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Objectives: To develop a CT-based radiomics model and a combined model for

preoperatively discriminating infiltrative renal cell carcinoma (RCC) and

pyelocaliceal upper urinary tract urothelial carcinoma (UTUC), which invades

the renal parenchyma.

Materials and methods: Eighty patients (37 pathologically proven infiltrative

RCCs and 43 pathologically proven pyelocaliceal UTUCs) were retrospectively

enrolled and randomly divided into a training set (n = 56) and a testing set (n = 24)

at a ratio of 7:3. Traditional CT imaging characteristics in the portal venous phase

were collected by two radiologists (SPH and ZXL, who have 4 and 30 years of

experience in abdominal radiology, respectively). Patient demographics and

traditional CT imaging characteristics were used to construct the clinical

model. The radiomics score was calculated based on the radiomics features

extracted from the portal venous CT images and the random forest (RF)

algorithm to construct the radiomics model. The combined model was

constructed using the radiomics score and significant clinical factors according

to the multivariate logistic regression. The diagnostic efficacy of the models was

evaluated using receiver operating characteristic (ROC) curve analysis and the

area under the curve (AUC).

Results: The RF score based on the eight validated features extracted from the

portal venous CT images was used to build the radiomics model. Painless

hematuria as an independent risk factor was used to build the clinical model.

The combined model was constructed using the RF score and the selected

clinical factor. Both the radiomics model and combined model showed higher

efficacy in differentiating infiltrative RCC and pyelocaliceal UTUC in the training

and testing cohorts with AUC values of 0.95 and 0.90, respectively, for the

radiomics model and 0.99 and 0.90, respectively, for the combined model. The

decision curves of the combined model as well as the radiomics model indicated

an overall net benefit over the clinical model. Both the radiomics model and the

combined model achieved a notable reduction in false-positive and false-

negativerates, resulting in significantly higher accuracy compared to the visual

assessments in both the training and testing cohorts.
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Conclusion: The radiomics model and combined model had the potential to

accurately differentiate infiltrative RCC and pyelocaliceal UTUC, which invades

the renal parenchyma, and provide a new potentially non-invasive method to

guide surgery strategies.
KEYWORDS

infiltrative renal cell cancer, pyelocaliceal upper urinary tract urothelial carcinoma,
enhanced CT, differentiation, radiomics
1 Introduction

Urothelial cancers of the renal pelvis and collecting system

constitute approximately 10%–15% of all renal tumors (1). Early

pyelocaliceal upper urinary tract urothelial carcinoma (UTUC) is

centered on the renal pelvis and calyces and grows in a centripetal

direction. Most pyelocaliceal UTUCs can be diagnosed by their

characteristic location. Open radical nephroureterectomy with

bladder cuff excision is the standard treatment when pyelocaliceal

UTUC invades the renal parenchyma (2). However, some

infiltrative renal cell carcinomas (RCCs) can also grow into the

renal sinus and invade the renal pelvis, which can mimic CT

imaging manifestations of pyelocaliceal UTUC invading the renal

parenchyma, making differential diagnosis challenging (3–5). In

addition, radical nephrectomy is often applied for patients with

infiltrative RCC (6), which is different from the surgical treatment

of pyelocaliceal UTUC invading the renal parenchyma. Meanwhile,

UTUC is prone to recurrence, and the patients mostly have a poor

prognosis, requiring close clinical follow-up. Therefore, differential

diagnosis of infi ltrative RCC and pyelocaliceal UTUC

preoperatively is essential.

Multiphasic multidetector-row CT (MDCT) scanning is the

most common imaging modality for the detection and staging of

UTUC and RCC (7), which can guide the subsequent strategy of

imaging examination and treatment (8–11). Florian (12)

demonstrated similar rates for detection, sensitivity, and

specificity of metastases and local recurrence of RCC when

comparing a dual-phase protocol with arterial and portal venous

contrast to a single-phase protocol with portal venous contrast.

Raza (13, 14) found that pyelocaliceal UTUC is more likely a solid,

homogeneously enhancing mass centered on the collecting system

and extended toward the ureteropelvic junction, with a focal

pelvicalyceal filling defect and preserved renal outline. The

accuracy of MDCT for the prediction of peritumoral invasion has

positive and negative predictive values of 88.8% and 87.5%,

respectively (14). Typically, RCCs appear as focal well-

circumscribed masses and enhance avidly and heterogeneously

with pseudocapsule (15, 16). In MRI, Wehrli found that

pyelocaliceal UTUC exhibited a significantly lower normalized

apparent diffusion coefficient (ADC) than RCC (17). In addition,
02
Dursun found a higher SUVmax value in pyelocaliceal UTUC at 18

−FDG PET/CT scanning (18). However, some infiltrative RCCs

enhance poorly and homogeneously, with their imaging features

overlapping with other cancers. Thus, more objective and

quantitative parameters are required to identify infiltrative RCC

and pyelocaliceal UTUC.

Radiomics is a quantitative analysis method based on medical

images and uses a large number of algorithms to transform the

region of interest (ROI) in medical images into high-dimensional

features. It contains information on disease- and patient-specific

processes that are imperceptible to the human eye (19, 20). It can be

used to analyze the heterogeneity of an entire tumor based on

hundreds of quantitative features and also quantitatively analyze the

relationship between the biological and imaging characteristics of

the tumor (21).

In this study, we aimed to assess the value of radiomics features

and conduct a radiomics model and a combined model to

differentiate pyelocaliceal UTUC that invades the renal

parenchyma and infiltrative RCC based on enhanced CT images.
2 Methods

2.1 Patients

Data were collected through an electronic search of the picture

archiving and communication system covering images recorded

from January 2017 to December 2021. Two consecutive size-

matched cohorts were established with the following inclusion

criteria: 1) patients underwent nephrectomy, nephroureterectomy,

or surgical resection of the renal lesions, and final diagnoses were

based on histopathology, and 2) patients underwent preoperative

four-phasic contrast-enhanced CT (CECT) scans. Exclusion criteria

were prominent artifacts on CT images.

Finally, 80 patients (37 pathologically proven infiltrative RCCs and

43 pathologically proven pyelocaliceal UTUCs) were retrospectively

enrolled and randomly divided into a training set (n = 56) and a testing

set (n = 24) at a ratio of 7:3. Additionally, infiltrative RCCs were all

clear cell carcinomas without rhabdoid or sarcomatoid differentiation,

and pyelocaliceal UTUCs were all urothelial carcinomas.
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2.2 CT technique

CECT images were obtained using three scanners: the

SOMATOM Definition CT scanner, the SOMATOM Force CT

scanner (Siemens Healthcare, Erlangen, Germany), and the

Revolution Frontier CT scanners (General Electric Company,

Chicago, IL, USA). Before scanning, the patients’ bodies were fixed,

and they were instructed to remain still and breathe calmly. The

scanning parameters were as follows: tube voltage of 120 kVp and

automated tube current modulation and a variable setting of 280–300

mA. Other parameters were as follows: slice interval of 5 mm, slice

thickness of 5 mm, and reconstructed section thickness of 1.25 mm.

Following unenhanced CT images, the arterial, portal, and

delayed phase images were obtained in all patients. The portal

phase that we used in this study was obtained with a delay of 70

seconds. All patients received non-ionic intravenous contrast

material of approximately 60–80 mL. The contrast material was

administered using mechanical power injectors. A contrast agent

was injected into the anterior elbow vein or dorsal hand vein at a

rate of 3 ml/s.
2.3 Clinical model development

Patient demographics and tradit ional CT imaging

characteristics were used to construct the clinical model. Patient

demographic characteristics were obtained from the picture

archiving and communication system (PACS) of the hospital

including gender, age, back pain, frequent urination, and painless

hematuria. The traditional features based on the enhanced CT

images were independently evaluated by two radiologists (SPH

and ZXL, who have 4 and 30 years of experience in abdominal

radiology, respectively). They were blinded to postoperative

pathology. A consensus was reached through consultation in case
Frontiers in Oncology 03
of disagreement. The univariate logistic regression analysis was used

to compare the differences in the patient demographics and

traditional CT imaging characteristics between the infiltrative

RCCs and pyelocaliceal UTUCs. The significant risk factors

selected using the univariate logistic regression analysis were

applied to the following multivariate logistic regression analysis to

construct the clinical model.
2.4 Radiomics feature extraction and
feature selection

The workflow of the radiomics model construction was

described in Figure 1. First, ROIs were manually drawn by junior

radiologists using the ITK SNAP software (http://www.itksnap.org/

pmwiki/pmwiki.php), and after that, ROIs were reviewed and

approved by an expert radiologist (ZXL). An example of the

manual segmentation is shown in Figure 2.

Then, the radiomics features were extracted based on the ROIs

of the portal venous CT images. The radiomics features included

intensity histogram features, shape and size features, and texture

features such as gray-level co-occurrence matrix (GLCM), gray-

level run length matrix (GLRLM), gray-level size zone matrix

(GLSZM), neighborhood gray-tone difference matrix (NGTDM),

and gray-level dependence matrix (GLDM). The definitions and

names of the radiomics features were in accordance with the Image

Biomarker Standardization Initiative (IBSI).

Although large numbers of features were extracted, not all

features were beneficial to differentiating pyelocaliceal UTUC

from infiltrative RCC. Therefore, the random forest-based Boruta

algorithm was used to determine the features with the highest

importance using the R package Boruta (22). Boruta is a random

forest-based feature selection method. Boruta employs a recursive

approach to disrupt the order of feature variables and assesses the
FIGURE 1

Workflow of the radiomics analysis to differentiate pyelocaliceal upper urinary tract urothelial carcinoma and infiltrative renal cell carcinoma.
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importance of each feature to identify those with the highest

relevance (22). Boruta is particularly advantageous for datasets

with numerous predictor variables due to its superior

computational efficiency (23).
2.5 Radiomics model construction

The radiomics model was built based on the features selected by

Boruta using the R package randomForestSRC (24). Random forest

consistently provides high prediction accuracy and is not prone to

overfitting compared to other models. A 10-fold cross-validation on

the model was applied to optimize the parameters of the random

forest (RF) classifiers. The radiomics score (RF score) was calculated

using a formula based on the radiomics features. RF score was used

to build the radiomics model.
2.6 Combined model construction

The combined model was constructed by combining the

significant factors of clinical factors and the RF score. The factors

with p < 0.05 were considered significant predictors and used for

developing the combined model.
2.7 Statistical analysis

Normal continuous variables are expressed as the mean ±

standard deviation, whereas non-normal data are expressed as the

median and interquartile range. Categorical variables are described

as counts (percentages). Comparisons between groups were

conducted using the t-test (normal data) or the Mann–Whitney

U test (non-parametric data) for continuous variables and the chi-

squared test for categorical variables.
Frontiers in Oncology 04
The models were constructed using RF based on the feature sets

with 10-fold cross-validation. In 10-fold cross-validation, the whole

training set was randomly divided into 10 equal-sized subsets. A

single subset was retained as the validation dataset, and the

remaining four subsets were merged to create the training dataset.

The cross-validation process was repeated 10 times, with each of the

subsets used once as the validation dataset.

The receiver operating characteristic (ROC) curves and the area

under the curve (AUC) value were used to assess the diagnostic

efficacies of the three models. Delong’s test was performed to

compare the AUCs of each model, and p-value < 0.0167 was

considered statistically significant for multiple comparisons

according to the Bonferroni correction. The net clinical benefits

were assessed using decision curve analysis (DCA). R software

(version 4.0.5 http://www.Rproject.org) was used for statistical

analysis, and a two-sided p < 0.05 indicated statistical significance.
3 Results

3.1 Patients’ characteristics and the clinical
model construction

A total of 80 patients (37 pathologically proven infiltrative RCCs

and 43 pathologically proven pyelocaliceal UTUCs) were

retrospectively enrolled and randomly divided into the training set

(n = 56) and testing set (n = 24) at a ratio of 7:3. The patient

demographics and traditional CT imaging characteristics between

infiltrative RCCs and pyelocaliceal UTUCs are shown in Table 1. The

univariate logistic regression analysis showed that painless hematuria,

lesion volume, and intrapulmonary metastases were statistically

significantly different between groups (p < 0.05). There was no

statistically significant difference in hydronephrosis, stone, tumor

calcification, and venous tumor thrombus between infiltrative RCCs

and pyelocaliceal UTUCs (p > 0.05). After univariate logistic
infiltrative renal cell carcinoma pyelocaliceal upper urinary tract urothelial carcinoma

FIGURE 2

ROI delineation of pyelocaliceal upper urinary tract urothelial carcinoma and infiltrative renal cell carcinoma on the CT (portal phase). ROI, region
of interest.
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regression analysis, the features with statistically significant

differences (p < 0.05) were applied to construct the multivariate

logistic regression analysis. Multivariate analysis showed that painless

hematuria was the risk factor for differentiating infiltrative RCCs and

pyelocaliceal UTUCs (p < 0.05).
3.2 Radiomics model

A total of 1,688 radiomics features were extracted from the

portal venous CT images. After the Boruta analysis, eight features

were extracted to construct the final model (detailed information on

the selected features is shown in Figure 3). Then, RF models were
Frontiers in Oncology 05
conducted, and the RF scores of the training set and the testing set

were calculated. The RF models of the training set and the testing

set performed well with AUC values of 0.95 (95%CI: 0.88–1.00) and

0.90 (95%CI: 0.77–1.00), respectively. In addition, the RF score was

lower in the pyelocaliceal UTUC groups than in the infiltrative RCC

groups, with p < 0.001.
3.3 Combined model

The multivariate logistic regression analysis (as shown in

Table 2 and Appendix Table 3) indicated that painless hematuria

and RF score are the independent risk factors, and a combined

model was constructed based on the two factors. An individualized

nomogram that incorporated the two predictive factors based on

the combined model in the training cohort was constructed to

differentiate infiltrative RCC and pyelocaliceal UTUC, which is

shown in Figure 4. Figure 5 shows a typically pyelocaliceal UTUC,

which was consistent with the judgment of nomogram and an

infiltrative RCC incorrectly identified as pyelocaliceal UTUC

by nomogram.
3.4 Comparison of the three models

Pairwise comparisons of the AUCs of the clinical model,

radiomics model, and combined model were performed using

Delong’s test. As Table 3 shows, in the training cohort, the AUC

of the combined model as well as the radiomics model was

significantly higher than that of the clinical model (p < 0.001). In

the testing cohort, the AUC of the combined model as well as the

radiomics model was significantly higher than that of the clinical

model (p < 0.001). In the training and testing sets, the AUC of the

combined model was slightly higher than that of the radiomics

model, although not statistically significant (all p > 0.0167). The

ROC curves for the clinical model, radiomics model, and combined

model are shown in Figure 6. The decision curves for the three

models showed that the net clinical benefit for the combined model

as well as the radiomics model was higher than that of the clinical

model, which is shown in Figure 7.
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FIGURE 3

Weights of the eight radiomics features in the radiomics model.
TABLE 1 Demographics and traditional CT features of the patients.

RCC (N
= 37)

UTUC (N
= 43)

p

Male (%) 26 (70.27%) 27 (62.79%) 0.640

Age, year 63.38
[49.73–77.03]

67.98
[57.51–78.47]

0.100

Back pain (%) 17 (45.94%) 14 (32.56%) 0.320

Frequent urination (%) 3 (8.11%) 6 (13.95%) 0.494

Painless hematuria (%) 17 (45.94%) 39 (90.70%) <0.001

Increased kidney
volume (%)

27 (72.92%) 27 (62.79%) 0.174

Hydronephrosis (%) 10 (27.02%) 20 (46.51%) 0.118

Stone (%) 8 (21.62%) 13 (30.23%) 0.537

Tumor calcification (%) 3 (8.11%) 5 (11.63%) 0.719

Venous tumor
thrombus (%)

12 (32.43%) 19 (44.19%) 0.398

Intrapulmonary
metastases (%)

3 (8.11%) 12 (27.91%) 0.048

Left kidney (%) 21 (56.76%) 16 (37.24%) 0.072

Lesion volume 233
[73.50–346.00]

36.1 [25.5–178] <0.001
RCC, renal cell carcinoma; UTUC, upper urinary tract urothelial carcinoma.
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3.5 Comparison of the radiomics model
and the radiologists’ visual assessment

We included the confusion matrix and accuracy of the visual

assessments conducted by two radiologists, as well as the machine

learning models, in the attached appendix (Tables 1, 2). The results

demonstrated that both the radiomics model and the combined

model achieved a notable reduction in false-positive and false-

negativerates, resulting in significantly higher accuracy compared to

the visual assessments in both the training and testing cohorts.
4 Discussion

Accurate preoperative determination of infiltrative RCC and

pyelocaliceal UTUC plays a crucial role in treatment decisions and

follow-up strategies. In this study, we first developed a pretreatment

CT-based radiomics model and a combined model to distinguish

infiltrative RCC and pyelocaliceal UTUC via contrast-enhanced CT

with a satisfactory discriminatory performance. Our results
Frontiers in Oncology 06
indicated that the combined model performed best for distinguishing

these two malignancies.

The univariate logistic regression analysis of traditional features

showed that pyelocaliceal UTUC patients were more likely to have

painless hematuria and intrapulmonary metastases, which is

consistent with previous studies (25). The most classical symptom

of pyelocaliceal UTUC is painless hematuria, and pyelocaliceal

UTUC patients often exhibit symptoms earlier than RCC

patients. Pyelocaliceal UTUCs invade and metastasize more

easily because of the thin layer of surrounding ureteral

adventitia containing an extensive plexus of blood vessels and

lymphatic channels.

The multivariate logistic regression analysis showed that

pyelocaliceal UTUC patients were more likely to have painless

hematuria and lower RF scores. Pyelocaliceal UTUC patients have

lower RF scores, which means that they have lower heterogeneous

enhancement. Pyelocaliceal UTUCs have infiltrative hypo-vascular

masses coexisting with a filling defect in the adjacent collecting

system or amputation of a calix, renal shape preservation, the

absence of cystic or necrotic change, homogeneity of the tumor,
TABLE 3 Pairwise comparisons of AUCs of the clinical model, radiomics model, and combined model.

AUCs p
(0 vs. 1)

p
(0 vs. 2)

p
(1 vs. 2)Clinical models (0) Radiomics models (1) Combined models (2)

Training cohort 0.61
(0.49–0.74)

0.95
(0.89–1.00)

0.99
(0.98–1.00)

<0.001 <0.001 0.104

Testing cohort 0.52
(0.33–0.71)

0.90
(0.77–1.00)

0.90
(0.77–1.00)

0.001 <0.001 0.927
fro
AUC, area under the curve.
TABLE 2 The univariate and multivariate logistic regression analyses of the patients.

Univariate Multivariate (clinical model) Multivariate (combined model)

b p b p b p

Male (%) −0.278 0.640 0.65

Age, year 0.0248 0.100

Back pain (%) −0.983 0.320

Frequent urination (%) 0.932 0.494

Painless hematuria (%) 2.780 <0.001 2.383 0.002 7.803 0.017

Increased kidney volume (%) −1.820 0.174

Hydronephrosis (%) 0.260 0.118

Stone (%) 0.236 0.537

Tumor calcification (%) 1.449 0.719

Venous tumor thrombus (%) 0.260 0.398

Intrapulmonary metastases (%) 1.609 0.048

Left kidney (%) −1.056 0.072

Lesion volume −0.002 0.037

RF score −9.091 <0.001 −17.127 0.005
RF, random forest.
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and extension into the ureteropelvic junction. However, RCCs are

soft tissue attenuation and are sometimes accompanied by necrosis

and calcification, which have stronger or irregular enhancement

during the corticomedullary phase (26, 27).

Although radiomics analysis has already been applied for

differentiating renal tumors, previously published studies mostly

focused on identifying benign and malignant renal lesions or

distinguishing different types of RCCs such as clear cell renal cell

carcinoma, renal papillary cell carcinoma, and chromophobe cell

renal cell carcinoma (28). We first used radiomics analysis to

differentiate clear cell renal cell carcinoma and urothelial

carcinomas with good accuracy. In addition, we also compared

the accuracy of the combined model and that of two expert
Frontiers in Oncology 07
radiologists, which showed better performance of the

combined model.

Several limitations of our study have to be considered. The

study was a retrospective data analysis; therefore, the quality of CT

imaging in some cases may not be so satisfactory, and bias produced

among different CT machines was hard to control. Our study

merely investigated the portal venous phase CT images to develop

a radiomics signature. Radiomics features extracted from non-

enhanced CT images as well as arterial and venous phase images

could provide additional information for better discriminatory

performance. In addition, image preprocessing such as

resampling was not performed in this study, which may limit the

reproducibility of our findings.
A B

DC

FIGURE 5

The CT and pathological images of the pyelocaliceal upper urinary tract urothelial carcinoma and infiltrative renal cell carcinoma. (A) A 60-year-old
man with left kidney stones, hematuria, and left waist soreness. CT images show enlarged volume of the left kidney, multiple high-density nodular
shadows in the parenchyma, and obvious expansion of the left renal pelvis with blurred edges, heterogeneous enhancement, and unclear boundary.
(B) Pathological images (H&E, ×100) showed an invasive urothelial carcinoma infiltrating the muscle layer of the renal pelvis and infiltrating the renal
parenchyma and finally diagnosed as pyelocaliceal upper urinary tract urothelial carcinoma, which was consistent with the judgment of nomogram.
(C) A 56-year-old man with lower back pain and hematuria for more than 3 months. CT image showed a huge soft tissue mass in the left kidney,
with heterogeneous enhancement, unclear boundaries, a low-density filling defect in the left renal vein, and an enlarged lymph node in the left
retroperitoneum. (D) Pathological images (HE, 100×) showed a transparent cell carcinoma of grade 3 with necrosis, invading the renal capsule, renal
pelvis mucosa, and renal sinus fat, and it was finally diagnosed as infiltrative RCC, which was not consistent with the judgment of nomogram.
FIGURE 4

An individualized nomogram based on RF score and clinical features. RF, random forest.
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A

B

FIGURE 6

ROC curves of the three models in the training (A) and testing (B) cohorts. ROC, receiver operating characteristic.
A

B

FIGURE 7

Decision curves for the three models in the training (A) and testing (B) cohorts.
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5 Conclusion

The RF radiomics model and combined model can improve the

accuracy of differentiating pyelocaliceal upper urinary tract

urothelial carcinoma, which invades the renal parenchyma from

infiltrative renal cell carcinoma, and provide a new potentially non-

invasive method to guide surgery strategies.
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