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Introduction: This study presents a novel continuous learning framework

tailored for brain tumour segmentation, addressing a critical step in both

diagnosis and treatment planning. This framework addresses common

challenges in brain tumour segmentation, such as computational complexity,

limited generalisability, and the extensive need for manual annotation.

Methods: Our approach uniquely combines multi-scale spatial distillation with

pseudo-labelling strategies, exploiting the coordinated capabilities of the

ResNet18 and DeepLabV3+ network architectures. This integration enhances

feature extraction and efficiently manages model size, promoting accurate and

fast segmentation. To mitigate the problem of catastrophic forgetting during

model training, our methodology incorporates a multi-scale spatial distillation

scheme. This scheme is essential for maintaining model diversity and preserving

knowledge from previous training phases. In addition, a confidence-based

pseudo-labelling technique is employed, allowing the model to self-improve

based on its predictions and ensuring a balanced treatment of data categories.

Results: The effectiveness of our framework has been evaluated on three publicly

available datasets (BraTS2019, BraTS2020, BraTS2021) and one proprietary

dataset (BraTS_FAHZU) using performance metrics such as Dice coefficient,

sensitivity, specificity and Hausdorff95 distance. The results consistently show

competitive performance against other state-of-the-art segmentation

techniques, demonstrating improved accuracy and efficiency.

Discussion: This advance has significant implications for the field ofmedical image

segmentation. Our code is freely available at https://github.com/smallboy-code/

A-brain-tumor-segmentation-frameworkusing-continual-learning.
KEYWORDS

brain tumor segmentation, continuous learning, multi-scale spatial distillation, pseudo-
labeling, feature extraction
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1 Introduction

Brain tumors, characterized by abnormal growths in brain

tissue, represent a significant medical challenge due to their

impact on morbidity and mortality worldwide. They can manifest

in various forms, ranging from benign to malignant, the latter being

particularly aggressive and prone to metastasis (1). The complex

etiology of brain tumors includes factors such as radiation exposure,

genetic predisposition, and family history, emphasizing the need for

early detection and accurate diagnosis (2).

In the field of brain tumor diagnostics, magnetic resonance

imaging (MRI) has emerged as a superior modality to computed

tomography (CT) due to its improved spatial resolution and soft

tissue contrast. This makes MRI essential for preoperative

assessment, therapeutic management, and survival prediction in

brain tumor cases (3). However, the traditional approach of manual

segmentation in MRI scans, while the gold standard, suffers from

inherent inefficiencies and subjective variability, necessitating the

exploration of automated techniques (4, 5).

In recent years, deep learning models, such as those proposed

by Ma et al. (6), have achieved significant success in automatic brain

tumor segmentation. These models excel at capturing both local

and global contextual features, but often struggle with vanishing

gradients and overfitting, especially in deeper network layers.

Kumar et al. (7) addressed these issues by combining ResNet50

with global average pooling to enhance tumor classification for

various tumor types.

Building on these foundations, our study introduces an

advanced continuous learning framework for brain tumor

segmentation from MRI images, as shown in Figure 1. Our

methodology differs from existing techniques by integrating

multi-scale spatial distillation and pseudo-labeling strategies. This

approach not only overcomes the limitations of vanishing gradients

and overfitting seen in previous models, but also addresses the issue

of catastrophic forgetting - a common challenge in continuous

learning models. Unlike traditional methods that rely on preserving
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subsets of training data or expanding the network architecture for

new classes, our multiscale spatial distillation method focuses on

preserving spatial relationships within the data. In addition, our

confidence-based pseudo-labeling technique refines the

segmentation process, particularly for non-tumor tissues, thereby

improving the overall accuracy and reliability of the segmentation.

We provide a comprehensive evaluation of our framework on

several datasets, including BraTS2019, BraTS2020, BraTS2021,

and a private dataset. This evaluation demonstrates the

robustness of our model and its potential for clinical application,

setting it apart from existing segmentation methods in terms of

adaptability and performance.
2 Related works

2.1 Conventional brain
tumor segmentation

In the early days of medical image segmentation, conventional

machine learning algorithms were widely used because deep

learning algorithms had not yet gained widespread popularity.

Huang et al. (8) presented a semi-supervised learning algorithm

using a unique image transformation strategy, combining a

probabilistic deep neural network with an evidential neural

network for dual evidence-based segmentation integrated by

Dempster’s rule. Qin et al. (9) developed an unsupervised domain

adaptation framework for brain tumor segmentation in MRI

images, using dual student and adversarial training techniques to

align feature representations and introducing a “cross-coordination

constraint” to improve prediction confidence. Barzegar and Jamzad

(10) proposed a semi-supervised unified framework for multi-label

segmentation, which addresses the limitations and training

requirements of atlas-based segmentation by reformulating the

segmentation problem as a Markov Random Field energy

optimization on a parametric graph, thereby improving accuracy
FIGURE 1

Schematic of the proposed continuous learning network for brain tumor segmentation.
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and reducing computational burden. Bonte et al. (11) used a

random forest model to represent different tumor tissues using

only two MRI sequences, T1-CE and FLAIR MRI. They calculated

local texture and abnormality maps and achieved good results in

segmenting enhancing tissue, tumor core, and the whole abnormal

region in high-grade gliomas. In another study, Kaur et al. (12)

proposed a hybrid multilevel thresholding technique that combines

intuitionistic fuzzy sets and Tsallis entropy to select tumor regions

in MR images with blurred boundaries and poor contrast, further

improving the segmentation speed and accuracy. These studies

highlight the effectiveness of traditional machine learning

techniques in medical image segmentation and lay the foundation

for the development of more advanced deep learning-

based methods.
2.2 Deep learning-based approaches

In recent years, advances in deep learning-based network models

have contributed significantly to progress in the field of medical

image segmentation. Bouchaour and Mazouzi (13) proposed a deep

learning-based method for brain MRI tumor segmentation, utilizing

an ensemble of CNNs to process segmented MRI volumes into sub-

images for efficient voxel classification. This approach, focusing on

local voxel patterns, greatly accelerates training and prediction,

enhancing its suitability for real-time diagnostic applications. In a

separate development, Zhang et al. (14) introduced the Hierarchical

Multi-Scale Segmentation Network (HMNet), combining a high-

resolution branch with multi-resolution branches for adaptive tumor

feature tracking. HMNet incorporates a lightweight conditional

channel weighting block and a Lightweight Multi-Resolution

Feature Fusion (LMRF) module, reducing GPU load and model

complexity, thereby optimizing segmentation efficiency. Liu et al. (15)

presented an advanced lightweight 3D algorithm with an attention

mechanism for brain tumor image segmentation based on the 3D-

UNet architecture. Their approach includes hierarchical decoupled

convolutions for parameter reduction, dilated convolutions for

improved multiscale processing, and an attention mechanism at the

output layer that focuses on tumor regions to improve segmentation

accuracy. Zhao et al. (16) introduced a brain tumor segmentation

method that integrated the complete convolutional neural network

(FCNN) and the conditional random field (CRF) into a cohesive

framework. The segmentation model was trained on the axial,

coronal and sagittal planes of MRI images, which reduced the

computational cost of 3D CNN while maintaining segmentation

accuracy. Kong et al. (17) proposed a hybrid pyramid U-network that

extracts multi-scale information using a downsampling path, an

upsampling path, and a hybrid pyramid path. The combination of

multi-scale, semantic, and location information improved the

segmentation performance of the model. Finally, Bal et al. (18)

presented a deep learning-based model with three different CNN

architectures and manual features for multi-classification of brain

tumors, which simplified the identification of the core and enhanced

the prominent boundary of the tumor region, thereby improving the

segmentation performance.
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2.3 Our work

Brain tumor segmentation is an important aspect of medical

image analysis that involves distinguishing tumor regions from

surrounding healthy brain tissue. Accurate segmentation is critical

for diagnosis, treatment planning, and monitoring of disease

progression. Despite significant advances in the use of deep

learning frameworks for brain tumor segmentation, achieving

accurate segmentation remains challenging due to several factors

(19). Tumor heterogeneity is a primary obstacle in brain tumor

segmentation, as tumor regions exhibit different properties,

including texture, intensity, and shape. Furthermore, the

complexity of tumor shape, which can be irregular and

asymmetric, poses an additional challenge (20).

To address these challenges, we propose an innovative

continuous learning framework for brain tumor segmentation

that integrates multi-scale spatial distillation and pseudo-labeling

strategies. Our proposed framework aims to overcome the obstacles

of brain tumor segmentation and achieve accurate segmentation

results. The proposed model employs four parallel ResNet18 and

DeepLabV3+ network architectures, which enhances the model’s

feature extraction capabilities of the model while reducing the

number of model parameters. This configuration allows the

model to extract the most representative and discriminative

features of brain tumor regions for accurate segmentation. To

address the issues of catastrophic forgetting and unbalanced data

categories during model training, we implement a multi-scale

spatial distillation scheme and a confidence-based pseudo-labeling

technique. The proposed method has been rigorously evaluated on

three publicly available datasets and one private dataset, and shows

competitive performance compared to other state-of-the-art

segmentation techniques. The main innovations of this approach

can be summarized as follows:
1. The introduction of a multi-scale spatial distillation

scheme, specifically designed to effectively preserve

knowledge during the continuous learning process. This

method preserves both long- and short-range spatial

relationships, mitigating the problem of catastrophic

forgetting and promoting robust model performance.

2. The incorporation of a confidence-based pseudo-labeling

technique that allows the model to recognize previously

learned classes associated with current non-tumor tissue

(background) pixels, overcoming potential non-tumor

tissue (background) shift challenges and ensuring

accurate segmentation results.

3. The use of four parallel ResNet18 and DeepLabV3+

network architectures to enhance the model’s feature

extraction capabilities while reducing the number of

model parameters. This arrangement ultimately results in

improved segmenta t ion accuracy and overa l l

model efficiency.
The structure of this paper is as follows: In Section III, we

provide a comprehensive overview of the study and introduce our
frontiersin.org
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proposed model. In Section IV, we describe the datasets,

preprocessing techniques and evaluation metrics used in our

investigation, as well as the experimental details. Section V

presents the experimental results and discusses their implications

for addressing the research question at hand. Section VI provides an

in-depth discussion of our proposed method and elaborates on its

contributions to the field of medical image analysis. Finally, Section

VII concludes the paper with a synthesis of the main findings and

suggests directions for future research in this area.
3 Methodology

3.1 Network architecture

Figure 1 illustrates the proposed framework, which includes

four parallel ResNet18 and DeepLabV3+ network architectures.

Part of the segmentation model consists of four parallel ResNet18

structures that operate simultaneously to extract features from the

input data. This arrangement efficiently enhances the model’s

ability to capture diverse features, as each ResNet18 structure

learns different representations of the input data. In addition,

using multiple ResNet18 architectures in parallel reduces the total

number of parameters required compared to using a single deeper

network. This results in a more efficient and less computationally

in t ens i ve mode l , wh i l e ma in ta in ing robus t f ea ture

extraction capabilities.

The ResNet18 is a variant of the ResNet family introduced by

He et al. (21). Figure 2 shows the ResNet18 architecture, which is

structured as follows: a 7×7 convolutional layer with 64 filters and a

step size of 2; a 3×3 max-pooling layer with a step size of 2; four

blocks, each containing two residual units with 64, 128, 256, and
Frontiers in Oncology 04
512 filters, respectively; a global average pooling layer; a fully

connected layer with the desired number of output classes. It is

observed that the ResNet network utilizes a deep residual learning

framework to address the degradation problem. Using a set of

convolutional kernels, the network effectively extracts relevant

image features from four MRI modalities, specifically FLAIR, T1,

T1-CE and T2. In addition, the residual connections between the

layers allow for faster forward propagation within the network.

As shown in Figure 3, the DeepLabV3+ network is basically

divided into two main components: an encoder and a decoder. The

DeepLabV3+ network structure integrates multiple dilated (atrous)

convolutions within the encoder segment, effectively enlarging the

receptive field without losing information. As a result, each

convolution captures a wider range of information. The encoder

uses atrous spatial pyramid pooling (ASPP), where atrous

convolutions with different dilation rates are applied in parallel to

extract features individually. These extracted features are then

merged and convolved to efficiently compress and consolidate

the information.

In the decoder section, the initially compressed efficient feature

layer, which has undergone double compression, is convolved to

change the number of channels. This adjusted layer is then fused

with the results of the efficient feature layer after applying the

dilated convolution. This fusion process integrates low-level

features with high-level features, improving the accuracy of

segmentation boundaries and capturing finer details. Upon

completion of the stacking process, two depth-separable

convolution blocks are implemented. These blocks are designed

to reduce computational complexity while maintaining the ability to

learn complex features. The decoder module refines the

segmentation results along object boundaries in a simple yet

effective manner. This refinement produces a more accurate map
FIGURE 2

Architecture schematic of ResNet18.
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of segmentation results, which ultimately helps to accurately

identify and delineate target objects within the input image.
3.2 Multi-scale local spatial
distillation scheme

In machine learning, continuous learning models often face the

problem of catastrophic forgetting. This phenomenon occurs when

new tasks are trained using the back-propagation deep learning

technique, culminating in a significant decline in the model’s

performance on previously acquired tasks. To address this

dilemma, a common strategy involves the use of distillation loss,

which establishes a balance between strict and relaxed constraints

for sustainable learning (22). In this study, we propose a local

pooling distillation (POD) scheme as an improved method to

mitigate catastrophic forgetting, building on the approach

proposed by Douillard et al. (23).

According to previous research, POD matches global statistics at

different feature levels between the old and current models (23). We

divide the dataset into Dt, t=1,2…T according to the mask category,

and t represents the required segmentation area. Each dataset Dt

consists of a group of (It,Mt), the former representing the input image

with the size ofW × H, and the latter representing the corresponding

ground truth mask. Among them, Mt only includes the tags of the

current category C t. Let x be the embedded tensor with the size of H

×W × C,Фt be the set of learnable parameters of the current network,

f ( · ) be the encoder, and g( · ) be the decoder. Extracting the POD

embeddedФ consists in concatenating the H × C width-pooled slices

and the W × C height-pooled slices of x, as shown in Equation 1:

F(x) =
1
W o

W

w=1
x½:,w , :� ‖ 1

H o
H

h=1

x½h, :, :�
" #

∈ R(H+W)�C (1)

Where ½· ‖ ·� represents the series on the channel axis. For both

the old and the current model, we compute embeddings at multiple
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levels. As shown in Equation 2, the goal of the POD loss is to

minimise the L2 distance between these two sets of embeddings

using the current network parameters Фt:

Lpod Q t� �
=
1
Lo

L

l=1

F f tl Ið Þ� �
−F f t−1l (I)

� ��� ��2 (2)

In a continuous learning environment, where a model is

incrementally trained on new data without forgetting previously

learned knowledge, achieving high performance in both

classification and segmentation tasks is essential. In classification,

a global pooling operation is commonly used to aggregate features

from the entire input and produce a fixed-length representation.

However, this operation discards spatial information, which is

critical for segmentation tasks that require high spatial accuracy.

On the other hand, segmentation requires the model to predict

the class label for each pixel in the input image, and accurate

localization of small objects is critical for high performance.

However, modeling the entire width or height statistics of the

input can obscure important local statistics of smaller objects,

resulting in poor segmentation performance.

Therefore, in a continuous learning environment, distillation

methods that transfer knowledge from a previously learned model

to a new model should preserve the spatial relationship between

long- and short-range information to achieve the most advanced

results. This means that the distillation method should not only

transfer global features, but also take into account the local spatial

context. By preserving the spatial relationship between long-range

and short-range information, the model can achieve high

performance in both classification and segmentation tasks.

In this study, we introduce a new local POD feature extraction

scheme. It involves the calculation of width and height merged

slices over multiple regions extracted at different scales. For the

embedding tensor x with size H ×W × C, when the scale is 1/2s, the

local POD embeddingYs (x) at the scale is calculated in Equations 3

as a series of s2POD embeddings:
FIGURE 3

Schematic of the DeepLabV3+ architecture.
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Y s(x) = F xs0,0
� �

⋯k kF xss−1,s−1
� �

∈ R(H+W)�C
h i

(3)

Where ∀ i = 0⋯ s − 1, ∀ i = 0⋯ s − 1, xsi,j = x½iH=s : (i + 1)H

=s, jW=s : (j + 1)W=s, : � is a sub-region of the embedded tensor x,

with the size of W/s × H/s. Connect the local POD of each scale s

along the channel axis and embed Ys (x) to form the final

embedding in Equation 4:

Y (x) = Y 1 xð Þ ⋯k kY S(x)
� �

∈ R(H+W)�C�S (4)

For several layers of the old model and the current model, we

compute the local POD embeddings. The final local loss of the POD

is shown in (Equation 5):

LLocalPOD Q t� �
=
1
Lo

L

l=1

Y f tl Ið Þ� �
−Y f t−1l Ið Þ� ��� ��2 (5)

Local POD preserves both long-range and short-range spatial

relationships, which is critical for reducing catastrophic forgetting

in a continuous learning environment. Catastrophic forgetting

occurs when a model loses previously learned knowledge when

trained on new data. In a continuous learning setting, this can lead

to a significant drop in performance on previously learned tasks. To

address this problem, the Local POD method distils knowledge

from a previously learned model into a new model by preserving the

spatial relationship between long-range and short-range

information. This allows the model to retain previously learned

knowledge while learning new information.
3.3 Confidence-based pseudo-
labeling strategy

In a continuous learning environment, labeling pixels as non-

tumor tissue (background) can be challenging because these pixels

can belong to either old or future classes. Treating these pixels as

non-tumor tissue (background) can lead to catastrophic forgetting,

where the model forgets previously learned knowledge. To address

this issue, we propose a pseudo-labeling strategy for background

pixels. Pseudo-labeling is a common technique used in domain

adaptation for semantic segmentation, where a model is trained on

a combination of real labels from a source dataset and pseudo-labels

assigned to an unlabeled target dataset (24). In our case, we use

predictions from the previously learned model for background

pixels as cues to their real class, especially if they belong to one of

the old classes. By using these predictions as pseudo-labels, we can

more accurate ly labe l background pixe l s and avoid

catastrophic forgetting.

Formally, let C t = card (C t) - 1 represent the cardinality of the

current classes (excluding the background class). Let Ŝ t ∈
RW ,H,1+C1+⋯+Ct

represent the predictions of the current model

(including the real background class, all the old classes, and the

current classes). Let ~St ∈ RW ,H,1+Ct
take the target as step t, and

compute using the one-hot ground-truth segmentation map at step

t and the pseudo tags extracted by using the old model predictions,

as shown in (Equation 6) below:
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~St(w, h, c) =

1      if  St w , h, cbg
� �

= 0  and  c = argmax St

c0∈Ct

w , h, c0
� �

1      if  St w , h, cbg
� �

= 1  and  c = argmax bS t−1

c0∈C1 : t−1

w , h, c0
� �
0      otherwise

8>>>>>>><>>>>>>>:
(6)

For non-background pixels, since these pixels are associated

with known classes, we use the ground truth label as the true

label. Otherwise, we use the class predicted by the old model

gt−1(f t−1( · )). However, for uncertain pixels where the old

model may fail, pseudo-labelling all background pixels may be

inval id. Therefore, only pseudo-labels with sufficient

“confidence” of the old model are retained. To account for this

uncertainty, the equation is modified as follows (Equation 7):

~St(w, h, c) =

1      if  St w , h, cbg
� �

= 0  and  c = argmax St

c0∈Ct

w , h, c0
� �

1      if  St w , h, cbg
� �

= 1  and  c = argmax Ŝ t� 1

c0∈C1 : t� 1

w , h, c0
� �

  and  u < tc
0      otherwise

8>>>>>>><>>>>>>>:
(7)

Where u is the uncertainty of the pixels (w , h) and tc is a category
specific threshold. Therefore, we discard all the pixels for which the old

model is uncertain (u ≥ tc) in (7) and decrement the normalisation

factor WH by one. We use entropy as a measurement of uncertainty u.

Specifically, before the learning task t, we compute the median entropy

for the old model, which covers all pixels ϵ C l:t-1c of D t predicted as

class c by all previous classes c, and provides the threshold tc ϵ C1:t-1c.

Referring to Saporta et al. (25), the pseudo-labelled cross-entropy loss

of the old class can be written as (Equation 8):

Lpseudo Q t� �
= −

v
WH o

W,H

w,h
o
c∈Ct

~S w , h, cð Þ log Ŝ t w , h, cð Þ (8)

Where v is the ratio of acceptable old class pixels to the total

number of such pixels. The importance of pseudo-tags is adaptively

weighted in the total loss. This method not only uses local POD to

avoid catastrophic forgetting, but also uses uncertainty-based

pseudo tags to solve for background offset. In summary, the total

loss is given by (Equation 9):

L Q t� �
= Lpseudo Q t� �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

classification

+ lLlocalPOD Q t� �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
classification

(9)

Where l is a super parameter.
4 Experimental setup

4.1 Dataset

In this study, three publicly available datasets and one private

dataset are used to demonstrate the effectiveness and robustness of

the proposed brain tumor segmentation method. The datasets used
frontiersin.org
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are the Multimodal Brain Tumor Segmentation Challenge 2019

(BraTS2019), the Multimodal Brain Tumor Segmentation

Challenge 2020 (BraTS2020), the Multimodal Brain Tumor

Segmentation Challenge 2021 (BraTS2021), and a proprietary

dataset from the First Affiliated Hospital of Zhengzhou University

(BraTS_FAHZU). BraTS2019 contains 335 training cases and 125

validation cases, while BraTS2020 expands the training set to 369

cases and maintains the same validation set as BraTS2019.

BraTS2021 further expands the training set to 1, 251 cases and

the validation set to 219 cases. The BraTS_FAHZU dataset,

provided by the First Affiliated Hospital of Zhengzhou University,

contains 232 patient cases manually annotated by two

experienced radiologists.

The BraTS datasets are widely used in research for the

development and evaluation of brain tumor segmentation

algorithms due to the diversity of tumor types, sizes and locations

that contribute to their challenging nature. These datasets include

brain tumor MRI scans from four imaging modalities: T1, T1-CE,

T2 and FLAIR, presented in the standard NIFTI format for storing

and sharing medical imaging data. Contestants using these datasets

are challenged to develop algorithms that accurately segment three

sub-regions of brain tumors: enhancing tumor (ET), whole tumor

(WT) and tumor core (TC).
4.2 Data preprocessing

In our study, we employ a careful data preprocessing protocol to

ensure the accuracy and reliability of our brain tumor segmentation
Frontiers in Oncology 07
model. This process is critical for handling the diverse range of MRI

modalities present in our datasets, each characterized by unique

image contrasts. The variance in these contrasts can lead to the

problem of gradient vanishing during model training, a phenomenon

in which gradient updates become negligible, hindering learning

efficiency. To counteract this, we implemented the z-score

standardization method across all modalities. Each MRI scan is

standardized by subtracting the mean and dividing by the standard

deviation of its intensity values. This method normalizes the intensity

distribution across scans and ensures a consistent scale. As a result, it

reduces the impact of outliers and improves the ability of the model

to discriminate relevant features. Figure 4 in our manuscript provides

a visual comparison of MRI images before and after this

standardization process, illustrating the improved clarity and

discriminability of tumor features in the standardized images. The

formula for calculating the z-score of a data point x in a population

with mean m and standard deviation s is given in Equation 10:

z =
x − m
s

(10)

Recognizing the prevalence of non-tumor tissue in most MRI

scans, we implement a data cropping strategy to focus on the

regions of interest. We crop images to a standardized size of

160×160×160 pixels, specifically retaining those that contained

labeled tumor regions. This approach minimizes the model’s

exposure to the vast majority of non-tumor tissue, which could

otherwise bias its learning process toward these areas. Although this

method may result in some loss of peripheral information, it has

been empirically shown to improve the performance of deep

learning models in segmenting small and isolated tumor regions.
FIGURE 4

Comparison of MRI images before and after the standardization process.
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In addition to the above steps, we use data enrichment

techniques to further increase the robustness of our dataset. This

includes data augmentation methods such as rotation, flipping, and

scaling to increase the variability and volume of the training data.

Such augmentation helps to simulate different scenarios and

orientations of brain tumors, thus enabling the model to better

generalize across different cases. It’s important to note that these

augmentations were carefully calibrated to preserve the realistic

anatomical structures and characteristics of brain tumors.

The meticulousness of our data preprocessing protocol plays a

critical role in the performance of our segmentation model. These

steps, from standardization to data enrichment, are designed to

address the specific challenges posed by the variability of MRI data

and the nature of brain tumors. The comprehensive description of

these methods in our manuscript aims to ensure reproducibility, a

fundamental aspect of scientific research.
4.3 Evaluation metrics

In order to thoroughly evaluate the effectiveness of our

proposed framework for segmentation tasks in various domains,

including medical imaging and computer vision, we use four widely

accepted evaluation metrics. These metrics include the Dice

coefficient (Dice), sensitivity, specificity, and Hausdorff95 distance

(Haus95), which are explicitly defined in (Equations 11–14),

respectively. The Dice quantifies the similarity between two sets,

such as ground truth (GT) and predicted segmentation masks, with

a higher value indicating a better match between them. Sensitivity

represents the ability of the algorithm to accurately detect positive

instances, while specificity represents its ability to correctly identify

negative instances. A higher value for sensitivity or specificity

indicates better performance in detecting positive or negative

instances, respectively. In addition, the Haus95 calculates the

maximum distance between a point in one set and its nearest

point in the other set, providing a measure of the worst-case

boundary discrepancy between the ground truth and the

predicted masks. A lower Haus95 value indicates a better match

between the two sets. Taken together, these four evaluation metrics

provide a rigorous and comprehensive assessment of the

segmentation performance of our proposed framework, allowing

us to compare it with other segmentation algorithms and determine

the most appropriate one for a given task.

Dice =
2TP

FN + FP + 2TP
(11)

Sensitivity =
TP

TPþ FN
(12)

Specificity =
TN

TNþ FP
(13)

Haus95(T , P) = max sup inf
t∈T ,p∈P

d(t, p), sup inf
p∈P;t∈T

d(t, p)

( )
(14)
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Where TP, TN, FP, and FN are the numbers of true positives, true

negatives, false positives, and false negatives respectively, sup denotes

the supremum and inf denotes the infimum, t and p donate the points

on the surface T of the GT region and the surface P of the predicted

region, d(·, ·) is a function of the distance between the point t and p.
4.4 Experimental details

The training process for deep learning models requires careful

tuning of many hyperparameters, including learning rate and epoch

count, as these can have a significant impact on the performance of

the model. To achieve optimal results, these hyperparameters must

be configured appropriately. Identifying the ideal values for these

hyperparameters typically involves an empirical procedure in which

different values are explored and their impact on the model’s

performance is evaluated. In our study, we set the initial learning

rate at 0.0325, a common value for segmentation tasks. We used the

Poly strategy to dynamically modify the learning rate, which

systematically decreases it over successive iterations. This method

effectively reduces overfitting and improves the generalization

ability of the model. In addition, we assigned a momentum value

of 0.9, a common choice in deep learning. This parameter speeds up

the learning process by maintaining a moving average of the

gradients. We trained our model for approximately 30 epochs,

which is an appropriate duration for image segmentation tasks

because it gives the model enough time to learn relevant features

and converge to an optimal solution. Finally, we randomized the

order of the data sets during training to increase the robustness of

the training process. This technique prevents the model from

memorizing the order of the data sets, which can contribute to

overfitting and undermine the model’s ability to generalize.

Our experiments were conducted in an environment using

TensorFlow 1.13.1 and Python 3.6.5, with PyCharm as the

integrated development environment (IDE). The hardware

configuration included an Intel(R) Xeon(R) Silver 4210 CPU

running at 2.20 GHz, a 64-bit Windows 10 operating system, 32

GB of RAM, and two graphics cards: an ASPEED graphics family

(WDDM) and an NVIDIA TITAN RTX. This setup provided a

robust foundation for efficiently executing deep learning tasks and

ensuring reliable results.
5 Results

5.1 Ablation study

The ablation study detailed in Table 1 is carefully designed to

identify the most efficient and accurate network architecture for

brain tumor segmentation. Our selection of ResNet18 in

combination with DeepLabV3 is validated by the highest Dice

scores achieved on BraTS2020 training set, supporting the

premise that the streamlined architecture of ResNet18 is adequate

for robust feature extraction without the computational cost

associated with the more complex ResNet50. The fusion of
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ResNet18 with the contextual knowledge of DeepLabV3 results in a

model adept at segmenting both the whole tumor and its core,

demonstrating the strength of this combination in capturing

essential tumor details while maintaining computational

economy. The reduced Dice scores associated with the deeper

ResNet50 raise concerns that additional depth may not be

beneficial for brain tumor segmentation, possibly due to

complications such as overfitting, which can degrade model

performance. In contrast, the UNet architecture, while

commendable in its performance, does not appear to exploit the

full potential of the representational depth offered by the ResNet

backbones as effectively as DeepLabV3, underscoring the critical

need for an architecture that can capitalize on the depth of extracted

features for accurate segmentation.

Building on this foundational analysis, our study extends into

the areas of multi-scale spatial distillation and confidence-based

pseudo-labeling to enhance segmentation accuracy. Using the

BraTS2020 training set and a robust 10-fold cross-validation

protocol, we computed the mean results shown in Table 2. Here

we quantify the effectiveness of our model, while Figure 5 provides a

visual demonstration of its segmentation capabilities. Our research

has evolved into a sophisticated continuous learning framework

that integrates the core strengths of ResNet18 and DeepLabV3+

with spatial distillation (SD) and confidence-based pseudo-labeling

(PL). This complex synthesis, SD+PL, represents the pinnacle of our

model’s capabilities and provides a nuanced and systematic

examination of its performance. The reported results not only

validate the model’s operational merits, but also its adaptability

and precision, making it a promising solution for complex

segmentation tasks in medical imaging.

A careful analysis of Table 1 shows that the hybrid of the

baseline model and pseudo-labeling (denoted as ‘baseline+PL’)

demonstrates superior performance over the baseline model

integrated with spatial distillation (denoted as ‘baseline+SD’) for

several accuracy indicators. Looking at the Dice scores, the ‘baseline
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+PL’ model yields values of 0.729, 0.881, and 0.823 for the

enhancing tumor, the whole tumor, and the tumor core, in that

order. These values are significantly better than their counterparts

in the ‘baseline+SD’ model, which are 0.697, 0.873 and 0.775,

respectively. This represents a performance improvement of 4.6%

for the enhancing tumor, 0.9% for the total tumor, and 6.2% for the

tumor core when using the ‘baseline+PL’ model.

When considering Hausdorff95 metrics, baseline+PL achieves

values of 34.9 for the enhancing tumor and 11.3 for the tumor core.

In contrast, the ‘baseline+SD’ model documents values of 39.7 and

20.2, illustrating a reduction in distance of 4.8 and 8.9 for the

enhancing tumor and the tumor core, respectively, with the

application of the ‘baseline+PL’ model.

The graph in Figure 5 illustrates the ability of the enhanced

model ‘baseline+PL’ to accurately segment individual regions. In

particular, it avoids the misclassification of the gadolinium-

enhanced (GD) tumor region located at the periphery of the

tumor. Furthermore, the integration of the baseline model with

spatial distillation and pseudo-labeling techniques (referred to as

‘baseline+SD+PL’) shows a significant increase in sensitivity and

specificity compared to the ‘baseline+PL’ model. As shown in

Table 1, the ‘baseline+SD+PL’ model demonstrates superior

performance with an increase in sensitivity and specificity of 5.4%

and 0.1% for the enhancing tumor, 3.9% and 0.1% for the core

tumor, and 2.8% and 0.1% for the total tumor, respectively.
5.2 Results

Figure 6 illustrates the effectiveness of our continuous learning

model by demonstrating its ability to maintain accuracy in

segmenting necrotic and edematous regions (step 1) while

successfully integrating a new class-enhancing tumor regions

(step 2)-without compromising the segmentation quality of

previously learned classes. Comparison with the corresponding

ground truths (GT 1 and GT 2) shows minimal deviation,

indicating that our model effectively combats catastrophic

forgetting. This visual evidence of the model’s sustained

performance across learning phases justifies further development

and application of our model in clinical settings where dynamic

learning is critical.

To support the visual evidence, our research includes a rigorous

evaluation framework where the model is trained on three separate

and sequentially released brain tumor MRI datasets - BraTS2019,

BraTS2020, and BraTS2021. Evaluation is performed on the
TABLE 2 Performance metrics of proposed continuous learning network components through 10-fold cross-validation on the BraTS2020 training set.

Component
Dice Sensitivity Specificity Haus95

ET WT TC ET WT TC ET WT TC ET WT TC

Baseline 0.673 0.872 0.741 0.682 0.861 0.726 1.000 0.999 0.999 45.8 12.14 15.6

+SD 0.697 0.873 0.775 0.716 0.859 0.733 1.000 1.000 1.000 39.7 15.03 20.2

+PL 0.729 0.881 0.823 0.757 0.887 0.838 0.999 0.996 0.998 34.9 10.64 11.3

+SD+PL 0.761 0.889 0.867 0.798 0.912 0.871 1.000 1.000 0.999 28.7 9.35 8.2
frontiers
TABLE 1 Comparison of ablation results for different combinations of
backbone networks.

Combination Dice_ET Dice_WT Dice_TC

ResNet18+DeepLabV3 0.673 0.872 0.741

ResNet50+DeepLabV3 0.637 0.858 0.726

ResNet18+Unet 0.613 0.843 0.705

ResNet50+Unet 0.602 0.824 0.698
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FIGURE 6

The proposed continuous learning network training dynamics demonstrate resistance to catastrophic forgetting.
FIGURE 5

Cross-validation results on the BraTS2020 training set for baseline model comparison.
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corresponding validation sets to assess the model’s segmentation

performance, accuracy, and ability to generalize across these

temporally varying datasets. Furthermore, to ensure the

robustness of the model and to evaluate its performance on

unseen data, we also test the model on an independent,

undisclosed dataset. The quantitative results of this exhaustive

evaluation are systematically documented in Tables 3, 4, which

detail the performance metrics for each dataset. These metrics,

which include but are not limited to Dice scores, precision, and

recall, provide a comprehensive view of the model’s consistency and

the effectiveness of its generalization capabilities, underscoring the

model’s readiness for clinical adoption and its potential to

contribute to the advancement of medical image analysis.

A critical observation from these results is the model’s ability to

effectively segment each subregion of the brain tumor, which is a

significant contribution given the complexity of the disease. Of

particular note is the high specificity of the model, which is close to

1. This high specificity metric underscores the model’s ability to

accurately predict negative cases, a key requirement for effective

medical imaging analysis. Furthermore, the high specificity of the

model also implies a commendable performance in predicting non-

tumor tissue (background). In other words, the model demonstrates

the ability to correctly identify regions of the image that do not

contain tumors, a crucial factor in obtaining accurate segmentation

results and, consequently, accurate diagnosis and treatment

planning. Thus, the presented model demonstrates both high

performance and broad applicability in the challenging field of

brain tumor segmentation.

Looking closely at Figure 7, which shows selected examples

from the training set, the model demonstrates an impressive ability

to accurately segment brain tumors. This ability prevails across a

spectrum of tumor characteristics, including different

morphologies, different shapes, and different signal intensities. In

addition, the model demonstrates a superior ability to delineate

between tumor sub-regions, further enhancing its ability to provide

high-fidelity representations of brain tumors. The ability to
Frontiers in Oncology 11
distinguish between these sub-regions has significant implications

for the diagnosis and treatment of brain tumors, providing

physicians with a more nuanced understanding of the

disease presentation.

However, our observations reveal certain deviations from

perfection. In particular, the boundaries of the ET region are

areas where the model appears to stumble. The cause of these

inaccuracies may be due to the increased signal intensity within this

region, which may inadvertently cause the model to misclassify

portions of the ET region as part of the TC region. This observation

points to a critical area for future investigation and improvement,

ultimately paving the way for a more reliable and accurate model for

brain tumor segmentation.

After training the model, an arbitrary sample is selected from

the validation set to illustrate its performance, as shown in Figure 8.

This figure presents a series of MRI slices obtained from different

perspectives, demonstrating the model’s ability to identify and

delineate the regions of interest in all orientations when dealing

with brain tumors. To further highlight the effectiveness of the

model, we provide a 3D rendering of the segmentation results

obtained from different viewpoints within the validation set. This

robust 3D representation demonstrates the model’s ability to

accurately identify and separate the sub-regions of the brain

tumor, regardless of the viewing perspective. It reinforces the

model’s exceptional ability to generate accurate segmentation

across the entire MRI scan.

The model thus proves its worth by demonstrating robust

performance in brain tumor segmentation, regardless of tumor

characteristics such as size, shape, or signal intensity. Its robust

performance and adaptability underscore its practical application in

effectively mapping the intricate heterogeneity of gliomas, thus

improving the accuracy of diagnosis and treatment planning in

clinical settings.

The generalizability of our model is tested by applying it to the

BraTS_FAHZU dataset, a collection of clinical data that has not

undergone specific curation. We used 10-fold cross-validation, a
TABLE 3 Quantitative analysis of the proposed continuous learning network on the training sets of BraTS2019, BraTS2020 and BraTS2021.

data set
Dice Sensitivity Specificity Haus95

ET WT TC ET WT TC ET WT TC ET WT TC

2019 0.801 0.843 0.836 0.857 0.892 0.815 0.999 0.999 0.999 27.6 10.20 15.1

2020 0.761 0.889 0.867 0.798 0.912 0.871 1.000 1.000 0.999 28.7 9.35 8.2

2021 0.823 0.898 0.881 0.877 0.916 0.893 0.999 0.999 0.997 19.4 8.68 9.8
frontiers
TABLE 4 Model evaluation on validation sets of BraTS2019, BraTS2020 and BraTS2021.

data set
Dice Sensitivity Specificity Haus95

ET WT TC ET WT TC ET WT TC ET WT TC

2019 0.716 0.785 0.778 0.793 0.837 0.773 0.999 0.997 0.999 28.9 17.52 20.6

2020 0.752 0.879 0.817 0.778 0.871 0.812 0.996 1.000 0.999 29.7 14.78 13.8

2021 0.759 0.803 0.819 0.812 0.846 0.794 0.999 0.999 0.999 20.5 11.65 19.2
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well-established statistical technique that prevents overfitting and

ensures an unbiased evaluation of the model’s application to unseen

data. Table 5 provides a numerical representation of the study

results, suggesting the prospective competence of our model when

applied to clinical datasets. This has implications for real-world

healthcare implementations, suggesting a potential shift in the use

of AI-driven solutions in practical settings.

Figure 9 also provides a visual representation of the model’s

performance on the BraTS_FAHZU dataset, specifically with

respect to brain tumor segmentation. The accuracy indicated by

these results underscores the potential for the use of our model in

clinical contexts, and highlights its validity in future diagnostic and

treatment scenarios.
6 Discussion

In our study, we have carefully evaluated our proposed

continuous learning network, a novel segmentation method,

across three consecutive years of the Brain Tumor Segmentation
Frontiers in Oncology 12
(BraTS) challenge datasets-BraTS2019, BraTS2020, and BraTS2021.

Our results, detailed in Table 6 for the BraTS2019 dataset, highlight

the proposed network’s dice score of 0.716 for enhancing tumors,

which illustrates its strong ability to capture the intricate details of

tumor morphology, although it does not surpass the performance of

Minh et al. and Zhao et al. For whole tumor segmentation, our score

of 0.785 indicates its ability to comprehensively delineate the tumor,

which is crucial for guiding clinical interventions, although it does

not achieve the highest score. In addition, the accuracy of our model

for tumor core segmentation is demonstrated by a score of 0.778,

indicating our model’s ability to distinguish the tumor core from

surrounding tissue.

The BraTS2020 dataset, as summarized in Table 7, further

contextualizes the performance of our model. With a score of

0.752, our model demonstrates improvements in the

segmentation of enhancing tumor regions compared to

Tarasiewicz et al. Although our model lags slightly behind the

scores of Su et al. and Wang et al., it maintains a competitive stance.

For whole tumor segmentation, our model achieves a score of 0.879,

reflecting its robustness and validating its usefulness in clinical
FIGURE 7

Qualitative performance results on the BraTS2019, BraTS2020 and BraTS2021 training datasets.
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applications. Remarkably, our model’s dice score of 0.817 for tumor

core segmentation outperforms several established models,

r e i n f o r c i ng i t s a c cu r a cy and po t en t i a l impac t on

treatment decisions.

Continuing this trend, the performance of our model on the

BraTS2021 dataset is summarized in Table 8. Here, the proposed

model achieves a dice score of 0.759, significantly outperforming

the BraTS_Sg21 team and closely matching the @dgoon team. This

underscores the refined ability of our model to accurately delineate
Frontiers in Oncology 13
enhancing tumor regions. For whole tumor segmentation, the

model scores 0.803, placing it just below the top models and

reinforcing its consistent performance. The score of 0.819 is

particularly noteworthy, as it not only outperforms many

established methods, but also underscores our model’s precision

in isolating the tumor core, a critical region for prognostic and

therapeutic considerations.

In each iteration of the BraTS challenge, our model has

demonstrated an impressive balance across all metrics,
FIGURE 8

Performance evaluation on validation data sets from BraTS2019, BraTS2020 and BraTS2021.
TABLE 5 Quantitative results of the proposed continuous learning network on the BraTS_FAHZU private dataset.

Dice Sensitivity Specificity Haus95

ET WT TC ET WT TC ET WT TC ET WT TC

0.821 0.847 0.872 0.853 0.919 0.867 0.996 0.999 0.998 20.6 9.79 15.7
frontiers
in.org

https://doi.org/10.3389/fonc.2023.1247603
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1247603
highlighting not only its consistency but also its evolution in

performance. The network’s continuous learning framework

ensures that our model adapts and potentially refines its

segmentation capabilities with each dataset, which is critical for
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real-world clinical use. This sustained high level of performance

across diverse and complex datasets illustrates the potential of the

proposed network to serve as a reliable and efficient tool in the

nuanced field of medical image segmentation.

The results of our study have significant implications for clinical

practice in brain tumor management. The improved segmentation

accuracy of our model promises to improve surgical planning and

treatment strategies by providing more precise tumor delineation.

This accuracy is critical for tailoring treatments to individual

patients and could lead to better surgical outcomes by enabling

more effective removal of tumors while sparing healthy tissue. In

addition, the model’s high sensitivity in detecting small tumor

regions can aid in early diagnosis, potentially improving

treatment success rates and patient survival. The pseudo-labeling

strategy using unannotated data provides a solution to the limited

availability of annotated medical images, making the model

particularly valuable in resource-constrained clinical settings.

Finally, the robust performance of our model on diverse datasets

suggests its applicability to different MRI scanners and protocols,

underscoring its potential for widespread clinical adoption. Our
FIGURE 9

Model performance on the private dataset BraTS_FAHZU.
TABLE 6 Results comparison with other methods on the BraTS2019
validation dataset.

Method Dice_ET Dice_WT Dice_TC

Hamghalam et al. (26) 0.725 0.897 0.795

Minh et al. (27) 0.784 0.903 0.811

Kim et al. (28) 0.672 0.876 0.764

Zhao et al. (29) 0.754 0.910 0.835

Amian et al. (30) 0.710 0.860 0.770

Cheng et al. (31) 0.777 0.902 0.824

Islam et al. (32) 0.704 0.898 0.792

Proposed 0.716 0.785 0.778
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research thus paves the way for more precise, personalized medical

care in oncology, with the possibility of integrating this technology

into existing medical imaging systems to improve patient outcomes.

Despite the advances our study offers in brain tumor

segmentation using MRI images, it’s important to recognize its

limitations. One notable limitation is the potential for dataset bias.

The training and evaluation of our model, which was performed on

datasets including BraTS2019, BraTS2020, BraTS2021, and a

private dataset, may not fully capture the diversity of the global

population, potentially affecting its generalizability. In addition,

methodological biases inherent in our multiscale spatial

distillation and pseudo-labeling strategies could affect the model’s

performance, particularly when dealing with less common or

atypical tumor types. This raises concerns about the adaptability

of the model to a wide range of clinical scenarios. Furthermore,

while our model addresses catastrophic forgetting, the delicate

balance between retaining prior knowledge and adapting to new

data may not always be optimal, which could affect overall

performance. In addition, the computational requirements of our

deep learning framework may pose a challenge in resource-

constrained clinical settings.
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7 Conclusion

In this study, we present a significant advance in brain tumor

segmentation using multimodal MRI data through a novel

continuous learning framework that combines multi-scale spatial

distillation and pseudo-labeling strategies. Our approach addresses

critical challenges such as unbalanced data categories and

catastrophic forgetting, which are common in traditional

segmentation models. The integration of the ResNet18 and

DeepLabV3+ architectures not only improve feature extraction,

but also optimizes model size, leading to increased accuracy and

efficiency in tumor segmentation. These technical achievements

have significant implications for improving the accuracy of brain

tumor diagnosis and treatment planning, thereby impacting patient

care. Our study of brain tumor segmentation from MRI images

paves the way for several focused research directions. Future efforts

should focus on increasing the diversity of datasets to cover a wider

range of demographics and tumor types, thereby improving the

generalizability of segmentation models. Exploration of innovative

deep learning methods and optimization of continuous learning

models are critical to address the dynamic nature of tumor

characteristics. Integrating these models with clinical decision

support tools can significantly impact diagnosis and treatment

planning. In addition, developing computationally efficient

models is essential, especially for resource-limited settings, while

ensuring ethical and regulatory compliance in the application of AI

in healthcare. Together, these areas provide a pathway for

advancing the field of medical imaging and patient care.
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