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The SLC3A2 gene encodes for a cell-surface transmembrane protein CD98hc

(4F2). CD98hc serves as a chaperone for LAT1 (SLC7A5), LAT2 (SLC7A8), y+LAT1

(SLC7A7), y+LAT2 (SLC7A6), xCT (SLC7A11) and Asc1 (SLC7A10) providing their

recruitment to the plasma membrane. Together with the light subunits, it

constitutes heterodimeric transmembrane amino acid transporters. CD98hc

interacts with other surface molecules, such as extracellular matrix

metalloproteinase inducer CD147 (EMMPRIN) and adhesion receptors

integrins, and regulates glucose uptake. In this way, CD98hc connects the

signaling pathways sustaining cell proliferation and migration, biosynthesis and

antioxidant defense, energy production, and stem cell properties. This

multifaceted role makes CD98hc one of the critical regulators of tumor

growth, therapy resistance, and metastases. Indeed, the high expression levels

of CD98hc were confirmed in various tumor tissues, including head and neck

squamous cell carcinoma, glioblastoma, colon adenocarcinoma, pancreatic

ductal adenocarcinoma, and others. A high expression of CD98hc has been

linked to clinical prognosis and response to chemo- and radiotherapy in several

types of cancer. In this mini-review, we discuss the physiological functions of

CD98hc, its role in regulating tumor stemness, metastases, and therapy

resistance, and the clinical significance of CD98hc as a tumor marker and

therapeutic target.
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1 Introduction

CD98 heavy chain (CD98hc, or 4F2, 4F2HC, 4T2HC, CD98,

CD98HC, MDU1, NACAE) is a type II transmembrane

glycoprotein identified in activated lymphocytes (1). It is encoded

by the solute carrier family 3 member 2 (SLC3A2) gene in humans.

The gene is mapped to the 11q12.3 chromosomal region, and

encodes 4 transcript splice variants (according to the RefSeq

database). Full-length CD98hc is a glycosylated type II

transmembrane protein consisting of 630 amino acid residues (as

for the transcript variant 3, NM_002394) and composed of four

structural regions: intracellular N-tail (100 - 184 amino acid

residues), single transmembrane domain (mapped within 185-205

amino acid residues), domain linker and glycosylated extracellular

domain including 206-630 amino acid residues (2). CD98hc serves

as a chaperone for six amino acid transporters, providing their

recruitment to the plasma membrane. In particular, CD98hc binds

with one of the light chains (L-type amino acid transporter 1

(LAT1), LAT2, y+LAT1, y+LAT2, cystine/glutamate antiporter

(xCT) and Asc-type amino acid transporter 1 (Asc1) through

disulfide bond and electrostatic interactions to form CD98

protein (2–5). In addition, CD98hc modulates intracellular

signaling by its direct physical association with cell adhesion

receptor integrin b1 (6), or glycoprotein CD147, an essential

regulator of lactate and pyruvate transport (7), and regulates

glucose uptake (8) that makes CD98hc a multifunctional hub

protein. Indeed, lack of CD98hc triggers amino acid and glucose

uptake inhibition, glycolysis suppression, decrease in the

intracellular levels of nucleotides through the defective pentose

phosphate pathway (PPP), oxidative stress, and cell cycle arrest (9–

11). Overexpression of CD98hc drives malignant transformation

(12, 13) and is associated with progression in different human

malignancies. CD98hc and CD98hc binding partners are critical in

regulating cancer cell functional properties (Table 1). A high

expression of CD98hc has been related to the histopathological

features and clinical prognosis in patients with many solid cancers,

such as head and neck squamous cell carcinoma (HNSCC), glioma,

colon adenocarcinoma, pancreatic ductal adenocarcinoma (PDAC),

non-small cell lung cancer (NSCLC) and breast cancer (18, 35–41),

and tumor response to conventional therapies, such as chemo- and

radiotherapy (11, 42, 43). Thus, CD98hc plays a vital role in both

physiological and pathological conditions. This mini-review

discusses the role of CD98hc in regulating tumor growth,

metastasis, and therapy response. We also highlight the clinical

significance of CD98hc as a marker of tumor progression and

therapy resistance and a promising therapeutic target to enhance

the efficacy of conventional anti-cancer therapy.
2 Biological functions and signaling
mechanisms mediated by CD98hc

Targeted disruption of the CD98hc gene and analysis of the

chimeric mice models demonstrated that CD98hc contributes to

embryogenesis. During the early stage of embryonic development,
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embryos that lack CD98hc die shortly after implantation due to

defective integrin signaling (44, 45), whereas the amino acid

transport regulated by CD98hc becoming indispensable for the

embryonic development at later stages (44). Embryonic stem (ES)

cell lines without CD98hc expression showed a low ability to spread

on fibronectin (FN) or laminin. CD98 expression enables FNmatrix

assembly through CD98hc–integrin interaction and consequent

activation of RhoA-mediating extracellular matrix contraction (46).

CD98hc is expressed in all human organs, especially in placenta,

bone marrow, kidney, lung, uterus, and thyroid tissues (47, 48)

(Figure 1A), and is essential for the proliferation, survival, and

functioning of different types of normal cells, including vascular

smooth muscle cells (50), central nervous system (51), skin (52),

dental cells (53), and other tissues (https://www.ncbi.nlm.nih.gov/

gene/6520). The reduction of CD98hc expression resembles age-

related skin alterations in mice models with tamoxifen-inducible

epidermis-specific CD98hc knockout. CD98hc deletion in basal

keratinocytes inhibits epidermal wound healing and hair growth

due to deficient epidermis regeneration by self-renewal,

keratinocyte proliferation, and migration. These effects are

mediated by defective c-Src/focal adhesion kinase (FAK) signaling,

persistent RhoA activation, and reactive oxygen species (ROS)

accumulation due to insufficient amino acid (AA) availability (52).

Indeed, two core functions of CD98 in different types of cells are

to assist in transporting AA into and out of cells and regulate

downstream signaling pathways, including extracellular regulated

protein kinase (ERK), phosphatidylinositol-3-kinase (PI3K), FAK,

Src, and Rho GTP, through its binding to the interacting partners,

such as CD147 or integrins (54, 55). CD98hc forms a complex with

integrin b1 or b3 subunits, and promotes anchorage independent cell

growth and integrin-mediated cell signaling such as phospho-FAK,

Akt and mitogen-activated protein kinase (MAPK)/extracellular

signal-regulated kinase (ERK) pathways (14, 56, 57). The

interaction between CD98hc and integrins is important for the

regulation of stemness, proliferation, cell survival, and cancer

transformation (14, 56, 57).

Heterodimerization of CD98hc with light subunits of the SLC7

family is essential for their trafficking, membrane topology, stability,

and transport activity (2, 58, 59), although CD98hc does not

directly contribute to the amino acid transport (2). CD98hc-

LAT1 (SLC7A5) and LAT2 (SLC7A8) are responsible for the

transport of neutral amino acids, such as tyrosine, phenylalanine,

leucine, cysteine, isoleucine, methionine, valine, tryptophan, as well

as histidine. (5, 60, 61). In addition, recent studies using cryo–

electron microscopy (cryo-EM) shed light on the structural features

defining the specificity of LAT2 toward small neutral amino acids

and glutamine (5). Another study based on the analysis of the cryo-

EM structure of CD98hc-LAT1 heterodimer revealed the presence

of four N-glycosylated Asn residues within the extracellular CD98hc

domain and confirmed that this glycosylation is not directly

involved in the formation of the CD98hc-LAT1 complex (2).

Instead, the recent finding suggested the role of this glycosylation

in regulating CD98hc stability and trafficking to the plasma

membrane and, consequently, LAT1 intracellular distribution and

function (62). In agreement with this observation, other studies also

demonstrated that knockout of CD98hc expression resulted in the
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TABLE 1 The exemplary studies of the roles of CD98hc and CD98hc binding partners in regulating the cancer cell functional properties.

Gene &
protein
ID

Functions Tumor entity Analysis References

SLC3A2
(CD98hc)

Cell proliferation,
viability, clonogenicity
and cell cycle

RCC Gene silencing, [3H] thymidine incorporation (14)

HNSCC Gene silencing, cell viability assay, colony formation assay (11, 15)

Osteosarcoma
Gene silencing, cell viability assay, cell cycle flow cytometry analysis,
colony formation assay

(16)

Lung adenocarcinoma
Overexpression of the SLC3A2-NRG1 fusion gene, cell viability assay,
colony formation assay

(17)

Tumor growth

RCC Gene silencing, xenograft murine tumors (14)

Skin squamous cell carcinoma
(SCC)

Genetically engineered mice K14-CreERT2, CD98hcfl/fl, chemical skin
carcinogenesis

(18)

Lung cancer
Overexpression of the SLC3A2-NRG1 fusion gene, xenograft murine
tumors

(17)

Migration, invasion

RCC
Gene silencing, cell adhesion and spreading on fibronectin, cell
transwell migration

(14)

Lung cancer
Overexpression of the SLC3A2-NRG1 fusion gene, cell transwell
migration

(17)

Oxidative stress,
Ferroptosis

HNSCC
Gene silencing, production of mitochondrial superoxide, lipid ROS
analysis, iron measurements

(15)

HNSCC Gene silencing, GSH/GSSG ratio, CM-H2DCFDA staining (11)

Lung cancer Gene silencing, lipid peroxidation assay (19)

Different cell lines Gene silencing, cell viability analysis in response to Erastin treatment (20)

Autophagy HNSCC
Gene silencing, Autophagy Green™ staining, Western blotting, PCR

analysis of autophagy gene activation
(11)

Apoptosis RCC Gene silencing, Annexin V/PI flow cytometry (14)

Radioresistance HNSCC Gene silencing, 2D and 3D clonogenic analyses (11)

SLC7A5
(LAT1)

Cell proliferation,
viability, clonogenicity
and cell cycle

Different cell lines
Gene silencing, chemical inhibition with JPH203, viable cell counting,
spheroid growth inhibition, colony formation assay

(21)

CRC Gene silencing, chemical therapy with oxaliplatin, cell viability assay (22)

Breast cancer Chemical inhibition with JPH203, cell viability assay (23)

Medulloblastoma
Chemical inhibition with JPH203, viable cell counting, spheroid growth
inhibition

(21)

Lung cancer Gene silencing, cell viability assays (24)

Cholangiocarcinoma
Chemical inhibition with JPH203, cell viability assay, cell cycle flow
cytometry analysis

(25)

T-cell lymphoblastic
lymphoma/T-cell acute
lymphoblastic leukemia

Chemical inhibition with JPH203, cell viability assays, BrdU
incorporation

(26)

Migration,
invasion,
metastasis

Lung cancer Gene silencing, scratch assay (24)

Medulloblastoma Chemical inhibition with JPH203 and scratch assay (21)

Tumor growth

Colon cancer Gene silencing, xenograft murine tumors (21)

Cholangiocarcinoma Chemical inhibition with JPH203, xenograft murine tumors (25)

T-cell lymphoblastic
lymphoma/T-cell acute
lymphoblastic leukemia

Chemical inhibition with JPH203, xenograft murine tumors (26)

Apoptosis Cholangiocarcinoma (25)

(Continued)
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cytoplasmic localization of LAT1 (11, 63). CD98hc-LAT1 and

CD98hc-LAT2 mediated amino acid transport is necessary to

meet the energetic and nutritional demands, as evidenced by low

protein synthesis and proliferation rate in CD98hc knockout cells

(10). Furthermore, CD98hc-LAT1 and CD98hc-LAT2 mediate the

transport of the amino acid-derived thyroid hormones, mainly 3,3'–

diiodothyronine (3,3'-T2) (64), essential for energy metabolism and

developmental processes (65, 66). CD98hc-y+LAT1 (SLC7A7) and

CD98hc-y+LAT2 (SLC7A6) heterodimers play a role in the efflux of

cationic amino acids, such as arginine, lysine, and ornithine in

exchange for neutral amino acids and Na+ (67, 68). CD98hc-xCT

(SLC7A11) functions as a cystine/glutamate antiporter, which
Frontiers in Oncology 04
transports cystine into the cell in exchange for glutamate (69).

Cystine plays a critical role in cellular antioxidant defense and redox

balance by influencing the availability of cysteine, which is a

precursor for the synthesis of glutathione (GSH) (70). GSH, as

the primary intracellular antioxidant, contributes to neutralizing

ROS and protects cells from oxidative damage (70, 71). CD98hc-

Asc1 (SLC7A10) regulates the D-serine and glycine transport in the

central nervous system. Both D-serine and glycine serve as co-

agonists of the N-methyl-D-aspartate (NMDA) receptor (72).

Finally, CD98hc is reported to bind GLUT1 and prevent its

lysosomal degradation, thereby increasing glucose uptake (8)

(Figure 1B). Furthermore, studies using mass-spectrometry based
TABLE 1 Continued

Gene &
protein
ID

Functions Tumor entity Analysis References

Chemical inhibition with JPH203, western blotting for cleaved caspase
3

T-cell lymphoblastic
lymphoma/T-cell acute
lymphoblastic leukemia

Chemical inhibition with JPH203, Annexin V/DAPI flow cytometry (26)

Radioresistance HNSCC Gene silencing, clonogenic survival assay (11)

SLC7A11
(xCT)

Proliferation, Cell
viability, cell cycle

Prostate cancer Chemical inhibition with Erastin, colony formation assay (27)

RCC
Gene silencing and overexpression, cell viability assay and cell cycle
flow cytometry analysis

(28)

HNSCC Gene silencing, cell viability assay, colony formation assay (29)

Gastric cancer Gene silencing, viable cell counting (30)

Different cell lines
Chemical inhibition with Erastin, multi-cellular tumor spheroid growth
inhibition, cell viability assay

(31)

Migration,
invasion,
metastasis

Glioblastoma Chemical inhibition with sulfasalazine and scratch assay (32)

Gastric cancer Gene silencing, cell transwell migration (30)

Prostate cancer Chemical inhibition with Erastin, Matrigel drop invasion assay (27)

RCC
Gene silencing and overexpression, cell transwell migration and scratch
assay

(28)

HNSCC Gene silencing, cell transwell migration and scratch assay (29)

Tumor growth

Glioblastoma
Gene silencing and orthotopic tumor growth in xenograft murine
models

(32)

Prostate cancer
Chemical inhibition with Erastin, tumor growth in xenograft murine
models

(27)

Oxidative stress,
Ferroptosis

Gastric cancer
Chemical inhibition with Erastin, gene silencing and gene
overexpressing, lipid peroxidation assay

(30)

Prostate cancer Chemical inhibition with Erastin, CM-H2DCFDA staining (27)

Pancreatic ductal
adenocarcinoma (PDAC)

Gene silencing in the genetically engineered mice model KrasFSF.G12D/+;

Tp53R172H/+; Pdx1FlpOtg/+; Slc7a11Fl/Fl; Rosa26CreERT2/+
(33)

Melanoma
Gene silencing with or without SLC7A11 overexpression, tumor
radiosensitization in vitro and in xenograft murine models by inducing
lipid ROS production

(34)

Apoptosis HNSCC Gene silencing, Annexin V/PI flow cytometry (29)

Radioresistance Fibrosarcoma Gene silencing, clonogenic survival assay (34)
RCC, renal cell carcinoma; HNSCC, head and neck squamous cell carcinoma; CM-H2DCFDA, 5-(and-6) chloromethyl-2′,7′ dichlorodihydrofluorescein diacetate acetyl ester; CRC, colorectal
cancer; NRG1, neuregulin 1; PI, propidium iodide.
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identification of the protein-protein interaction demonstrated that

CD98hc interacts with PTPRJ, a receptor protein tyrosine

phosphatase regulating CD98hc proteasomal degradation (73),

and ASCT2 (SLC1A5) transporter mediating glutamine uptake

(74). The mass spectrometry analysis suggested that CD98hc,

CD147, monocarboxylate transporters (MCTs), and ASCT2 are

part of the cell surface protein complex regulating cell energy

metabolism and biosynthesis by the coordinated transport of
Frontiers in Oncology 05
amino acid and lactate (74). CD147 mediates the membrane

localization of CD98hc and the activation of the downstream

signaling mechanisms (75). CD147-CD98hc complex regulates

various cell functions contributing to cell proliferation (55),

metabolism (74), drug resistance (76), and cell aggregation (77)

and leading to the activation of several key signaling pathways such

as b-catenin (78), b1-integrin (75) and PI3K/AKT (55,

75) (Figure 2).
A B

FIGURE 1

(A) The median expression of SLC3A2 in tumor and normal tissue. The data are obtained using GEPIA 2 (49). (B) Schematic representation of the
CD98hc-related transport systems. CAA, cationic amino acids; CSSC, cystine; Gln, glutamine; Glu, glutamate; GSH, glutathione; NAA, neutral amino
acids; NEAA, non-essential amino acids; NMDA, N-methyl-D-aspartate receptor; TCA, tricarboxylic acid cycle; TH, thyroid hormones; TR, thyroid
hormone receptors; RXR, retinoid X receptor.
FIGURE 2

Ideograph of downstream pathways regulated by CD98hc and its partners. CD98hc-dependent pathways are critical for embryonic development
and normal cellular and tissue homeostasis, and their deregulation is associated with tumor growth, therapy resistance, and metastases. CD98hc,
CD98 heavy chain; Cys-S-S-Cys, cystine; FAK, focal adhesion kinase; ERK, extracellular signal-regulated kinase; GLUT1, glucose transporter type 1;
GSH, reduced glutathione; MEK, mitogen-activated protein kinase kinase; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinases;
PPP, pentose phosphate pathway; ROCK, Rho-associated protein kinase; ROS, reactive oxygen species; TAZ, transcriptional coactivator with PDZ-
binding motif; YAP, yes-associated protein 1. Created with BioRender.com.
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3 CD98hc as a regulation of immunity

CD98hc is an essential regulator of innate immunity and

adaptive immune responses, mediating the functions of T and B

lymphocytes and macrophages. In 1981, CD98hc was discovered as

a cell surface marker present on the activated human lymphocytes

and monocytes (1). The following findings revealed that CD98hc

regulates B cell proliferation, spreading, and formation of the

antibody-producing plasma cells through the integrin and

MAPK/ERK/p27 signaling mechanism (79). Furthermore, the

same team later demonstrated that the interaction of CD98hc

with integrins regulates T cell proliferation (80), whereas CD98hc

loss is associated with impaired antigen-driven T cell clonal

expansion in vivo and prevents autoimmune response in murine

modes of type I diabetes (80). Interestingly, inhibiting CD98hc on

monocytes using anti-CD98 monoclonal antibody was also shown

to suppress T cell proliferation (81). Anti-CD98hc antibody was

suggested as a possible approach to increase transplantation efficacy

since CD98hc deletion in T cells was associated with attenuated

lymphocyte migration, low proliferation in response to the

alloantigens, and poor allograft infiltration (82). On the other

hand, the presence of CD98hc is critical for the control of

immune tolerance. Blocking CD98hc and CD147 interaction leads

to the degradation of the Foxp3 protein, one of the key transcription

factors driving the differentiation and functions of regulatory T cells

(Treg). Consequently, Treg cell stability requires cell-cell contact

associated with CD98hc-CD147 interaction, sequestering of cyclin-

dependent kinase 2 (CDK2) from activation and Foxp3 stabilization

(83). Conditional deletion of CD98hc inhibits antigen-presenting

and phagocytic activities of macrophages and is associated with

decreased p130cas phosphorylation and impaired activation of

AKT, ERK, and c-Jun N-terminal kinase (JNK) after treatment

with macrophage colony-stimulating factor (M-CSF) and receptor

activator of nuclear factor kB ligand (RANKL), the inducers of

macrophage differentiation into osteoclasts. As a result, osteoclast

formation by peritoneal macrophages isolated from CD98hc-defect

mice was severely impaired (84). Nevertheless, CD98hc knockout

mice have normal trabecular bones, and the function of CD98hc for

in vivo osteoclast formation still needs to be clarified (84). CD98hc

and its binding partners integrin b1 and CD147 regulate the actin

cytoskeleton and affect monocyte adhesion by activating integrin-

mediated signaling (85). CD98hc also serves as a surface receptor to

mediate the internalization and trafficking of b-defensin 3 (hBD3), a
peptide regulating innate immune response (86). This finding could

potentially suggest that CD98hc/hBD2 interplay can play a role in

the innate immune surveillance of tumor cells (86, 87).
4 CD98hc as a pathogen entry protein

In 1992, CD98hc was described as a fusion regulatory protein

(FRP)-1 (gp80) regulating cell fusion upon Newcastle disease virus

(NDV) infection (88). Since then, CD98hc has been shown to

mediate many host-pathogen interactions (89). In particular,

CD98hc provides an entry by endocytosis for the vaccinia virus
Frontiers in Oncology 06
(VV) in different in vitro models, including mouse embryonic

fibroblasts (MEF) and human HeLa cells (90). CD98hc and VV

particles co-localize in plasma membrane lipid rafts of the host cells

upon infection, and genetic silencing of CD98hc expression reduced

virus entry (90). CD98hc was identified as one of the proteins

interacting with mouse norovirus-1 (MNV-1). The infection of

mouse macrophages by MNV-1 is reduced after CD98hc depletion

(91). Plasmodium vivax is a pathogenic protozoal parasite causing

human malaria through the invasion of reticulocytes (92).

Plasmodium vivax reticulocyte binding proteins (PvRBP) serve as

invasion ligands mediating reticulocyte invasion (92). A recent

study identified CD98hc as a reticulocyte-specific receptor for

PvRBP2a, providing an additional route for Plasmodium vivax

infection (93). Upon Herpes simplex virus 1 (HSV-1) infection,

CD98hc and b1 integrin interact with HSV-1 proteins and mediate

nucleocytoplasmic transport of perinuclear virions to release viral

nucleocapsids into the cytosol (94, 95). CD98hc is also suggested to

regulate viral gene expression upon Kaposi’s sarcoma-associated

herpesvirus (KSHV) infection (96). Furthermore, CD98hc plays a

role in bacterial infection. In particular, CD98hc has been identified

as a binding partner for the VirB2 pilus protein of gram-negative

coccobacilli Brucella and is essential for bacterial uptake and

intracellular replication (97).
5 CD98hc as a promoter of tumor
growth and metastases

The high expression levels of CD98hc in tumors compared to

normal tissues could serve as indirect evidence for the contribution

of CD98hc in tumor development. Pan-cancer analysis showed that

CD98hc is highly expressed in many cancer types, including

HNSCC, glioblastoma, colon, lung, kidney, pancreatic cancer and

melanoma (Figure 3A). Indeed, there is a growing research interest

in the and melanoma oncogenic roles of CD98hc. Lose and gain

function studies showed CD98hc appears essential for tumor

initiation, progression, and metastatic development (12, 13, 18,

76, 99–104). Overexpression of CD98hc in fibroblasts inhibits

apoptosis, drives malignant transformation, and induces tumor

formation in immunodeficient mice (12, 13, 105). CD98hc boosts

cancer cell proliferation and tumor growth by transporting amino

acids (10, 11), augmenting the integrin signaling (18, 54), and

activation of the mTOR (11, 15, 17), PI3K/AKT (16) and MAPK

signaling pathways (104, 106). CD98hc is essential for sustaining

glucose uptake, glycolysis, and pentose phosphate pathway (PPP)

(8, 10), fueling the Krebs cycle (11) and therefore maintaining cell

energy metabolism. CD98hc also promotes the cell cycle by

providing raw materials for nucleotide synthesis (10).

Furthermore, CD98hc is essential for sensing the extracellular

matrix (ECM) stiffness and tumor cell migration and invasion. The

ECM is made up of fibrous proteins such as collagens, elastin, and

glycoproteins, including fibronectin, proteoglycans, and laminin

(107). ECM is dynamically regulated in normal and disease

conditions (108). Exposure of human bronchial epithelial cells to

the diesel exhaust particle (DEP) extract induced expression of
frontiersin.org
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CD98hc and upregulation of mRNA levels of matrix

meta l loprote inase (MMP)-2 (109) , a z inc-dependent

endopeptidase mediating the degradation of ECM components

and tumor cell invasion (110, 111). Consistently, silencing of

CD98hc reduced the levels of MMP2 (109). Integrins mediate the

communication between ECM and cancer cells through binding to

ECM proteins, such as FN and vitronectin (VN) (112). CD98hc

promotes tumorigenesis by interacting with integrins b1 and b3 and
activating adhesive signals, such as focal adhesion kinase (FAK)

regulating actin cytoskeleton dynamics. Acquisition of the

aggressive tumor characteristics in clear cell renal cancer (ccRCC)

cells is attributed to the CD98hc-integrin binding, whereas silencing

of CD98hc decreases tumor cell spreading, migration and

proli ferat ion, and tumor growth in vivo (14) . CD98

overexpression in the intestinal epithelial cell is associated with

activation of the MEK/ERK signaling, increases levels of

proinflammatory cytokines, and leads to tumorigenesis (113).

Furthermore, a recent study demonstrated that CD98hc promotes

colon cancer metastases through the crosstalk of tumor cells and

tumor-associated neutrophils (TANs) (106). In particular,

colorectal cancer cells secret transforming growth factor beta1

(TGF-b1) to induce neutrophils to become anterior gradient-2

(AGR2) positive TANs (92). TANs secrete AGR2 in the tumor

microenvironment. CD98hc, expressed in colorectal cancer (CRC)
Frontiers in Oncology 07
cells, is the functional receptor for secreted AGR2 and physically

interacts with AGR2 via its extracellular region. CD98hc-AGR2

binding leads to increased xCT activity and intracellular level of

reduced GSH and promotes CRC liver metastasis through MAPK/

ERK and RhoA/Rho-associated protein kinase 2 (ROCK2) pathway

(106). The high levels of CD98hc expression in metastatic tissues

compared to primary tumors have been found in different types of

solid cancers (114, 115), and CD98hc expression in primary tumors

is associated with increased metastatic development in HNSCC (43,

116), breast cancer (36), and gastric cancer (117). CD98hc mediates

integrin-driven mechanotransduction. Furthermore, CD98hc

increases the stiffness of the tumor microenvironment by

activation of the actin-Rho/Rho-associated protein kinase

(ROCK) and YAP/TAZ signaling, resulting in changes in collagen

and fibronectin organizat ion (18) . Integrin-mediated

mechanotransduction plays a role in Ras-induced development of

skin squamous cell carcinoma, and conditional knockout of

CD98hc expression in epidermis inhibited chemical skin

carcinogenesis mediated by 7,12-dimethylbenz(a)anthracene

(DMBA)-induced oncogenic Ras mutations. These findings

suggest that CD98hc mediates Ras-induced tumor growth (18). A

fusion of CD98hc with other oncogenes affects its functions and

pathophysiological role. More than 20% of patients with invasive

mucinous adenocarcinoma of the lung were found to have a fusion
A

B D

C

FIGURE 3

(A) The SLC3A2 gene expression in tumor samples and normal tissues. The data are obtained using GEPIA 2 (49) based on The Cancer Genome Atlas
(TCGA) and the Genotype-Tissue Expression (GTEx) datasets. TCGA Study Abbreviations: LAML, Acute Myeloid Leukemia; ACC, Adrenocortical
carcinoma; BLCA, Bladder Urothelial Carcinoma; LGG, Brain Lower Grade Glioma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell
carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; ESCA:Esophageal carcinoma; GBM:
Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC:Kidney renal clear cell carcinoma;
KIRP:Kidney renal papillary cell carcinoma; LIHC, Liver hepatocellular carcinoma; LUAD:Lung adenocarcinoma; LUSC:Lung squamous cell
carcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic
adenocarcinoma; PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; READ:Rectum adenocarcinoma; SARC:Sarcoma;
SKCM, Skin Cutaneous Melanoma; STAD, Stomach adenocarcinoma; TGCT:Testicular Germ Cell Tumors; THYM, Thymoma; THCA, Thyroid
carcinoma; UCEC, Uterine Corpus Endometrial Carcinoma; TPM, transcripts per million. (B, C) The association between SLC3A2 gene expression and
prognosis profile, including overall survival (B), disease-free survival (C), and progression-free survival (D) across different tumor entities. The data are
obtained using the GSCALite platform (98) based on The Cancer Genome Atlas (TCGA) data.
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of CD98hc and a driver oncogene protein Neuregulin 1 (NRG1).

CD98hc-NRG1 fusion promotes the proliferation, invasion,

migration, and tumor growth of lung cancer cells via the

upregulation of PI3K/AKT/mTOR and FAK-Src pathways (97).

Furthermore, patients with CD98hc-NRG1 fusions showed

significantly lower overall survival and disease-free survival

compared to those without gene fusion (17). All these findings

indicate that CD98hc regulates cancer cell proliferation and

migration via modeling the tumor microenvironment and directly

activating the signaling cascades in tumor cells.

One of the tumor hallmarks is metabolic rewiring induced by

oncogenic mutations and epigenetic changes. This metabolic

reprogramming is often associated with upregulation of ROS

levels. Amino acid uptake mediated by CD98hc plays a role in

tumor cell protection against oxidative stress (71). In particular,

CD98hc is essential to prevent ferroptosis, a form of regulated cell

death characterized by the accumulation of lipid peroxides and

iron-dependent ROS in cells (118). It is emerging as an essential

process in cancer biology, with implications for both cancer

development and therapy (31). For example, one of the promising

anti-cancer therapeutic strategies via ferroptosis induction is the

inhibition of glutathione peroxidase 4 (GPX4), an enzyme

catalyzing the peroxide reduction at the expense of GSH and

therefore preventing cells from ferroptosis (119). Cystine

transporter system Xc- composed of catalytic subunit xCT/

SLC7A11 and chaperone subunit CD98hc transfers extracellular

cystine into cells and converts it into cysteine, which is then used to

synthesize GSH, a crucial ROS scavenger and cofactor of GPX4 to

reduce peroxides to corresponding alcohol molecules (120). As a

key component of system Xc-, CD98hc has been shown to be a

ferroptosis mediator in HNSCC, lung, and prostate cancer (15, 19,

27). Of interest, exosomes of the hepatitis B virus (HBV)-positive

hepatocellular carcinoma (HCC) cells induce ferroptosis in tumor-

suppressing M1-type macrophages by inhibiting CD98hc

expression through exosomal miR-142-3p (121). This finding can

explain a depletion of M1-type macrophages in HBV+ HCC tissues

(121). Inhibition or downregulation of SLC7A11 (xCT) leads to

reduced cystine uptake, resulting in low intracellular GSH levels,

accumulation of ROS, and increased susceptibility to ferroptosis

(122). Blocking SLC7A11 (xCT) by a small molecule compound,

erastin, induces ferroptosis in cancer cells (27, 30, 123). All this

evidence indicates that CD98hc and CD98hc-related amino acid

transporters play a vital role in fast-growing tumor cells

by regulating energy metabolism, biosynthesis, and key

oncogenic pathways.
6 CD98hc and CD98hc-related amino
acid transporters as potential markers
and regulators of cancer stem cells

Cancer stem cells (CSCs) are a population of cancer cells

defined by their ability to self-renew and differentiate. CSCs give

rise to tumorigenic and non-tumorigenic cell populations and

maintain tumor growth (124–126). Cancer cell plasticity
Frontiers in Oncology 08
represents a significant challenge for target CSCs (127). However,

if CSCs are not eradicated during the course of treatment along with

non-CSC populations, they might lead to tumor recurrence (128).

The subpopulations of CSCs are responsible for tumor cell

dissemination and metastatic growth (129). Some CSC

populations are also proven to be resistant to the conventional

treatment (128, 130, 131). CSC markers were related to the poor

clinical prognosis in different types of cancer (124, 128, 132, 133).

CD98hc and CD98hc-binding proteins, such as SLC7A5 and

SLC7A11, have been characterized as putative CSC markers for

several malignancies (134–138) (Table 2). These studies mainly

used spherogenicity assays in vitro and CSC-related gene expression

analyses to assess the CSC phenotypes, and only some of them

employed tumor transplantation assay, a “gold standard” approach

for characterizing CSC populations (142). In particular, Martens-de

Kemp et al. used limiting dilution analysis and serial transplantation

of CD98high and CD98low HNSCC cells to demonstrate that

CD98high cells are self-renewing population, and CD98high cell–

derived tumors histologically recapitulate the parental tumor tissues

(135). Bajaj et al. demonstrated that CD98hc promotes acute

myelogenous leukemia (AML) propagation in mice models of

disease by maintaining leukemic stem cells through the integrin

signaling pathway, and genetic loss of CD98hc or antibody-

mediated CD98hc blockage impairs in vivo AML propagation

(56). CD98hc increases the incidences of intestinal tumors in

mice bearing a mutation in Apc tumor suppressor (113) and in a

murine model of colitis-associated CRC (102). On the other hand,

the study by Huang et al. based on the transcriptome analysis

suggested that CD98hc suppresses CSCs in human cervical

carcinoma HeLa cells grown in 3D culture (143). The role of

xCT/SLC7A11 in regulating CSCs and its potential targeting is

also an actively investigated topic. Immunotargeting of xCT using

DNA-based vaccination of mice bearing syngeneic breast tumors

inhibits the growth of primary tumors and prevents metastasis

formation (138). It was suggested that xCT plays a role in the

maintenance of breast CSC cells by regulating GSH production and

intracellular redox balance (138). Breast CSCs were found to secrete

DKK1 (Dickkopf WNT Signaling Pathway Inhibitor 1), which

activates xCT expression in the metastatic cells, protecting them

from ferroptosis and increasing metastatic colonization in murine

models (139). Similarly, inhibition of xCT by chemical inhibitor

erastin targets colorectal CSCs in vitro and in vivo and attenuates

their chemoresistance by elevating ROS levels and inducing

ferroptosis (140). Stem cell surface marker CD44v6 induces GSH

synthesis by stabilizing the xCT expression, thereby reducing the

ROS level and promoting drug resistance of cancer cells (144). In

triple-negative breast cancer, chemotherapy induces xCT

expression and GSH synthesis in a hypoxia-inducible factor (HIF-

1)–dependent manner. Increased levels of intracellular GSH induce

nuclear translocation of FoxO3a transcription factor and trigger

expression of pluripotency factor Nanog. Consequently, Nanog

regulates the expression of other pluripotency factors, such as

Oct4 and Sox2, and drives tumor cell reprogramming and CSC

enrichment (145). Of interest, the Sox2 transcription factor directly

binds to the xCT gene promoter, and Sox2-mediated xCT

upregulation protects lung CSCs from ferroptosis (146).
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Inhibition of xCT with chemical drug sulfasalazine induces

apoptosis in CD44v-positive HNSCC cells in murine xenograft

models and sensitizes tumor cells to the epidermal growth factor

receptor (EGFR)-targeted therapy with cetuximab (147). Thus,

based on the current literature (Table 2), CD98hc and related

amino acid transporters are potential markers for CSCs.

Nevertheless, more evidence from the preclinical animal models

and patient-derived tissues is warranted to prove that CD98hc and

CD98hc-related amino acid transporters serve as markers and

regulators of CSCs in different tumor entities.
7 Clinical significance of CD98hc and
CD98hc-associated proteins as
potential prognostic markers and
therapeutic targets

CD98hc as an oncogene has been correlated with the poor

clinical prognosis of patients with different types of cancer (37, 38,

117, 148–154). Elevated CD98hc expression was identified as a

prognostic marker for predicting a worse prognosis in patients with

pulmonary pleomorphic carcinoma (PPC) (148), biliary tract

cancer (149), gastric cancer (117), breast cancer (151), CRC (154),

HNSCC (37, 152, 153) and pancreatic cancer (39) (Table 3). Our

previous study also showed that high expression of CD98hc and

LAT1 are associated with poor prognoses in patients with HNSCC

treated with primary radiochemotherapy (RCTx) or postoperative

radiochemotherapy (PORT-C) (11, 43, 116). On the contrary, low

CD98hc expression is an independent factor for predicting poor
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overall survival (OS) and progression-free survival (PFS) for

patients with cutaneous angiosarcoma (CA) (156), although the

small sample size is a limitation of this study since CA is a rare

malignant tumor. Pan-cancer analysis revealed that CD98hc

expression is an independent hazard factor for most cancer types

(Figures 3B–D).

CD98hc is a potential target to improve the therapeutic effect of

conventional therapies (157–160). We have demonstrated that

CD98hc-associated signaling mechanisms, such as mTOR

pathway activation, amino acid metabolism, oxidative stress, and

DNA repair, play a central role in regulating HNSCC

radioresistance (11, 160). Analysis of the expression of geneset

associated with T- and B-cell activation in HNSCC revealed that it

negatively correlates with SLC3A2 (CD98hc) expression, and

therefore, CD98hc could be potentially associated with tumor

immune evasion (157). Thus, strategies harnessing the immune

system could be critical for the treatment of immunologic “cold”

tumors with high CD98hc expression. A recent study from our

group confirmed that CD98hc-redirected UniCAR T cells destroy

radioresistant HNSCC spheroids (157). Although immune cells,

including T cells, also express CD98hc, the expression level is

substantially lower than in tumor cells, and the elimination of

CD98hc tumor cells occurs before possible UniCAR T cell fratricide

(157, 158). Furthermore, CD98hc regulates breast cancer cell

sensitivity to anti-estrogen treatment. Co-expression of the

CD98hc/LAT1 complex correlates with endocrine therapy

resistance in patients with estrogen receptor (ER) positive/human

epidermal growth factor receptor-2 (HER2) negative breast cancer.

Depletion of both CD98hc and LAT1 mRNA upregulated the

sensitivity of breast tumor cells to a selective estrogen receptor
TABLE 2 CD98hc and its binding partners as cancer stem cell (CSC) markers and regulators (exemplary in vivo studies).

Gene
Tumor
entity

CSC analyses and models References

SLC3A2
(CD98hc)

HNSCC
Limiting dilution and serial transplantation assays in nude mice using subcutaneous injection of VU-SCC-OE cells
(CD98high and CD98low populations)

(135)

AML
Establishment of Cd98hcfl/fl;Rosa26-CreER+/+ murine AML cells where CD98 is lost after tamoxifen administration
and transplantation of these cells into congenic recipient mice; CD98 loss led to a significant increase in survival of
mice transplanted with cKit+ AML stem cells

(56)

Intestinal
tumors

CD98 overexpression in ApcMin/+ mice resulted in an increase in the incidence of small intestinal and colonic tumors (113)

CRC
CD98 overexpression in intestinal epithelial cells in transgenic mice increases colorectal tumorigenesis after treatment
with procarcinogen azoxymethane (AOM), followed by induction of chronic colitis by treatment with dextran sodium
sulfate (DSS)

(102)

SLC7A11
(xCT)

Breast cancer

Immunotargeting of xCT using DNA-based vaccination of mice bearing syngeneic breast tumors for inhibiting tumor
growth and metastases

(138)

Breast cancer stem cells secretomics; identifying DKK1 as a CSC-secreted protein inducing SLC7A11 expression; a
combination of erastin (xCT inhibitor) and gallocyanine (DKK1 inhibitor) for inhibiting experimental breast cancer
metastases of MDA-MB-231cells xenografted in nude mice

(139)

CRC HT-29 cells, in vivo treatment with xCT inhibitor erastin, in vivo limiting dilution analysis in nude mice (140)

SLC7A5
(LAT1)

Neuroblastoma SLC7A5 knockdown or overexpression in BE-2C and SK-N-SH cells, xenograft tumor growth in nude mice (141)

Glioblastoma
U87 and U251 cells, in vitro limiting dilution analysis of LAT1+ and LAT1- cells and xenograft tumor growth in nude
mice

(136)
AML, acure myelogenous leukemia; HNSCC, head and neck squamous cell carcinoma; DKK1, Dickkopf WNT Signaling Pathway Inhibitor 1.
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modulator tamoxifen (161). A cell polarity protein Scribble (SCRIB)

and CD98hc form a quaternary complex with a mammalian

homolog of Drosophila protein lethal giant larvae homolog 2

(LLGL2) and LAT1 to promote plasma membrane localization

and stabilizing the amino acid transporters and promote cell

proliferation and tamoxifen resistance in ER-positive breast

cancer cells. Downregulation of CD98hc expression sensitizes

tamoxifen-resistant breast cancer cells to tamoxifen under

nutrient stress conditions (162). These studies suggest that

CD98hc plays an essential role in endocrine therapy resistance.

Although the development of CD98hc as a therapeutic target is

mainly at the stage of preclinical laboratory research, accumulating

evidence shows the antitumor roles of CD98hc inhibition in a
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variety of cancer types (144, 145). Antibody-mediated CD98hc

blockade deteriorates cell proliferation and tumor growth both in

vitro and in vivo (56, 163, 164). Furthermore, immunotargeting of

the CD98hc binding partners LAT-1 and xCT also has strong

antitumor effects in the murine tumor models (138, 165). In

1986, Yagita et al. found that anti-CD98hc antibody specific for

the extracellular domain inhibits lymphocyte proliferation (166).

Later, Hayes et al. used in vivo phenotypic screening to identify anti-

CD98hc antibodies with the most potent antitumor properties in

vivo using different xenograft murine models for Burkitt’s

lymphoma, leukemia, and patient-derived lung tumors (163).

This study demonstrated that IGN523, a humanized monoclonal

antibody, possesses a strong antitumor effect in both hematopoietic
TABLE 3 Correlation of CD98hc expression with clinical outcomes in patients with malignant diseases (exemplary studies).

Tumor entity Analysis Treatment
Patient
number

Significant association with
clinical endpoints and
additional parameters

References

NSCLC with resectable N1
and N2 LN metastases

IHC SURG, SURG +RT, SURG +CT 220 Postoperative survival (38)

NSCLC IHC SURG 241
DFS; OS;
Co-expression with CD147;
TNM stage; tumor diameter

(55)

HPV-positive OPSCC IHC
SURG + RT, RT, CRT, RT +
LND + RT (brachytherapy)

711 OS; PFS (37)

HNSCC

IHC PORT-C, RCTx 197
LRC;
LAT1 expression

(11)

NanoString RNA
analyses

RCTx 158 LRC (43)

HNSCC, HPV16 DNA
negative

RT-PCR and
NanoString
technology

cisplatin-based PORT-C 195
LRC;
Distant metastases

(155)

Gastric cancer IHC SURG 331
OS; PFS; tumor stage; LN metastasis;
vascular invasion

(117)

Breast cancer (TNBC &
non-TNBC)

IHC SURG
78 (TNBC)
202 (non-
TNBC)

OS; DFS (36)

Invasive breast cancer
IHC, DNA/RNA
profiling

SURG, CT for ER-negative and
LN-positive patients

1858

DFS in TNBC;
DFS in ER+ high-proliferation tumors;
SLC7A5 expression;
SLC7A11 expression;
TP53 mutations;
ER− and PR− status;
High expression in TNBC;
high Ki67staining

(151)

CRC IHC SURG 147

OS; DFS;
T factor (T1-2/T3-4);
Lymphatic permeation;
Vascular invasion;
LAT1 expression;
Ki67 staining

(154)

PPC IHC SURG 105

OS; DFS;
T factor (T1-2/T3-4);
Pathological stage: I-II/III-IV;
LAT1 expression

(148)
CRC, colorectal cancer; CRT, chemoradiation; CT, chemotherapy; DFS, disease-free survival; ER, estrogen receptor; HNSCC, head and neck squamous cell carcinoma; HPV, human
papillomavirus; IHC, immunohistochemistry; LN, lymph nodes; LND, lymph node dissection; LRC, locoregional control; NSCLC, non-small-cell lung cancer; OPSCC, oropharyngeal squamous
cell carcinoma; PFS, progression-free survival; PORT-C, postoperative radio(chemo)therapy; PPC, pulmonary pleomorphic carcinoma; PR, progesterone receptor; RCTx, primary
radiochemotherapy; RT, radiotherapy; SURG, surgery, TNBC, triple-negative breast cancer; TNM, tumor (T), nodes (N), and metastases (M); OS, overall survival.
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malignancies and solid tumors. The molecular mechanisms of the

CD98hc-mediated antitumor activities include inhibition of the

CD98hc-dependent amino acid transport, induction of antibody-

dependent cellular cytotoxicity (ADCC), and increase in the

lysosomal permeability leading to cell death (163). It has been

evaluated in the early-phase clinical trial for acute myeloid leukemia

(NCT02040506). In clinical studies, IGN523 was well tolerated and

associated with modest antitumor activity as a single agent, whereas

complete or partial responses were not observed for the treated

individuals (167). Anti-CD98hc therapy can be potentially tested in

solid tumors in the future in combination with standard treatment.

Phase I study of another anti-CD98hc antibody, KHK2898

(NCT01516645), was carried out in patients with advanced solid

tumors who no longer respond to standard therapy. However, no

results were yet posted. A large screening of more than 10,000

monoclonal antibodies raised against multiple myeloma (MM)

identified R8H283 antibody specific for the glycosylated form of

CD98hc. R8H283 antibody does not bind CD98hc protein on

normal hematopoietic cells and possesses a strong anti-MM effect

in vitro and in vivo. The molecular mechanism of the R8H283-

mediated anti-MM activities was attributed to ADCC and

complement-dependent toxicity (164). A study by Tian et al.

screened a phage-display library of single-chain variable

fragments (scFvs) targeting CD98hc and identified anti-CD98hc

antibody with pH-dependent binding and improved antitumor

activity and pharmacokinetic properties in the experimental in

vivo models (168).

A Phase I study of JPH203, a LAT1 inhibitor (UMIN000016546),

in patients with advanced or refractory solid tumors demonstrated that

the drug was well tolerated at low doses and had promising anti-tumor

activity in patients with CRC and biliary tract cancer (BTC) (169). A

phase II study for patients with advanced BTC (UMIN000034080) will

provide more information on JPH203 safety and efficacy. Sulfasalazine

is a FDA-approved drug primarily used for the treatment of ulcerative

colitis (170) and rheumatoid arthritis (171). It also acts as an xCT
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inhibitor, reducing cystine uptake and glutathione synthesis (172).

Sulfasalazine treatment induces ROS production and synergizes with

radiation to increase DNA damage and death of glioblastoma cells in

vitro (172), inhibits tumor growth in murine models (32), and

sensitizes xenograft tumors to radiation (172). Sulfasalazine has been

investigated in preclinical and early-phase clinical trials for its safety,

drug–drug interactions, and potential anticancer effects for breast and

CD44v-positive gastric cancer (173, 174). The treatment of patients

with cisplatin refractory gastric cancer with sulfasalazine in

combination with cisplatin did not show sufficient antitumor efficacy

that could be partially explained by the metabolizing of the orally

administered drug in the intestines and, therefore, decreasing its

inhibitor potential, suggesting that alternative treatment route should

be considered in future studies (174). Another xCT inhibitor, sorafenib,

was initially approved by FDA in 2005 for the treatment of advanced

renal cell carcinoma (RCC). Since then, it has also been approved for

the treatment of hepatocellular carcinoma (HCC) and radio-iodine

resistant advanced differentiated thyroid carcinoma (175–177).

However, tumors often become drug resistant (178, 179). There are

no CD98hc-specific chemical inhibitors available. Based on the results

of in silico analysis by the Cancer Therapeutics Response Portal

(CTRP), CD98hc can be potentially susceptible to some repurposed

inhibitors, such as thioredoxin-1 (Trx-1) inhibitor PX-12, GPX-4

inhibitors ML162 and ML-210, inhibitor of GPX-4 and ferroptosis

activator (1S,3R)-RSL3, and PRIMA-1 (P53-dependent reactivation

and induction of massive apoptosis) compound (Figure 4).

Anti-CD98hc radiopharmaceuticals are a promising approach

for tumor imaging. Deuschle et al. have developed a high-affinity

Anticalin, an engineered protein molecule binding CD98hc with a

picomolar affinity for non-invasive biomedical imaging (180).

Furthermore, compared with existing tumor-specific positron

emission tomography (PET) probes, the LAT1-specific PET probe

improved specificity for the early-phase diagnostic application and

evaluation of tumor therapy response. LAT1-specific PET probe
18F-FIMP has been recently tested in clinics for patients with
FIGURE 4

Correlation between drug sensitivity and mRNA expression levels of CD98hc and its binding partners. The data are obtained using the GSCALite
platform (98) based on the Cancer Therapeutics Response Portal (CTRP). FDR, false discovery rate.
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glioblastoma and demonstrated higher specificity for tumors

compared to the 11C-MET and [18F]Fluorodeoxyglucose (18F-

FDG) based imaging (181, 182). All this evidence indicates that

CD98hc and its binding partners are particularly well-suited targets

for diagnostic evaluation and therapeutic intervention in cancers.
8 Future perspectives

An accumulating body of evidence has confirmed the

contribution of the CD98hc-mediated mechanisms in cancer

initiation and progression. The ongoing clinical studies aim to

validate the role of CD98hc as a marker of tumor diagnosis and

prognosis. Preclinical studies demonstrated that CD98hc is a

potent regulator of tumor cell proliferation, invasion, and

therapy resistance and a potential target for cancer treatment.

Immunotargeting CD98hc demonstrated promising results in

vitro and in vivo. Targeting the CD98hc-binding amino acid

transporters is also an additional treatment option, although its

antitumor efficacy could be challenged by the previously described

transporter plasticity and redundancy (183). Understanding the

mechanisms of CD98hc interplay with its partners, such as integrins

and CD147, is highly important, and targeting these mechanisms

could be another therapeutic option. Although CD98hc-positive

cells in HNSCC and oropharyngeal cancer have stem cell properties,

it is still a matter of debate whether CD98hc can serve as a marker of

CSCs and what its role in the regulation of the tumor self-renewal

and differentiation. More evidence from in vivo transplantation

assays and patient-derived tumor models would be needed to

address these questions. Nevertheless, the levels of CD98hc

expression were correlated with clinical outcomes for different

tumor entities, suggesting that tumor cells with high CD98hc

expression have survival advantages after conventional treatment

compared to their counterparts with low CD98hc expression. The

ongoing biological studies and further clinical trials for the
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combination of CD98hc-targeted treatment and conventional

therapy, including radiotherapy, might bring breakthroughs in the

laboratory research and clinical application of CD98hc in the

near future.
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Glossary

Asc1 Asc-type amino acid transporter 1

AGR2 anterior gradient-2

ASCT2 alanine serine cysteine transporter 2

CA cutaneous angiosarcoma

CDK2 cyclin-dependent kinase 2

CSC cancer stem cell

CRC colorectal cancer

ECM extracellular matrix

EpCAM epithelial cell adhesion molecule

ERK extracellular regulated protein kinase

ES embryonic stem cell

FAK focal adhesion kinase

FN fibronectin

FRP1 fusion regulation protein 1

JNK c-Jun N-terminal kinase

GSH glutathione

GPX4 glutathione peroxidase 4

HBV hepatitis B virus

HNSCC head and neck squamous cell carcinoma

HPV human papillomavirus

KSHV Kaposi’s sarcoma-associated herpesvirus

LAT1 L-type amino acid transporter 1

MAPK mitogen-activated protein kinase

M-CSF macrophage colony-stimulating factor

MCT monocarboxylate transporter

MEF mouse embryonic fibroblasts

MMP matrix metalloproteinases

MNV-1 mouse norovirus-1

NDV Newcastle disease virus

NRG1 Neuregulin 1

PI3K phosphatidylinositol-3-kinase

PAT positron emission tomography

PPP pentose phosphate pathway

PTPRJ protein tyrosine phosphatase receptor type J

PvRBP plasmodium vivax reticulocyte binding protein

RANKL receptor activator of nuclear factor kB ligand

ROCK Rho-associated protein kinase

ROS reactive oxygen species

(Continued)
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SLC3A2 solute carrier family 3 member 2

TANs tumor-associated neutrophils

TFR transferrin receptor

THs thyroid hormones

Tregs regulatory T cells, VV, vaccinia virus
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