exercise may be an effective adjunct – alongside other pharmaceutical

methods such as Bruton’s Tyrosine Kinase (BTK) inhibitors (174, 175)

– to relocate CLL cells from protective lymphoid niches into the blood,
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thus potentially bolstering mAb efficacy. Following mAb therapy, it

might be hypothesised that exercise bouts could be used to assist in the

detection of blood MRD in CLL, which is typically determined by flow

cytometry (1, 171). For example, after treatment with conventional

therapies, MRD persists at an ‘undetectable’ level in the blood of many

patients, before CLL relapses and the disease is again detectable (15). It

may therefore be the case that a bout of exercise could be used to

mobilise CLL MRD from lymphoid tissues into blood, to provide early

detection of relapsed disease. B-cells mobilised by exercise may also

express CD79d and CD22 which are targets of palatuzumab vedotin

(176) and inotuzumab ozogamicin (34), respectively. These mAbs are

administered intravenously, and elicit their activity through a direct

delivery of monomethyl auristatin E and calicheamicin following

internalisation by the target cell, respectively, resulting in cell cycle

arrest and apoptosis (34, 176). Thus, an individual bout of exercise may

improve the direct delivery of cytotoxic agents by increasing the

frequency of haematological cancer cells in blood, which could in

turn facilitate the binding of mAbs to target cells when infused into

the blood.

Unlike their B-cell lineage counterparts, plasma cells do not

increase in blood during individual bouts of moderate to vigorous

intensity exercise in healthy humans (170), but it is not known if

exercise affects circulating plasma cell frequency in people with a

greater plasma cell burden, such as people with myeloma. This

warrants further research given that the mobilisation of clonal

plasma cells may augment mAb-therapy, and could facilitate the

detection of MRD in myeloma, for example, using the EuroFlow

next-generation flow cytometry approach (177) as a non-invasive

method to detect clonal B-cells in the peripheral blood of people

with myeloma (178, 179), it was found that circulating myeloma cells –

phenotyped as CD19−CD20+CD38+CD138+ – were present in 59% of

people with myeloma pre-cursor, monoclonal gammopathy of

undetermined significance, and 100% of people with smouldering

multiple myeloma andmultiple myeloma (178). Additionally, a greater

burden of circulating myeloma cells was associated with a greater

burden of myeloma cells in the bone marrow (178). It is also plausible

that in the absence of plasma cell mobilisation, myeloma stem cells

may be susceptible to exercise induced mobilisation as they resemble a

memory B-cell phenotype (180), which can increase by 78% in healthy

humans during moderate to vigorous aerobic exercise (170).

The complexity, and heterogeneity of haematological cancers

makes their identification in blood during individual bouts of

exercise a considerable challenge for future research. Indeed, some

haematological cancer cells exist predominately in blood – such as CLL

– and these cells can be identified by, for example, co-expression of

CD5, CD19, and CD43, and clonality by kappa or lambda light chain

restriction (1, 171). However, the identification of circulating cancer

cells for other haematological cancers such as myeloma often requires a

large volume of blood to be analysed (~5.1 mL) – due to the low

frequency of circulating cells – and therefore large quantities of

fluorochrome-conjugated antibodies. Further, the identification of

circulating myeloma cells often requires a comparison between

several proteins, requiring two antibody panels, and often the use of

principal component analysis (177, 178, 181) – which attempts to

distinguish normal from clonal myeloma cells based on their

expression of several markers. Nevertheless, investigating new
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FIGURE 2

A graphical summary of the pharmacokinetics of three monoclonal antibodies (mAbs) used to treat haematological cancers, and a proposed ‘optimal
period’ to undertake exercise. (A) Rituximab is administered in clinic with a half-life of ~28-days (184) at which time patients receive a second dose
(cycle 2). Due to the relatively long half-life of rituximab, exercise can be conducted by patients outside of the clinic to induce a mobilisation of
immune, and cancer cells into blood where rituximab is present, potentially bolstering mAb efficacy. (B) Blinatumomab has a short half-life of ~2-
hours (185), therefore, patients are given daily infusions for 28-days with the first 3-days often administered in clinic and further doses administered
at home, an outpatient clinic, or at an infusion centre before a 2-week break prior to a second cycle. To gain the most benefits from the acute
exercise induced immunomodulatory effects, exercise should be conducted at the same time as blinatumomab infusions to mobilise immune cells
and cancer cells into the blood where blinatumomab is present, potentially bolstering mAb efficacy. (C) Daratumumab has a half-life of ~9-days
(186) and is administered weekly for the first 8-weeks, and then bi-weekly for a further 8-weeks before the time in-between doses increase. During
treatment, NK-cell concentration decreases rapidly, before beginning to recover 3-months post daratumumab therapy (30), likely owing to NK-cell
fratricide (76). Undertaking exercise at the same time as daratumumab infusions will mobilise NK-cells into the blood where daratumumab is present
but where the frequency of myeloma cancer cells could be limited. Thus, exercise might be counterproductive by increasing NK-cell mediated
fratricide and/or increase the saturation of daratumumab by NK-cells. The immunomodulatory effects of acute exercise may therefore be better
harnessed following daratumumab washout when NK-cell concentration begins to recover.
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methods – such as exercise – to identify and treat MRD is a valuable

area of future research given that persistent MRD results in relapse.
Part 3: future perspectives

Lymphocytosis induced by individual bouts of exercise has

primarily been described in healthy people (42–53, 55–58, 60, 61,

182), with limited evidence among patients with haematological

cancers (144, 183). Evidence shows that an individual bout of

exercise can induce profound changes to the blood immune cell

compartment, including a transient increase in circulating NK-cells,

monocytes, T-cells, and B-cells. This increase to circulating immune

cell frequency could be harnessed to improve the depth of response

during mAb therapy through augmentation of ADCC, ADCP,

CDC, TCC, and direct delivery of cytotoxic agents. It is also

hypothesised that an individual bout of moderate to vigorous

intensity exercise may induce a relocation of clonal B-cells from

peripheral tissues – and protective B-cell stromal niches – into

blood, which in some cancers (e.g., CLL) may facilitate mAb

therapy as both target and effector cells will be brought together

with mAb in blood.

To make use of exercise as an adjuvant therapy in combination

with mAbs, the optimal timing, dose, and frequency of exercise must

be considered, alongside the half-life and targets of different mAbs

(Figure 2). Indeed, the half-life of mAbs range from 2-hours to more

than 28-days. Thus, the optimal exercise prescription of exercise will

need to be specific for each drug. For instance, daily intravenous

infusion of BsAb-blinatumomab over 28-days – typically as an

inpatient for the first ~3-days – is required due to its ~2-hour half-

life (185, 187). Therefore, undertaking bouts of exercise during BsAb-

blinatumomab infusion to repeatedly mobilise T-cells and clonal B-

cells, might be optimal (Figure 2B). However, exercise during infusion

might not be necessary for other drugs such as Rituximab given its

half-life is relatively long (~28-days) after a single dose (184), and

instead exercise could be performed away from the clinic (Figure 2A).

Care must be taken with the timing of exercise during other mAb

treatment. For example, exercise during daratumumab infusion may

cause a rapid depletion of effector NK-cells – via a fratricide

mechanism – due to the expression of target antigen (e.g., CD38)

on the NK-cell surface (30, 76). Thus, undertaking an exercise bout

prior to, and during daratumumab infusion could be

counterproductive, and might result in increased NK-cell fratricide,

or saturation of daratumumab by CD38+ NK cells rather than tumour

cells. Instead, undertaking exercise following daratumumab washout

may be favourable to restore the frequency of effector NK cells in the

blood (Figure 2C). Additionally, participation in muscle damaging

exercise during the infusion of mAb therapies which elicit their actions

through CDC (e.g., rituximab) could be beneficial given that

complement is increased up to 3-days following prolonged or

muscle damaging exercise (63–65), which may comprise C1q (66, 67).

Lastly, upon considering a role for exercise as an adjuvant for

haematological cancer mAb therapies, it is salient to consider the

impact of age on the immune system, and thus, immunotherapy

efficacy. Indeed, the majority of B-cell haematological cancers

typically present in older individuals. For example, the median age
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at diagnosis for mature B-cell neoplasms is 71.8-years (188). As such,

the immunomodulatory effects of individual bouts of exercise

discussed herein may be influenced by the age associated decline in

immune function – termed immunosenescence (189) – characterised

by low frequencies and proportions of naïve T-cells, elevated

frequencies of late-differentiated memory T-cells, and dysfunctional

NK-cells (190, 191). Thus, in addition to the optimal timing, dose,

and frequency of exercise, future research should consider

participants age and its impact on immune competency.
Conclusions

Therapeutic mAbs used for the treatment of B-cell haematological

cancers is a compelling line of therapy in which to harness the

immunomodulatory effects of individual exercise bouts. In this review,

we summarised how individual exercise bouts might improve the

efficacy of mAb therapy through augmentation of mAb modes of

action including: ADCC, via mobilisation of NK-cells, and modulation

of cell surface expression of inhibitory signals; ADCP, via mobilisation

and redistribution of monocytes that may differentiate into

haematological TAMs, and re-education of TAM phenotype from

M2-like to M1-like that induce efficient ADCP in both circulation

and protective stromal niches; CDC, via promoted extra-hepatic

secretion of C1q by M2-like macrophages in damaged skeletal

muscle; TCC, via mobilisation of T-cells, and modulating cell surface

immune checkpoint receptors. Mobilisation of clonal B-cells in response

to exercise bouts may further enhance these mechanisms in some

haematological cancers (e.g., CLL, ALL), as well as improve the direct

delivery of cytotoxic agents to target cells. Future research is required to

demonstrate the feasibility and effectiveness of exercise as an adjuvant to

mAb therapy. Indeed, studies need to examine the effects of both single

and repeated bouts of exercise alongside mAb therapy, as well as

determining exercise timing, duration, and frequency, and considering

the half-life, target, and mechanisms of each mAb therapy.
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Toll-like receptor expression on classic and pro-inflammatory blood monocytes after
acute exercise in humans. Brain Behav Immun (2009) 23(2):232–9. doi: 10.1016/
j.bbi.2008.09.013

57. Steppich B, Dayyani F, Gruber R, Lorenz R, Mack M, Ziegler-Heitbrock HWL.
Selective mobilization of CD14+ CD16+ monocytes by exercise. Am J Physiol - Cell
Physiol (2000) 279(3 48-3). doi: 10.1152/ajpcell.2000.279.3.C578

58. Perry C, Pick M, Bdolach N, Hazan-Halevi I, Kay S, Berr I, et al. Endurance
exercise diverts the balance between th17 cells and regulatory T cells. PloS One (2013) 8
(10):1–8. doi: 10.1371/journal.pone.0074722

59. Proschinger S, Winker M, Joisten N, Bloch W, Palmowski J, Zimmer P. The
effect of exercise on regulatory T cells: A systematic review of human and animal
studies with future perspectives and methodological recommendations. Exerc Immunol
Rev (2021) 27:142–66.

60. Horn PL, Leeman K, Pyne DB, Gore CJ. Expression of CD94 and 56bright on
natural killer lymphocytes - The influence of exercise. Int J Sports Med (2002) 23
(8):595–9. doi: 10.1055/s-2002-35524

61. Deuster PA, Curiale AM, Cowan ML, Finkelman FD. Exercise-induced changes
in populations of peripheral blood mononuclear cells. Med Sci Sports Exerc (1988) 20
(3):276–80. doi: 10.1249/00005768-198806000-00011
Frontiers in Oncology 12
62. Rothschild-Rodriguez D, Causer AJ, Brown FF, Collier-Bain HD, Moore S,
Murray J, et al. The effects of exercise on complement system proteins in humans: a
systematic scoping review. Exerc Immunol Rev (2022) 28:1–35.

63. Balfoussia E, Skenderi K, Tsironi M, Anagnostopoulos AK, Parthimos N, Vougas
K, et al. A proteomic study of plasma protein changes under extreme physical stress. J
Proteomics (2014) 98:1–14. doi: 10.1016/j.jprot.2013.12.004

64. Semple S, Smith L, McKune A, Neveling N, Wadee A. Alterations in acute-phase
reactants (CRP, rheumatoid factor, complement, Factor B, and immune complexes)
following an ultramarathon. South Afr J Sport Med (2004) 16(2):17.

65. Oberbach A, Blüher M, Wirth H, Till H, Kovacs P, Kullnick Y, et al. Combined
proteomic and metabolomic profiling of serum reveals association of the complement
system with obesity and identifies novel markers of body fat mass changes. J Proteome
Res (2011) 10(10):4769–88. doi: 10.1021/pr2005555

66. Zhang C, Wang C, Li Y, Miwa T, Liu C, Cui W, et al. Complement C3a signaling
facilitates skeletal muscle regeneration by regulating monocyte function and trafficking.
Nat Commun (2017) 8(1):2078. doi: 10.1038/s41467-017-01526-z

67. Yabumoto C, Akazawa H, Yamamoto R, Yano M, Kudo-Sakamoto Y, Sumida T,
et al. Angiotensin II receptor blockade promotes repair of skeletal muscle through
down-regulation of aging-promoting C1q expression. Sci Rep (2015) 5(1):14453. doi:
10.1038/srep14453

68. Levy PC, Shaw GM, LoBuglio AF. Human monocyte, lymphocyte, and
granulocyte antibody-dependent cell-mediated cytotoxicity toward tumor cells. I.
General characteristics of cytolysis. J Immunol (1979) 123(2):594–9. doi: 10.4049/
jimmunol.123.2.594

69. Nimmerjahn F, Ravetch JV. Fcg receptors as regulators of immune responses.
Nat Rev Immunol (2008) 8(1):34–47. doi: 10.1038/nri2206

70. Ortaldo JR, Woodhouse C, Morgan AC, Herberman RB, Cheresh DA, Reisfeld R.
Analysis of effector cells in human antibody-dependent cellular cytotoxicity with
murine monoclonal antibodies. J Immunol (1987) 138(10):3566–72. doi: 10.4049/
jimmunol.138.10.3566

71. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al.
Therapeutic activity of humanized anti-CD20 monoclonal antibody and
polymorphism in IgG Fc receptor FcgrIIIa gene. Blood (2002) 99(3):754–8. doi:
10.1182/blood.V99.3.754

72. Lanier LL, Ruitenberg JJ, Phillips JH. Functional and biochemical analysis of
CD16 antigen on natural killer cells and granulocytes. J Immunol (1988) 141(10):3478–
85. doi: 10.4049/jimmunol.141.10.3478

73. Morel PA, Ernst LK, Metes D. Functional CD32 molecules on human NK cells.
Leuk Lymphoma (1999) 35(1–2):47–56. doi: 10.3109/10428199909145704

74. Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SEA, Yagita H, et al.
Activation of NK cell cytotoxicity. Mol Immunol (2005) 42(4 SPEC. ISS.):501–10. doi:
10.1016/j.molimm.2004.07.034

75. Freeman CL, Morschhauser F, Sehn L, Dixon M, Houghton R, Lamy T, et al.
Cytokine release in patients with CLL treated with obinutuzumab and possible
relationship with infusion-related reactions. Blood (2015) 126(24):2646–9. doi:
10.1182/blood-2015-09-670802

76. Wang Y, Zhang Y, Hughes T, Zhang J, Caligiuri MA, Benson DM, et al.
Fratricide of NK cells in daratumumab therapy for multiple myeloma overcome by
ex vivo–expanded autologous NK cells. Clin Cancer Res (2018) 24(16):4006–17. doi:
10.1158/1078-0432.CCR-17-3117

77. Grzywacz B, Kataria N, Verneris MR. CD56dimCD16+ NK cells downregulate
CD16 following target cell induced activation of matrix metalloproteinases. Leukemia
(2007) 21(2):356–9. doi: 10.1038/sj.leu.2404499

78. Romee R, Foley B, Lenvik T, Wang Y, Zhang B, Ankarlo D, et al. NK cell CD16
surface expression and function is regulated by a disintegrin and metalloprotease-17
(ADAM17). Blood (2013) 121(18):3599–608. doi: 10.1182/blood-2012-04-425397
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