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miRNA-based diagnostic model

Hao Chi1†, Haiqing Chen1†, Rui Wang2,3,4†, Jieying Zhang5,6†,
Lai Jiang1, Shengke Zhang1, Chenglu Jiang1, Jinbang Huang1,
Xiaomin Quan7,8, Yunfei Liu9*, Qinhong Zhang10*

and Guanhu Yang11*

1Clinical Medical College, Southwest Medical University, Luzhou, China, 2Department of General
Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University,
Luzhou, China, 3Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province,
Luzhou, China, 4Academician (Expert) Workstation of Sichuan Province, Luzhou, China,
5First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China,
6National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion,
Tianjin, China, 7Beijing University of Chinese Medicine, Beijing, China, 8Beijing University of Chinese
Medicine Second Affiliated DongFang Hospital, Beijing, China, 9Department of General, Visceral, and
Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany, 10Shenzhen Frontiers in
Chinese Medicine Research Co., Ltd., Shenzhen, China, 11Department of Specialty Medicine, Ohio
University, Athens, OH, United States
Background: Pancreatic cancer (PC) is a lethal malignancy that ranks seventh in

terms of global cancer-related mortality. Despite advancements in treatment,

the five-year survival rate remains low, emphasizing the urgent need for reliable

early detection methods. MicroRNAs (miRNAs), a group of non-coding RNAs

involved in critical gene regulatory mechanisms, have garnered significant

attention as potential diagnostic and prognostic biomarkers for pancreatic

cancer (PC). Their suitability stems from their accessibility and stability in

blood, making them particularly appealing for clinical applications.

Methods: In this study, we analyzed serummiRNA expression profiles from three

independent PC datasets obtained from the Gene Expression Omnibus (GEO)

database. To identify serummiRNAs associated with PC incidence, we employed

three machine learning algorithms: Support Vector Machine-Recursive Feature

Elimination (SVM-RFE), Least Absolute Shrinkage and Selection Operator

(LASSO), and Random Forest. We developed an artificial neural network model

to assess the accuracy of the identified PC-related serum miRNAs (PCRSMs) and

create a nomogram. These findings were further validated through qPCR

experiments. Additionally, patient samples with PC were classified using the

consensus clustering method.

Results: Our analysis revealed three PCRSMs, namely hsa-miR-4648, hsa-miR-

125b-1-3p, and hsa-miR-3201, using the three machine learning algorithms. The

artificial neural network model demonstrated high accuracy in distinguishing

between normal and pancreatic cancer samples, with verification and training
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groups exhibiting AUC values of 0.935 and 0.926, respectively. We also utilized the

consensus clustering method to classify PC samples into two optimal subtypes.

Furthermore, our investigation into the expression of PCRSMs unveiled a significant

negative correlation between the expression of hsa-miR-125b-1-3p and age.

Conclusion: Our study introduces a novel artificial neural network model for

early diagnosis of pancreatic cancer, carrying significant clinical implications.

Furthermore, our findings provide valuable insights into the pathogenesis of

pancreatic cancer and offer potential avenues for drug screening, personalized

treatment, and immunotherapy against this lethal disease.
KEYWORDS

pancreatic cancer, artificial intelligence, early diagnosis, serum miRNA, machine
learning, therapy
Introduction

Pancreatic cancer (PC) is an extremely lethal malignancy and

holds the unfortunate position of being the seventh leading cause of

cancer-related deaths worldwide (1). Alarmingly, the incidence of

PC continues to rise, with nearly 500,000 new cases being reported

each year (2). Among the various subtypes, pancreatic ductal

adenocarcinoma stands out as the most prevalent, presenting an

abysmal five-year survival rate of merely 6% (3, 4). This aggressive

cancer typically originates from the exocrine duct epithelial cells of

the pancreas, progressing through a complex series of non-invasive

precursor lesions (5). Several well-established risk factors for PC

have been identified, including smoking, alcohol consumption,

obesity, diabetes, pancreatic steatosis, and hypercholesterolemia

(6–9). Pancreatic cancer primarily manifests in the pancreatic

head, accounting for approximately 70% of cases, and it often

exhibits a lack of specific clinical symptoms, further complicating

early detection and diagnosis. While some common symptoms such

as obstructive jaundice, dark urine, loss of appetite, fatigue, and

exocrine pancreatic insufficiency may occur, they are not exclusive

to PC and can be present in other conditions as well (10–12).

Moreover, severe cachexia frequently accompanies pancreatic

cancer, contributing significantly to cancer-related mortality.

Consequently, relying solely on clinical symptoms for the

diagnosis of pancreatic cancer is unreliable and insufficient (13).

Currently, techniques such as endoscopic ultrasound-guided fine-

needle aspiration (EUS-FNA) or surgical pathology with frozen

section analysis (SPACE) are employed for the early diagnosis of

suspected pancreatic cancer. However, the accuracy of cytological

analysis on collected samples can be compromised due to challenges

in sampling, the presence of inflammation, or other confounding

factors (14, 15). It is noteworthy that pancreatic peri-fat necrosis, a

condition often associated with chronic or acute pancreatitis, can

mimic the clinical and imaging features of pancreatic cancer,

leading to misdiagnosis. In such cases, surgical pathology or

percutaneous biopsy is necessary to confirm the presence of

malignancy. Additionally, the aspiration of pancreatic fluid carries
02
a high risk of pancreatic fistula formation, further highlighting the

limitations and drawbacks of invasive diagnostic procedures (16,

17). Given these challenges, there is an urgent and compelling need

for the development of a non-invasive diagnostic method that

combines high accuracy and precision in detecting pancreatic

cancer. Such an innovative approach would revolutionize the field

by enabling early detection and prompt intervention, ultimately

improving patient outcomes and survival rates. In light of the

current clinical landscape and the limitations of existing

diagnostic techniques, our research endeavors to fill this crucial

gap by introducing a novel, non-invasive diagnostic modality that

promises to revolutionize the early detection and diagnosis of

pancreatic cancer.

MiRNAs are short non-coding RNA molecules, typically

consisting of 18-25 nucleotides. They are integral players in the

intricate landscape of gene regulation, exerting their influence by

specifically binding to the 3’-untranslated region (3’-UTR) of target

mRNA molecules. Dysregulation and aberrant processing of

miRNAs have been implicated in the development of various

cancers (18, 19). MiRNAs participate in a wide range of biological

processes, including organismal development, disease progression,

immune responses, and modulation of cellular processes like

proliferation, differentiation, and apoptosis. They can also

influence transcription factors, signaling pathways, and growth

factors, thereby exerting their functional effects (20). Circulating

miRNAs, known as tumor biomarkers, can be extracted from blood

samples and remain stable in the bloodstream. They can be

encapsulated in extracellular vesicles and other particles, or bind

to high-density lipoproteins, protecting them from degradation by

RNA hydrolases. This inherent stability makes circulating miRNAs

excellent candidates as biomarkers (21, 22).

The integration of microarray technology and bioinformatics

analysis has facilitated high-throughput screening of serum

substances in pancreatic cancer patients, aiming to identify novel

biomarkers for diagnostic purposes (23–25). However, the diagnostic

efficacy of these biomarkers remains unsatisfactory due to their

varying specificity and sensitivity. In light of this, artificial neural
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networks (ANNs) have emerged as powerful tools for predictive

analysis of both tumor and non-tumor diseases (26, 27). The

utilization of machine learning in the identification of tumor

biomarkers has garnered remarkable advantages as another tool

(28–30). Through its adaptive nature and proficiency in pattern

recognition, machine learning excels in extracting crucial attributes

from voluminous multidimensional datasets, thereby amplifying our

comprehension of tumor progression mechanisms and propelling the

attainment of personalized diagnostic and therapeutic interventions

(31–33).Given these capabilities, our study aims to develop a

diagnostic model based ANN and machine learning by integrating

new feature biomarkers. This model seeks to facilitate the early

detection of pancreatic cancer, unravel the underlying mechanisms

driving pancreatic cancer pathogenesis in patients, and pave the way

for potential therapeutic interventions.

This study aimed to identify potential serum miRNA

biomarkers for pancreatic cancer (PC) using machine learning

methods and the GEO dataset. The specific objectives included

screening for three PC-related serum miRNAs (PCRSMs),

establishing a risk score for PC patients using an artificial neural

network (ANN) diagnostic model, and investigating the correlation

between PCRSMs and clinical characteristics of PC patients. The

overall goal was to leverage bioinformatics analysis and machine

learning techniques to identify highly specific biomarkers, develop a

sensitive diagnostic model for early detection of PC, and gain

insights for the development of novel treatment strategies.
Methods

Data collection of original data

We obtained three non-coding RNA datasets, namely

GSE85589, GSE113486, and GSE59856, from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/geo/). The GSE85589 dataset utilized the GPL19117

[miRNA-4] Affymetrix multispecies miRNA-4 array, while the

GSE113486 and GSE59856 datasets utilized the GPL21263 3D

Gene Human miRNA V21_1.0.0 array and the GPL18941 3D

Gene Human miRNA V20_1.0.0 array, respectively. The

GSE85589 dataset consisted of serum miRNA samples from 19

healthy individuals and 88 pancreatic cancer (PC) patients. The

GSE113486 dataset included serum miRNA samples from 40 PC

patients and 100 controls. For validation purposes, the GSE59856

dataset contained serum miRNAs from 150 healthy individuals and

100 PC patients. All three datasets contained additional clinical

characteristics such as age and gender.
Processing of experimental data and
identification of miRNAs with altered
expression levels

To preprocess the datasets, we first normalized and log2

transformed the GSE85589 and GSE113486 raw data, which were

then merged and used as the training set (34). To calculate the gene
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expression value for each gene, we averaged the expression level of

multiple probes targeting the same gene and removed batch effects

using the “sva” R package (35). We utilized the “limma” R package to

screen for differentially expressed serum miRNAs in pancreatic

cancer (36). We selected candidate miRNAs with |log(FC)|>1 and

P<0.05 as the cutoff, and identified them as significantly differentially

expressed pancreatic cancer-related serum miRNAs (PCRSMs).
Machine learning-based feature selection
of miRNAs

Three machine learning algorithms, including Support Vector

Machine-Recursive Feature Elimination (SVM-RFE), LASSO

regression analysis, and Random Forest, were employed to select

PCRSMs from the candidate miRNAs (37). SVM-RFE, an

algorithm rooted in the principle of maximum margin within

support vector machines (SVM), facilitates a meticulous backward

selection process. It commences by assigning a performance-based

score to each feature using the training samples. Subsequently, the

feature with the lowest score is systematically eliminated, leading to

a retraining of the model using the remaining features. This iterative

procedure is executed until the desired number of features is

determined (38). LASSO regression analysis embraces the fitting

of a generalized linear model while simultaneously undertaking

variable selection and complexity adjustment (39). By employing

the “glmnet” package with 10-fold cross-validation of penalty

parameters, the LASSO regression analysis proficiently determines

the most relevant features (40, 41). In addition, the Random Forest

algorithm is leveraged to assess the importance of pancreatic

cancer-related serum miRNAs and estimate their predictive

performance. This algorithm effectively ranks the significance of

the miRNAs by employing ten-fold cross-validation. Specifically,

serum miRNAs exhibiting a relative importance surpassing the

threshold of 1 are regarded as pertinent feature miRNAs (42).
Artificial neural networks and
creating nomograms

The Artificial Neural Network (ANN), an innovative

computational model inspired by biological neural networks,

exhibits a complex structure comprising interconnected neurons

or processing units. ANNs demonstrate a remarkable ability to

accurately fit training data and uncover intricate nonlinear

relationships among predictor variables. This capacity renders

ANNs invaluable for predicting outcomes that have not been

previously observed (43). We will use the “neuralnet” R package

to establish an artificial neural network model to score disease-

specific miRNAs based on the weights of nodes, which can

differentiate sample attributes and distinguish whether the sample

is diseased (44).To prevent overfitting, regularization techniques

such as dropout or L1/L2 regularization may be employed.

Furthermore, the dataset is divided into training, validation, and

test sets, with the validation set used for hyperparameter tuning and

model selection. Performance evaluation metrics, including
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accuracy, precision, recall, and area under the receiver operating

characteristic curve (AUC-ROC), are employed to assess the

model’s predictive capacity and generalization ability. At the same

time, we will conduct a comprehensive quantitative evaluation of

PCRSMs in the form of a nomogram. The calibration curve is a

well-established method utilized to evaluate the performance and

accuracy of the nomogram. On the other hand, decision curve

analysis (DCA) serves as a valuable tool to assess the overall clinical

utility and net benefit of the nomogram.
Consensus clustering

Consensus clustering is a widely used unsupervised method for

subtype classification in cancer patients. This approach involves

multiple iterations of an inner clustering algorithm, and the results

are combined to produce a final consensus clustering solution (45).

We employed the “ConsensusClusterPlus” R package to partition

the pancreatic cancer patients in our study into distinct ICI clusters,

both in the training and validation sets. To determine the optimal

number of clusters, we comprehensively evaluated the consensus

matrix, the consensus cumulative distribution function (CDF), the

CDF curve area, and the tracking plot. Furthermore, we assessed the

stability of the clustering solution by performing principal

component analysis (PCA) (46).
qPCR assay

The human pancreatic ductal epithelial cell line, hTERT-HPNE,

was obtained from the BeNa Culture Collection in Henan, China.

Similarly, the human pancreatic cancer cell lines, PANC-1 and

SW1990, were acquired from the Experimental Medicine Center

affiliated with the Southwest Medical University in Luzhou, China.

The hTERT-HPNE cell line was maintained under standard

conditions, with RPMI1640 medium supplemented with 10% fetal

bovine serum and 1% penicillin-streptomycin used for cell culture.

The hTERT-HPNE cells were cultured under standard conditions at

37°C in a 5% CO2 environment. Likewise, the PANC-1 and SW1990

cells were cultured in DMEM medium supplemented with 10% fetal

bovine serum and 1% penicillin-streptomycin, following the same

incubation conditions. For RNA extraction, cells in the logarithmic

growth phase were harvested, and total RNA was isolated utilizing

TRIzol reagent. To assess the distinct expression patterns of miRNAs

in hTERT-HPNE, PANC-1, and SW1990 cells, a tailing method

combined with quantitative PCR (qPCR) was utilized. The miRNA
Frontiers in Oncology 04
1st strand cDNA synthesis kit (Accurate Biotechnology Co., Ltd.

Code. AG11717) was utilized to generate the first-strand cDNA of

miRNA. Subsequently, the SYBR Green Premix Pro Taq HS qPCR

Kit II (Accurate Biotechnology Co., Ltd. Code. AG11702) was

employed for quantitative PCR analysis of the reverse transcribed

cDNA. Unless otherwise specified, all reagents used in this study were

obtained from Gibco (Gibco, Grand Island, NY, USA). The primer

sequences utilized in the qPCR assay are listed in Table 1.
Statistical analysis

Statistical analyses were conducted using the R software

(version 4.2.2) and relevant packages. Student’s t-test, Wilcoxon

rank-sum test, and Spearman correlation analysis were applied to

assess the difference and correlation between variables across

different groups. Statistical significance was defined as P<0.05.
Result

Identification of candidate PCRSMs

The main study design is depicted in Figure 1. Initially, batch

correction was performed on the merged data from two GEO series

to address batch effects (Figures 2A, B). Subsequently, the data were

standardized (Figures 2C, D). The differential expression analysis of

serum miRNAs in pancreatic cancer patients was performed using

the “limma” package in the R programming environment. From the

analysis, a subset of the top 60 differentially expressed serum

miRNAs was identified and chosen for further investigation. A

heatmap was generated using the “pheatmap” package in R to

visualize the results (Figure 2E). Using the criterion of |log2FC|>1,

we successfully identified 59 PCRSMs exhibiting up-regulation and

41 PCRSMs showing down-regulation. To visualize the differential

expression patterns, a volcano plot was constructed using the

“ggplot2” package in the R programming environment (Figure 2F).
Identification of PCRSMs via LASSO
regression, support vector machine-
recursive feature elimination, and random
forest algorithms

To identify potential pancreatic cancer-related serum miRNAs,

we employed three machine learning algorithms: LASSO regression,
TABLE 1 The primer sequences for qPCR assay.

Gene Forward primer Reverse primer

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

hsa-miR-3201 ATGCGGCCGGGATATGAAGAAAA _

hsa-miR-125b-1-3p ACGGGTTAGGCTCTTGGGA _

hsa-miR-4648 TGTGGGACTGCAAATGGGAG _
-, represents non-existence. MircoRNAs do not have reverse primers.
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SVM-RFE, and random forest. With SVM-RFE, we selected the top

40 miRNAs, including hsa-miR-3201, hsa-miR-22-3p, hsa-miR-

125b-1-3p, hsa-miR-4708-3p, hsa-miR-1307-3p, hsa-miR-2278,

hsa-miR-184, hsa-miR-92a-2-5p, hsa-miR-4730, hsa-miR-4648,

hsa-miR-27b-3p, hsa-miR-6825-5p, hsa-miR-1246, hsa-miR-1290,

hsa-miR-6839-5p, hsa-miR-210-3p, hsa-miR-575, hsa-let-7c-5p,

and hsa-miR-221-3p, as feature variables (Figures 3A, B). By

applying LASSO regression analysis, we identified 24 miRNAs,

such as hsa-miR-1307-3p, hsa-miR-4668-5p, hsa-miR-320e, hsa-

miR-320a, hsa-miR-7110-5p, hsa-miR-4648, hsa-miR-125b-1-3p,

and hsa-miR-3201, as PCRSMs (Figures 3C, D). The random forest

algorithm showed a stable error rate with approximately 200

decision trees (Figure 3E), and 30 miRNAs with relative

importance scores greater than 1 were identified as feature

variables (Figure 3F). Through Venn diagram analysis, we found

that three miRNAs, namely hsa-miR-4648, hsa-miR-125b-1-3p,

and hsa-miR-3201, were common PCRSMs (Figure 3G).
Diagnostic effects of characteristic PCRSMs

After conducting an analysis of variance, we evaluated the

diagnostic performance of three PCRSMs: hsa-miR-4648, hsa-miR-

125b-1-3p, and hsa-miR-3201. The respective ROC curves yielded

area under the curve (AUC) values of 0.890, 0.867, and 0.836,

demonstrating their potential as diagnostic markers (Figures 4A–

C). In the merged training dataset, we observed significantly lower

expression levels of hsa-miR-4648 and hsa-miR-125b-1-3p in
Frontiers in Oncology 05
pancreatic cancer patients compared to normal controls

(Figures 4D, E, P<0.05). Conversely, the expression level of hsa-

miR-3201 was higher in the pancreatic cancer group (Figure 4F,

P<0.05). qRT-PCR analysis confirmed the downregulation of hsa-

miR-125b-1-3p and the upregulation of hsa-miR-3201 in pancreatic

cancer samples, supporting our initial hypothesis (Figures 4G, H,

P<0.0001, P<0.01, respectively). Correlation analysis revealed a

negative correlation between hsa-miR-4648 and hsa-miR-3201 in

the pancreatic cancer group, while hsa-miR-125b-1-3p and hsa-miR-

3201 exhibited a positive correlation in the same group (Figure 4I).

These findings provide insights into the expression patterns and

relationships among the selected PCRSMs in pancreatic cancer.
Establishment of a neural network
model and nomogram for predicting
pancreatic cancer

To address the need for an efficient and non-invasive diagnostic

model for pancreatic cancer, we developed a neural network model

with three input layers, five hidden layers, and two output layers.

The model incorporated the three characteristic PCRSMs and

assigned scores based on their expression levels. A score of 1 was

given to up-regulated PCRSMs with expression levels above the

median, and 0 otherwise. Conversely, for down-regulated PCRSMs,

a score of 1 was assigned for expression levels below the median and

0 otherwise. By categorizing samples into disease and normal

groups using assigned scores and weights, the model enabled
FIGURE 1

This flowchart summarizes the main design of the study.
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accurate identification of the disease state (Figure 5A). Our model

exhibited exceptional performance with remarkable accuracy in

both the training and validation ROC curve analyses, as indicated

by the AUC values of 0.926 and 0.935, respectively (Figures 5B, C).

Additionally, we employed the integration of PCRSMs to construct

a diagnostic nomogram for pancreatic cancer (Figure 5D). Within

this nomogram, each PCRSM corresponds to an assigned score, and

the cumulative sum of all PCRSM scores determines the total score,

which in turn corresponds to distinct risk scores for pancreatic

cancer occurrence. The calibration curve showcases the

nomogram’s ability to accurately estimate the probability of

pancreatic cancer (Figure 5E). Moreover, our decision curve

analysis underscores the clinical utility of our nomogram,

particularly for patients afflicted with pancreatic cancer (Figure 5F).
Frontiers in Oncology 06
Identification of serum miRNAs isoforms in
pancreatic cancer

The integration of training and validation sets from GEO

datasets was performed to create a unified dataset. Subsequently,

a consensus clustering approach was applied to pancreatic cancer

(PC) samples, utilizing the expression profiles of three specific

PCRSMs. The determination of the optimal number of subtypes,

established as 2, was based on the comprehensive analysis of

multiple evaluation metrics, including the consensus matrix plot,

cumulative distribution function (CDF) plot, relative change in the

area under the CDF curve, and tracking plot (Figures 6A–D). The

two distinct subtypes resulting from the consensus clustering

analysis were assigned the labels C1 and C2 to differentiate them,
A B

D

E

F

C

FIGURE 2

Determination of candidate PCRSMs in GEO expression profiles. (A, B) Removal of batch effects. (C, D) Visualization of data normalization.
(E, F) Heatmap and volcano plot showing differentially expressed PCRSMs after merging GSE85589 and GSE113486.
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and their distinct nature was confirmed by principal component

analysis (PCA), which revealed significant differences between the

subtypes (Figure 6E). Additionally, the expression boxplot

illustrated the differential expression patterns of the two subtypes

in the specific PCRSMs (Figure 6F). This analysis of subtyping

provides valuable information on the heterogeneity of PC,

po t en t i a l l y pav ing the way fo r more pe r sona l i z ed

treatment strategies.
Frontiers in Oncology 07
Clinical correlation analysis of pancreatic
cancer patients

In our analysis of pancreatic cancer (PC) patients, we explored

the relationship between the expression levels of characteristic

PCRSMs and age as well as gender to assess the need for

personalized treatment plans. We observed a significant negative

correlation between hsa-miR-125b-1-3p and age in PC patients
A B

D E

F

G

C

FIGURE 3

Identification of serum miRNAs associated with pancreatic cancer. (A, B) SVM-REF algorithm used for PCRSMs selection, with numbers indicating the
optimal selection of 19. (C) Ten-fold cross-validation of adjusted parameters selected by the LASSO model, with each line representing an miRNA.
(D) LASSO coefficient analysis, with the vertical dashed line representing the optimal l. (E) Relationship between the number of trees and error rate
in the random forest. (F) Relative importance ranking of genes. (G) Venn diagram showing the intersection of PCRSMs selected by SVM-REF
algorithm, LASSO, and random forest.
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(Figure 7A, p<0.05). Although hsa-miR-3201 (Figure 7B) and hsa-

miR-4648 (Figure 7C) showed some correlation with age in PC

patients, the associations were not statistically significant (P>0.05).

Surprisingly, no significant differences were found in the expression

of the three characteristic PCRSMs between PC patients above and

below 60 years of age (Figures 7D, E), as well as between male and

female PC patients (Figures 7F, G). These results suggest that

gender and age (with 60 as a threshold) may not provide

sufficient evidence to warrant personalized treatment plans.

However, the downregulation of hsa-miR-125b-1-3p with

increasing age could offer a new perspective for targeted drug

treatment in PC patients. Subsequent investigations are warranted
Frontiers in Oncology 08
to validate the present finding and delve deeper into its

potential implications.
Discussion

Pancreatic cancer is a highly invasive malignancy characterized

by a global escalation and poor clinical outcomes, including a

significantly low five-year survival rate (47, 48). Unfortunately,

effective early detection methods for pancreatic cancer are

lacking. The current treatment strategies primarily involve

surgical resection, chemotherapy, and immunotherapy. Despite
A B

D E F

G IH

C

FIGURE 4

Diagnostic effect and correlation analysis of PCRSMs. (A–C) ROC curves for three PCRSMs. (D–F) Box plots describing the expression of three
PCRSMs in pancreatic cancer and normal control groups. (G, H) Verification of three PCRSMs by qRT-PCR. **P < 0.01, ****P < 0.0001. (I) Correlation
analysis between the three PCRSMs by heatmap.
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A B

D E F

C

FIGURE 6

Subtype classification based on PCRSMs. (A) Heatmap representing the consensus matrix for K=2, illustrating the clustering patterns. (B) Cumulative
distribution function of the consensus values for K=2-9, providing insights into the optimal number of subtypes. (C) Evaluation of the relative change
in the area under the curve (AUC) of the cumulative distribution function. (D) Final classification results of the samples for K=2-9, indicating the
assigned subtypes. (E) Principal Component Analysis (PCA) plot demonstrating the effective segregation of pancreatic cancer patients into two
distinct subtypes using PCRSMs. (F) Box plots illustrating the differential expression patterns of the PCRSMs between the two identified subtypes. ***,
p<0.001
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FIGURE 5

Construction of an artificial neural network model and a bar plot based on PCRSMs. (A) Artificial neural network (ANN) model for distinguishing
between pancreatic cancer and normal control groups, consisting of three input layers, five hidden layers, and two output layers. (B, C) ROC curves
of the ANN model diagnostic performance in the training group (GSE85589 and GSE113486 merged) and the validation group (GSE59856). (D) Bar
plot integrating PC feature miRNAs. (E) A calibration curve was constructed to assess the predictive accuracy of the bar plot, providing insights into
its reliability and performance. (F) Decision curve analysis was conducted to evaluate the clinical utility of the bar plot, demonstrating its potential
benefits in guiding clinical decision-making.
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notable advancements in pancreatic cancer surgery, the five-year

overall survival rate for patients with pancreatic head cancer

following curative resection remains disappointingly below 20%

(49). The clinical efficacy of commonly used standardized

chemotherapy drugs, such as gemcitabine, falls short of

expectations. Additionally, drugs targeting pathways related to

cell apoptosis for the treatment of pancreatic cancer are still in

the developmental stage (50–52). The utilization of machine

learning (ML) algorithms empowers comprehensive analysis of

intricate and high-dimensional biological data encompassing

genomics, transcriptomics, proteomics, and clinical records. This

ML-driven approach enables the detection and elucidation of latent

patterns, correlations, and non-linear associations that elude

conventional statistical techniques. Leveraging this inherent

capacity, ML facilitates the discernment of previously unexplored

tumor biomarkers that hold significant clinical relevance and

novelty (53, 54). The application of artificial neural networks for

pancreatic cancer diagnosis has been scarcely explored in the

existing literature. Furthermore, previous studies investigating

serum miRNAs as potential biomarkers have generally exhibited

limited specificity and sensitivity. Notably, the combination of
Frontiers in Oncology 10
circulating miRNAs with high sensitivity and specificity often

requires the use of more than five miRNAs, a significantly larger

number than what has been examined in our study. This

observation suggests that the clinical implementation of such

approaches may entail higher costs.

In this study, we conducted a comprehensive analysis of

miRNA expression profiles of PCRSMs using two GEO datasets.

Through the utilization of three machine learning algorithms,

namely SVM-RFE, LASSO regression analysis, and random forest,

we successfully identified three miRNA features. Subsequently, we

developed a novel diagnostic model for PCRSMs based on an

artificial neural network, which exhibited high sensitivity in

detecting pancreatic cancer. To validate the performance of our

model, we applied it to an independent GEO dataset and found that

the ROC value was superior to that of the training set, indicating its

robustness and generalizability. Moreover, we constructed a

nomogram and calibration curve to further assess the accuracy of

our diagnostic model. Additionally, by dividing the expression

levels of PCRSMs into two different subtypes, we analyzed the

correlation between PCRSMs and clinical characteristics. Our

comprehensive analysis demonstrated that the diagnostic model
A B
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C

FIGURE 7

Correlation analysis between PCRSMs and clinical characteristics of pancreatic cancer patients. (A–C) Correlation analysis between the expression
levels of three PCRSMs and age, with R>0 indicating positive correlation and R<0 indicating negative correlation, and P<0.05 indicating statistical
significance. (D, E) Box plots and heatmaps showing the expression of PCRSMs in two groups divided by 60 years of age. (F, G) Box plots and
heatmaps showing the gender differences in the expression of PCRSMs.
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built upon the artificial neural network outperformed similar

models in terms of predictive performance. Furthermore, there

was a strong agreement between the predicted values generated by

our model and the measured values. The findings of this study

provide physicians with a reliable framework for clinical decision-

making, enhancing the ability to diagnose pancreatic cancer

accurately and facilitating appropriate treatment strategies.

The present study investigated the utilization of three specific

miRNA features, namely hsa-miR-4648, hsa-miR-125b-1-3p, and

hsa-miR-3201. Hsa-miR-4648 has garnered significant attention as

a potential biomarker for predicting recurrence in small cell

carcinoma of the colon, cervix, and esophagus. Additionally, it

has been implicated in neurodegenerative diseases such as ALS,

highlighting its multifaceted role across various pathological

contexts (55–58). Furthermore, hsa-miR-4648 has demonstrated a

robust association with primary liver cancer susceptibility, as well as

the risk of tumor progression and metastasis (59). Hsa-miR-125b-

1-3p was identified as a valuable biomarker for the early diagnosis of

numerous pancreatic cancers, underscoring its pivotal role in the

development of pancreatic cancer. Moreover, its involvement in

endothelial cell apoptosis and vascular injury provides novel

insights into the pathogenesis of pancreatic cancer and holds

potential implications for the development of innovative

treatment strategies (60). Notably, our findings revealed a

significant negative correlation between the expression of hsa-

miR-125b-1-3p and age in pancreatic cancer patients, thus laying

the foundation for personalized treatment plans tailored to

individual patients. Hsa-miR-3201 has been extensively

investigated in various malignancies, including hepatocellular

carcinoma, recurrent epithelial ovarian cancer, melanoma, and

pancreatic ductal carcinoma. It has been utilized for prognostic

purposes and evaluating its expression levels in these diverse

contexts, shedding light on its involvement in distinct cancer-

promoting pathways (61–64). In summary, the inclusion of hsa-

miR-4648, hsa-miR-125b-1-3p, and hsa-miR-3201 as miRNA

features in our study showcases their significance in different

cancer types and highlights their potential as biomarkers. This

knowledge not only expands our understanding of their functional

roles but also has implications for diagnostic and therapeutic

strategies in the field of cancer research.

To address the inherent heterogeneity and diversity of

pancreatic cancer, which can lead to significant variations in

expression patterns and signaling pathways among samples, we

employed a strategy to enhance sample size, improve clustering

analysis accuracy and reliability, and minimize random errors

resulting from data partitioning. Specifically, we combined two

GEO datasets from the training set with one GEO dataset from the

validation group (65). Through this integration, we successfully

categorized pancreatic cancer into two distinct molecular subtypes,

namely C1 and C2, based on the expression data of characteristic

PCRSMs (66). The two molecular isoforms show significant

differences. Notably, our clinical correlation studies revealed that

all three PCRSMs exhibited associations with the age of pancreatic

cancer patients. However, statistical significance was observed only

for miR-125b-1-3p, while biological sex did not appear to be an
Frontiers in Oncology 11
influencing factor for the altered expression of the characteristic

PCRSMs in pancreatic cancer patients. These findings provide a

solid foundation for our future investigations, aimed at exploring

personalized treatment plans for different types of pancreatic cancer

patients, thus introducing novel perspectives and approaches in this

field (67).

While our study has provided valuable insights into the early

diagnosis of pancreatic cancer patients, it is important to

acknowledge certain limitations. Firstly, the use of publicly

available datasets of blood samples instead of qPCR experiments

with serum samples from pancreatic cancer patients represents a

limitation of our study. The limited availability of such samples in

the hospital necessitated the use of cell lines as an alternative. This

substitution may introduce biases into our results, which should be

considered when interpreting the findings. In future investigations,

we aim to overcome this limitation by collecting a larger number of

serum samples from pancreatic cancer patients for qPCR validation.

Furthermore, our study focused on the expression profiles of serum

miRNAs in pancreatic cancer patients without investigating their

functional roles. Therefore, the underlying mechanisms linking hsa-

miR-4648, hsa-miR-125b-1-3p, hsa-miR-3201 with tumor immune

infiltration and pancreatic cancer require further exploration.

Future studies should aim to elucidate the functional significance

of these miRNAs and uncover the specific pathways and

interactions through which they contribute to pancreatic cancer

progression. By addressing these limitations and conducting further

investigations, we can advance our understanding of the role of

serum miRNAs in pancreatic cancer and explore their potential as

diagnostic biomarkers and therapeutic targets.
Conclusion

Our study presents a novel artificial neural network (ANN)

model with promising clinical implications for the early detection of

pancreatic cancer. This ANN model demonstrates exceptional

performance in accurately distinguishing pancreatic cancer

samples from normal samples and effectively predicting the

characteristics of previously unobserved samples. Leveraging

comprehensive bioinformatics analysis, we extensively investigate

the expression profiles of pancreatic cancer-specific miRNAs

(PCSMs) and elucidate their associations with clinical traits. Our

findings unveil significant correlations between specific PCSMs and

patient age, thereby highlighting their potential relevance in drug

screening, personalized treatment approaches, and immunotherapy

for pancreatic cancer. These discoveries offer fresh insights and lay

the groundwork for future investigations in the realm of pancreatic

cancer management.
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