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The ability of cancer stem cells (CSCs) to self-renew, differentiate, and generate

new tumors is a significant contributor to drug resistance, relapse, and

metastasis. Therefore, the targeting of CSCs for treatment is particularly

important. Recent studies have demonstrated that CSCs are more susceptible

to ferroptosis than non-CSCs, indicating that this could be an effective strategy

for treating tumors. Ferroptosis is a type of programmed cell death that results

from the accumulation of lipid peroxides caused by intracellular iron-mediated

processes. CSCs exhibit different molecular characteristics related to iron and

lipid metabolism. This study reviews the alterations in iron metabolism, lipid

peroxidation, and lipid peroxide scavenging in CSCs, their impact on ferroptosis,

and the regulatory mechanisms underlying iron metabolism and ferroptosis.

Potential treatment strategies and novel compounds targeting CSC by inducing

ferroptosis are also discussed.
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1 Introduction

Despite significant advancements in cancer prevention, diagnosis, and treatment in

recent years, the global cancer burden remains significant. Cancer treatment remains a

significant challenge, particularly addressing cancer progression, recurrence, drug

resistance, and metastasis, which are associated with poor prognosis (1). Ample evidence

indicates that cancer stem cells (CSCs) play a crucial role in these processes (2). The

presence of a small fraction of CSCs in tumor tissue, which have the ability to self-renew,

differentiate, and generate new tumors, is the termed the CSC hypothesis (3).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1251561/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1251561/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1251561/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1251561&domain=pdf&date_stamp=2023-09-01
mailto:hshanzh@163.com
mailto:wdwxj@126.com
mailto:hbh1000@126.com
https://doi.org/10.3389/fonc.2023.1251561
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1251561
https://www.frontiersin.org/journals/oncology


Wang et al. 10.3389/fonc.2023.1251561
1.1 Cancer stem cell hypothesis

Although the true mechanisms of tumorigenesis are still not fully

understood, the cancer stem cell hypothesis is well suited to explain

tumor progression, drug resistance, metastasis, and recurrence and

continues to be supported by experimental results and clinical

phenomena. First, CSCs are often associated with poor prognosis.

One study confirmed the high expression of biomarkers of CSCs was

strongly associated with significantly lower overall and/or disease-free

survival in patients with a variety of cancers in 82% of 234 reported

survival analyses (4), such as CD133 (5), CD44 (6), ALDH (4), OCT-4,

and Nanog (7). In addition, overexpression of ATP-binding box (ABC)

efflux transporters in CSCs promotes tumor resistance through a drug

efflux mechanism, resulting in chemotherapy failure (8). Secondly,

interactions between CSCs and their niche maintain self-renewal and

promote drug resistance, metastasis, and relapse. Many studies have

shown that CSCs visibly alter iron metabolism (9), lipid metabolism

(10), multiple cell signaling (11), tumor microenvironment (12, 13),

redox regulation (14, 15), epithelial-mesenchymal transformation

(EMT) (7, 16), and other aspects. In addition, due to their plasticity,

quiescent CSCs can transform into cycling CSCs, leading to metastasis

and relapse (17). Thirdly, quiescent CSCs may be the root cause of the

difficulty in eradicating tumors. Telomeres and telomerase are known to

play an important role in human aging and cancer, maintaining

genomic stability and being critical for cell proliferation (18). Using

simultaneous single-cell analysis of the tranome and telomeres,

researchers found that CSCs in the quiescent state have low

telomerase activity and short telomeres, low cell proliferation, but

higher stemness and can mutate into tumor epithelial cells that

express telomerase and acquire longer telomeres into a cell

proliferative state, which may be the underlying cause of tumor

recurrence and drug resistance (19).

Therefore, many experts believe that therapeutic strategies

targeting CSCs have great potential, and that there is a need to

investigate drugs that target CSCs to improve outcomes (20).

However, to date, no drugs targeting CSCs have been approved

for clinical use (11), and it may be combining these strategies or

drugs targeting CSCs with other antitumor treatments that could

lead to a better prognosis.
1.2 Ferroptosis is the hope for
tumor treatment

Ferroptosis is a form of iron-mediated programmed cell death (21,

22) caused by the disruption of cell membranes due to excessive

peroxidation of phospholipids containing polyunsaturated fatty acids

(PUFAs) and does not exhibit apoptotic features. In cells, the biological

activity of iron is mainly reflected in the electron transfer between

trivalent iron (Fe3+) and ferrous iron (Fe2+) in various physiological

reactions in which Fe2+ reacts non-enzymatically with H2O2 to produce

hydroxyl radicals that can oxidize PUFAs in the cell membrane; this is

also known as the Fenton reaction (23, 24). As the concentration of lipid

peroxides gradually increases, the stability of the cell membrane is

compromised, and ferroptosis occurs when the capacity of the

intracellular redox system to remove lipid peroxides is exceeded.
Frontiers in Oncology 02
Ferroptosis has gradually come into focus in tumor treatment

research. Although our understanding of ferroptosis is not yet

complete, as studies have accumulated, we have found that

ferroptosis is closely related to tumor progression, treatment, and

prognosis. The first is the predictive role of ferroptosis-associated

genes. By integrating the expression of ferroptosis genes in bladder

cancer patients from The Cancer Genome Atlas (TCGA) and the Gene

Expression Omnibus (GEO) databases with clinical data, one study

found that the expression levels of ferroptosis-related genes (SLC7A11,

GPX4, ACSL4, etc.) could be used to predict tumor progression and

prognosis (25). Secondly, ferroptosis affects drug sensitivity. Huang

et al. found that activation of the PI3K/AKT/NRF2 axis in sorafenib-

resistant advanced hepatocellular carcinoma cells significantly

upregulated ABCC5 expression, while stabilizing solute carrier family

7 member 11 (SLC7A11) protein and increasing intracellular

glutathione (GSH) content, thereby inhibiting ferroptosis (26).

Platinum resistance is more likely to develop in lung cancer brain

metastases through a mechanism that reduces ferroptosis by

upregulating glutathione peroxidase 4 (GPX4) expression and

inhibiting GSH depletion via the Wnt/NRF2/GPX4 axis (27).

Therefore, the inhibition of ferroptosis can reduce tumor sensitivity

to drugs and, hence, drug resistance. Similarly, the induction of

ferroptosis increases drug sensitivity. In studies on various tumors

such as head and neck cancer (28), pancreatic cancer (29),

hepatocellular carcinoma (30), and bladder cancer (31), the

induction of ferroptosis through mechanisms such as the regulation

of GSH metabolism, lipid metabolism, and redox was found to be an

effective strategy for overcoming drug resistance. Ferroptosis is an

effective therapeutic approach for targeting CSCs. There are in vivo and

in vitro studies demonstrating that MiR-375 can reduce the stemness of

gastric CSCs by targeting SLC7A11 to induce ferroptosis (32). Vitamin

D (33) and erastin (34) specifically inhibit SLC7A11 to induce

ferroptosis and suppress the proliferation and sphere-forming ability

of colorectal CSCs. Notably, colorectal CSCs have also been found to be

more sensitive to ferroptosis (34). Similar phenomena have been

observed in other tumors; glioma stem cells with high aldehyde

dehydrogenase isoform 1 (ALDH1) expression, which are highly

resistant to standard treatment regimens, are sensitive to ferroptosis

induced by the ferroptosis inducer RSL3, and their sensitivity increases

with the expression level of ALDH1 (35). These results suggest that the

induction of ferroptosis in CSCs or a combination of conventional

antitumor therapies is a promising therapeutic strategy for tumor

eradication. As mentioned earlier, the process of ferroptosis can be

summarized in three aspects: 1. An increase in the labile ferrous iron

content 2. accumulation of phospholipid peroxides; and 3. Inadequate

scavenging of lipid peroxides. This review summarizes the current

understanding of ferroptosis in CSCs by analyzing these three aspects.
2 Iron metabolism in CSCs

Iron is an essential component of the body that is required for cell

metabolism and proliferation, particularly in tumor cells. In contrast to

normal cells, rapidly proliferating tumor cells have altered iron levels

and the expression and function of iron metabolism-related proteins,

which in turn affect many physiological processes, including DNA
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synthesis and repair, cell cycle regulation, angiogenesis, metastasis,

tumor microenvironment, metabolic reprogramming, and epigenetic

regulation (23, 36). Iron metabolism plays a key role in tumor cell

survival, making it a popular topic in antitumor therapy research in

recent years. While tumor cells have high iron levels because of their

need for rapid proliferation (36), CSCs accumulate more iron than

non-CSCs, and iron metabolism affects iron homeostasis in CSCs in

terms of iron uptake, storage, and transport (24, 37).
2.1 Promote iron uptake in CSCs

Iron uptake by CSCs was significantly enhanced. On the one

hand, extracellular stable Fe3+ enters the cytoplasm by binding to

transferrin (TF) and then complexes with the transferrin receptor

(TFR), followed by endocytosis. Compared with non-CSCs,

endocytosis was significantly enhanced in CSCs. Researchers have

found through ‘iron tracer’ experiments that glioblastoma stem cells

can take up iron from the extracellular space more efficiently than

other tumor cells, and that two of the key links are TFR and ferritin

(37), and it is true that CSCs express higher levels of TFRs and

ferritin than other tumor cells. The same situation appears in

studies on iron metabolism in breast and ovarian CSCs. In these

two studies, CSCs were found to express higher levels of TFRs than

non-CSCs (38, 39), and high levels of intracellular iron were

consistent with high levels of TFR expression (39). In contrast,

CSCs increased iron uptake through CD44-mediated iron

endocytosis. In general, tumor cells tend to acquire stemness

during EMT. CD44-mediated endocytosis of iron-binding

hyaluronan has been observed in primary tumor cells, which have

an increased need for iron during EMT and increase iron uptake by

upregulating CD44-mediated endocytosis (40).

However, the CSCs did not promote iron uptake. CD133, a CSC

stemness marker, is a negative regulator of iron uptake and inhibits

TR-mediated iron endocytosis (41). As the researchers did not test

intracellular iron levels or other indicators of ferroptosis in their

experiments, the extent to which the inhibition of iron uptake by

CD133 affects intracellular iron levels and ferroptosis is unclear. We

suggest that the effects of stemness genes in CSCs on the positive and

negative regulatory mechanisms of iron uptake are not contradictory

and that CSCs may adopt regulatory mechanisms that are beneficial

to themselves at different times to maintain high levels and

homeostasis of intracellular iron, which is worth investigating.
2.2 Maintain homeostasis of the labile
iron pool

Extracellular Fe3+ enters the cytosol via endocytosis and is reduced

to Fe2+ by the six-transmembrane epithelial antigen of prostate 3

(STEAP3) in the acidic environment of the endosome. Divalent metal

transporter protein 1 (DMT1) releases ferrous iron from lysosomes

into the cytoplasm, where it joins the labile iron pool (LIP) (42). This

pathway, by which extracellular iron uptake occurs, affects homeostasis

of the labile iron pool. In a study on ferroptosis-related gene signatures
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associated with prognosis in neuroblastoma, STEAP3 was found to be

highly expressed (43), and increased STEAP3 activity undoubtedly

increased the amount of labile iron. Another study found that higher

levels of STEAP3 expression in gliomas were associated with worse

prognosis for patients and promoted the proliferation and self-renewal

of glioma stem cells (44). Similarly, the role of DMT1 is critical, it was

found that DMT1 inhibitors can lead to the accumulation of Fe2+ in

lysosomes, induce ferroptosis-like disruption of the lysosomal

membrane, release large amounts of Fe2+ into the cytoplasm, and kill

CSCs (45). Similarly, The expression of DMT1mRNA and protein was

significantly increased in aggressive glioblastoma cells treated with

temozolomide, which led to an increase in intracellular iron content

and induced ferroptosis (46). In ovarian cancer, high DMT1 expression

was associated with poor overall patient survival (47).

Although the effect of extracellular iron uptake on LIP for

intracellular stores, LIP homeostasis may be maintained by nuclear

receptor coactivator 4 (NCOA4)-mediated ferritin autophagy.

However, the function of NCOA4 in CSCs remains unclear.

Recently, tripartite motif-containing protein 7 (TRIM7) was

found to be highly expressed in human aggressive glioblastoma

cells and to inhibit ferritin autophagy, reduce Fe2+ levels in

glioblastoma cells, and suppress ferroptosis by ubiquitinating

NCOA4 (48). Similarly, the induction of ferritin autophagy

mediated by NCOA4 increases the sensitivity of aggressive

glioblastoma cells to ferroptosis (49). However, in a specific study,

researchers evaluated the effect of long-term moderate-intensity

static magnetic field (SMF) on osteosarcoma stem cells and found

that exposure to SMF-activated NCOA4, induced ferritin

autophagy, increased intracellular Fe2+ levels, and promoted the

self-renewal ability of osteosarcoma stem cells (50). Concerning

these inconsistent results, we hypothesize that NCOA4’s effect on

CSCs could rely on the base Fe2+ level in LIP, which is sustained

within certain limits. If the Fe2+ basal level in LIP reaches the upper

limit (critical state for triggering ferroptosis), increased NCOA4

expression could heighten the Fe2+ level, potentially stimulating

ferroptosis and inhibiting stemness. Conversely, if the Fe2+ basal

level in LIP is at the lower limit, up-regulating NCOA4 expression

could boost stemness by enhancing the Fe2+ level in LIP. We deem

our conjecture meriting further investigation.
2.3 Increased iron storage in CSCs

Excess intracellular iron is stored in ferritin, a type of ferritin

consisting of two protein subunits, a heavy chain (FtH) and a light

chain (FtL), which can store more than 4,000 iron atoms. Ferritin has

ferrous oxidase activity (51) and can oxidize Fe2+ to inert Fe3+ and bind

to it, thereby preventing the Fenton reaction. When Fe2+ levels in LIP

decrease, NCOA4 mediates ferritin phagocytosis, releasing Fe2+ into

the cytoplasm and maintaining LIP homeostasis (51).

High ferritin levels are closely associated with CSC stemness. The

cytokine oncostatin M (OSM) is highly expressed in breast CSCs and

increases ferritin levels in stem cells, whereas the knockdown of ferritin

expression impairs the ability of OSM to induce stemness (39).

Similarly, ferritin knockdown inhibits glioblastoma growth both in
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vitro and in vivo (37). Therefore, it has been suggested that intracellular

ferritin content is a key factor in ferroptosis susceptibility, with more

ferritin creating more Fe3+ stores and less Fe2+ in the LIP, resulting in

greater ferroptosis resistance (52), whereas low ferritin knockdown

releases more Fe2+ into the cell, resulting in ferroptosis susceptibility

(53). However, there is another possibility. More ferritin implies more

intracellular iron stores to meet the high iron demand of CSCs. No

tumor formation was observed in mice inoculated with ferritin-

knockdown glioblastoma cells (37). Furthermore, FtH can enter the

nucleus, participate in DNA synthesis (23), and is a rate-limiting

regulator of epigenetic plasticity (40). Therefore, FtH, with ferrous

oxidase activity, can prevent damage to the nuclear membrane by

reducing the level of Fe2+ in the nucleus during DNA synthesis. This is

because the nuclear membrane remains intact during ferroptosis (42).

Therefore, we speculate that the role of high ferritin expression in CSC

ferroptosis involves two aspects. First, it increases intracellular iron

reserves and plays an important role in maintaining high levels of

intracellular Fe2+, followed by maintaining nuclear membrane stability

by binding to Fe2+ in the nucleus.

However, another study contradicts this conclusion. Analysis of

public microarray databases for ovarian cancer showed that low

FtH expression is associated with poor prognosis. In subsequent

experiments, FtH knockdown promoted EMT, pellet formation,

and invasiveness of SKOV3 cells. Researchers found that FtH

knockdown led to changes in the expression of the miRNA

network, suggesting that ferritin may affect other pathways of

tumor progression in addition to iron storage, which is why it

affects tumor cell stemness (54). Unfortunately, the researchers did

not measure iron levels in cells.

2.4 Suppression of iron export from CSCs

Ferroportin (FPN) transports excess intracellular iron out of the

cell as Fe3+ and is regulated by hepcidin, which binds directly to FPN

and inhibits its activity. Many studies have shown low FPN

expression in various tumor cells. In breast cancer, FPN expression

decreases, hepcidin expression increases, and intracellular Fe2+ levels

increase, which is associated with poor prognosis and an invasive

phenotype; Overexpression of FPN can inhibit tumor growth (55).

Thus, the ferroportin–hepcidin axis plays an important role in

regulating intracellular iron levels. Many CSCs exhibit such

alterations. For example, FPN is transcriptionally downregulated in

cholangiocarcinoma CSCs (56) and is hypoexpressed in ovarian

cancer CSCs (38). When overexpressed, FPN inhibits EMT,

cytokinesis, and colony formation in mouse breast cancer cells,

preventing tumor growth and metastasis to the liver and lungs but

does not cause significant cell death (57). Hepcidin is mainly

synthesized by the liver and is involved in the regulation of

systemic iron homeostasis. At the cellular level, tumor cells can

produce hepcidin themselves, which negatively regulates intracellular

iron (58). Breast cancer cells in spheroids have higher hepcidin

expression and intracellular iron levels than cells grown in

monolayers (59). Thus, hepcidin plays an important role in

maintaining CSC stemness.

In summary, high iron levels were maintained in CSCs by

increasing iron uptake, improving LIP homeostasis, increasing iron
Frontiers in Oncology 04
stores, and decreasing iron exports (Figure 1). However, the

mechanism by which these regulatory mechanisms work

synergistically to regulate iron homeostasis in CSCs has not yet been

thoroughly investigated. Furthermore, it is unclear whether higher iron

levels are a causal factor or consequence of CSC production. Iron

supplementation has been found to induce stemness and promote

EMT in CSCs (9), and it seems that higher iron levels are a causal factor

in CSC production. Furthermore, iron chelators can inhibit the

stemness and growth of CSCs by reducing the intracellular iron

levels (60). However, researchers found that in an iron-deficient

environment, CSCs upregulate TFR and DMT1 expression to

increase iron uptake and intracellular iron availability, thereby

enhancing growth and maintaining CSC stemness (60). In addition,

recent studies have shown that ER+ breast cancer cells transform into

drug-resistant CSCs after co-culturing with stem cells and increase

intracellular levels of Fe2+ (61). This appears to be a consequence of the

presence of CSCs, which leads to high intracellular iron levels.

However, the increase in iron levels in CSCs is significant and has

several important implications. Most of the iron that enters cells is used

to synthesize heme and iron-sulfur clusters. These compounds have

critical functions in mitochondrial energy metabolism (62), and they

each plays a different role. Heme induces the epithelial-mesenchymal

transition (EMT) by regulating BTB and CNC homology 1 (BACH1)

(63). In addition, it can promote angiogenesis and nerve growth,

resulting in a favorable TME (64). Iron-sulfur clusters are involved in

the composition of multiple DNA repair enzymes (helicases, nucleases,

glycosylases, and demethylases) and ribonucleotide reductase (65).

Therefore, an increased number of iron-sulfur clusters is most likely

the reason for the strong DNA repair ability of CSCs. On the other hand,

as a cofactor of the prolyl/asparagyl hydroxylase (PHD) family, free

intracellular iron can stabilize HIF-1a, inducing defective angiogenesis

and aerobic glycolysis (62). Mechanistically, increased nuclear iron has

been shown to be the rate-limiting condition for epigenetic

reprogramming (40), that iron acts as a co-factor of epigenetic

enzymes (TET enzymes and JmjC domain-containing proteins), whose

mediated epigenetic reprogramming regulates the canonical Notch,

Hedgehog, Wnt/GSK-3b/b-catenin, and TGF-b1/Smad2/3 signaling

pathways to maintain stemness and self-renewal capacity or induce

EMT (66–69).

In conclusion, since iron levels are significantly elevated in CSCs,

and this alteration in iron homeostasis facilitates the maintenance of

stemness, research into the mechanisms regulating iron homeostasis

in CSCs is necessary to discover additional therapeutic approaches

that can be used to eradicate CSCs by targeting iron metabolism.
3 Lipid peroxidation in CSCs

3.1 Mechanism of lipid peroxidation

In the decade since ferroptosis was first named, peroxidation of

phospholipids acylated with polyunsaturated fatty acids (PL-

PUFAs) in cell membranes to lipid peroxides has been identified

as a driver of ferroptosis. Although cholesterol peroxidation (70)

and ether lipid synthesis (71) can affect ferroptosis, it has been
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suggested that lipid peroxidation in ferroptosis is best characterized

in the context of phospholipids because the diallyl hydrogens in PL-

PUFAs are more susceptible to extraction by strong oxidants and

free radical formation than those in saturated or monounsaturated

fatty acids, making PL-PUFAs the most susceptible to oxidation

(70). Phospholipid peroxidation can be initiated in cells in both

non-enzymatic and enzymatic manners. Non-enzymatic lipid

peroxidation is mainly catalyzed by iron in LIP, which generates

lipid peroxides via the Fenton reaction, whereas enzymatic lipid

peroxidation can also generate lipid peroxides, such as the

lipoxygenase family (LOXs) (72), NADPH-cytochrome P450

reductase (POR) (73). However, these enzymes are iron-

dependent (74).

Although, previous studies have found that the inhibition of 5-

LOX downregulates stemness and inhibits the growth of prostate

CSCs (75); and that 15-LOX is required for the survival of chronic

granulocytic leukemia stem cells (76). It may seem paradoxical that

on the one hand LOXs play an important role in maintaining CSCs;

however, LOXs can promote lipid peroxidation to induce

ferroptosis, as phosphatidylethanolamines (PE-AA and PE-AdA)

containing arachidonic acid (AA) and adrenaline (AdA) can be

oxidized by LOXs (22, 77). Furthermore, as an antioxidant, vitamin

E can prevent ferroptosis by inhibiting LOX-catalyzed phospholipid

peroxidation (78), making it difficult to ignore the role of LOX in

ferroptosis. Unsurprisingly, some scientists believe that the role of

LOX-mediated enzymatic lipid peroxidation in ferroptosis is

controversial (22). LOXs promote ferroptosis under certain
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conditions. Studies have shown that LOXs form a complex with

phosphatidylethanolamine-binding protein 1 (PEBP1) to catalyze

phospholipid peroxidation in the membrane and that PEBP1

binding to PUFAs is required for LOXs to induce ferroptosis (79).

Similarly, recent studies have shown that POR can increase the

peroxidation of PUFAs to promote ferroptosis (80), mainly by

acting in conjunction with NADH-cytochrome b5 reductase

(CYB5R1), which uses NADPH and O2 as substrates to produce

H2O2, and then participates in the iron-mediated Fenton reaction

to cause lipid peroxide accumulation, thereby promoting ferroptosis

(73). The role of POR in CSCs has not been reported, although one

study confirmed that in triple-negative breast cancer, high POR

expression was strongly associated with shorter recurrence-free

survival (RFS) and did not significantly correlate with overall

survival (OS) (81). This also suggests that higher POR expression

is associated with earlier recurrence, which contradicts its role in

promoting ferroptosis.

The role of iron-mediated non-enzymatic lipid peroxidation in

ferroptosis is unclear, and the significant increase in iron levels in

CSCs should lead to an increase in lipid peroxidation produced by

the iron-mediated Fenton reaction; however, it may not lead to

accumulation of lipid peroxidation to the extent of inducing

ferroptosis, as CSCs have a robust redox system that resists

oxidative stress (82) to avoid ferroptosis (83). It has been

suggested that reactive oxygen species (ROS), dependent on the

mitochondrial respiratory chain and NADPH oxidase (NOX)

activity, promote LOXs- and POR-mediated lipid peroxidation
FIGURE 1

The regulation of iron metabolism in CSCs. CSCs need to maintain high levels of intracellular iron to meet their physiological requirements in four
ways. 1. Increase iron uptake by enhancing TF/TFR and CD44-mediated endocytosis. 2. Increase Fe2+ levels in the LIP by upregulating the expression
of STEAP3, DMT1 and NCOA4. 3. Increase intracellular iron storage and inhibit excessive Fenton reaction by upregulating ferritin expression. 4.
Inhibit FPN-mediated iron efflux by downregulating FPN and upregulating Hepc expression. Tf, transferrin; TFR, transferrin receptor; STEAP3, six-
transmembrane epithelial antigen of prostate 3; DMT1, divalent metal transporter protein 1; NCOA4, nuclear receptor coactivator 4; FPN,
Ferroportin; Hepc, hepcidin; PUFAs, polyunsaturated fatty acids; LPO, lipid hydroperoxide. Created with BioRender.com.
frontiersin.org

http://www.biorender.com/
https://doi.org/10.3389/fonc.2023.1251561
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1251561
(84). However, the extent to which enzymatic lipid peroxidation

plays a role in ferroptosis and its role in ferroptosis is inconclusive.

We speculated that to maintain their stemness characteristics and

survival, CSCs require high expression of LOXs and POR to

perform functions other than lipid peroxidation. The POR plays

an important role in various metabolic mechanisms and is involved

in the metabolism of steroid hormones, drugs, and xenobiotics (85).

However, this suggests that lipid peroxide production in CSCs may

be high under the combined action of iron and enzymes.
3.2 Phospholipid synthesis increased
in CSCs

Lipids are important cellular components and energy sources.

Regardless of the cancer origin, CSCs have higher lipid levels than

non-CSCs. To maintain stemness characteristics and meet survival

needs, CSCs adapt to lipid metabolism by upregulating de novo fatty

acid synthesis, lipid uptake, lipid desaturation, oxidation, and lipid

droplet synthesis, etc. (83, 86). Phospholipids containing PUFAs are

most susceptible to peroxidation during ferroptosis. Therefore, this

section mainly describes the effects of alterations in lipid

metabolism on phospholipids or PUFAs in CSCs and then

analyzes and discusses their effects on ferroptosis in CSCs.

3.2.1 Increased de novo lipogenesis in CSCs
Fatty acid synthesis is more active in CSCs than in non-CSCs,

and its key enzymes are expressed at higher levels in CSCs, such as

ATP citrate lyase (ACLY), acetyl coenzyme A carboxylase (ACC),

fatty acid synthase (FASN), and sterol regulatory element-binding

protein (SREBP), which regulate the expression of these genes (86).

FASN-mediated fatty acid synthesis promotes gemcitabine

resistance in pancreatic cancer cells, whereas the FASN inhibitor,

orlistat, reduces pancreatic cancer cell stemness (87). The inhibition

of fatty acid synthesis has also been shown to inhibit CSC growth in

glioma stem cells and breast CSCs both in vivo and in vitro (88, 89).

Because saturated fatty acids (SFAs) are the products of fatty acid

synthesis, it is surprising that the upregulation of fatty acid synthesis

in non-CSCs increases the susceptibility of cells to ferroptosis. In

several cell models, FASN promotes ferroptosis by inhibiting the

SLC7A11-GPX4 axis to reduce lipid peroxide clearance, and ACC1

sensitizes cells to ferroptosis by promoting the peroxidation of

PUFAs (70). In CSCs, key enzymes involved in fatty acid synthesis,

including FASN and ACC1, are upregulated, which appear to

increase the accumulation of lipid peroxides in cells. This may be

due to the strong lipid peroxidation-scavenging ability of CSCs in

avoiding ferroptosis.

3.2.2 Enhanced lipid uptake in CSCs
Studies have shown that ovarian cancer cells undergo

reprogramming of lipid metabolism during the development of

resistance to platinum and that the increase in intracellular lipids is

dominated by lipid uptake rather than fatty acid synthesis (90),

suggesting that lipid uptake is important for the development of

CSCs. Alterations in lipid metabolism have been reported in CSCs,
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including increased lipid uptake (10) and expression of CD36,

which promotes EMT by increasing extracellular lipid uptake

(91). However, the expression levels of fatty acid transporters

(such as CD36 and FATP3) in mesenchymal gastric cancer cells

(GCs) were not significantly different from those in enteric GCs,

and FATP2 expression levels were lower than those in enteric GCs

(92, 93). Therefore, not all CSCs showed an increased uptake of

extracellular lipids, which we believe may be related to the energy

metabolism of CSCs. Many studies have confirmed that CSCs can

select different energy metabolism mechanisms according to

different tumor microenvironments, which may be oxidative

phosphorylation (OXPHOS), glycolysis or b-oxidation (10). This

also reflects the high metabolic heterogeneity and plasticity of CSCs;

that is, they can metabolize energy using the most efficient

mechanisms to meet their own needs. However, our view needs

to be confirmed by further research.
3.2.3 Increased lipid desaturation in CSCs
Human cells cannot synthesize PUFAs endogenously and can

only take up 18-carbon PUFAs, such as linoleic acid (LA) and alpha-

linoleic acid (ALA), from the environment, which are subjected to

ELOVL fatty acid elongase 5 (ELOVL5) and fatty acid desaturase1/2

(SCD1/FADS2), respectively (10). Finally, they are synthesized into

more complex lipids, such as diacylglycerides (DAGs) and

triacylglycerides (TAGs), or converted into phosphoglycerides,

such as phosphatidic acid (PA), phosphatidylethanolamine (PE),

and phosphatidylserine (PS) (92). Lipid unsaturation is increased

(94) and upregulation of ELOVL5 and SCD1/FADS2 expression is

often found in tumors with high aggressiveness and drug resistance

and contributes to maintaining the stemness and aggressiveness of

malignant tumors (95). Because cell membrane fluidity is

determined by lipid unsaturation (96), reducing membrane fluidity

inhibits the metastatic and stemness characteristics of breast cancer

(97). Therefore, lipid desaturation is critical in CSCs. In addition,

SCD1 converts SFAs from lipid uptake and de novo synthesis into

MUFA, thus preventing SFAS-induced lipotoxicity while

contributing to cell survival (98). MUFA are now known to play a

role in preventing or limiting ferroptosis (70). Lipid desaturation

plays a dual role in CSC ferroptosis. One is to increase the amount of

intracellular PUFAs, which increases the susceptibility to ferroptosis,

and the other is to increase the synthesis of MUFAs to protect cells

from ferroptosis. FADS2 knockdown reduces the abundance of

intracellular PUFAs, resulting in decreased sensitivity to ferroptosis

(99), whereas SCD1 knockdown increases the sensitivity of ovarian

CSCs to ferroptosis by reducing the synthesis of cytoprotective lipids

(MUFAs) (100).
3.2.4 Enhanced b-oxidation in CSCs
Owing to their high metabolic flexibility, CSCs can induce fatty

acid oxidation to ensure their survival in the absence of glucose (83).

For example, the stemness marker NANOG can reduce

mitochondrial ROS production by inhibiting OXPHOS, while

increasing intramitochondrial fatty acid oxidation, thereby

maintaining self-renewal and drug resistance in CSCs (101).
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Previous studies have shown that mitochondrial ROS do not

contribute to ferroptosis (21). However, we believe that reducing

mitochondrial ROS production is important for maintaining

intracellular REDOX homeostasis, and may indirectly reduce the

susceptibility of CSCs to ferroptosis. Furthermore, mitochondrial

membranes undergo significant changes during ferroptosis, and

more importantly, more than 10% of the cellular GSH is present in

the mitochondria (102), making it difficult to argue that

mitochondrial ROS has no effect on ferroptosis. Several studies

have found that fatty acid oxidation maintains the stemness profile

and drug resistance of breast CSCs (103), leukemia stem cells

(LSCs) (104), and mesenchymal GCs (105) and possibly through

increased fatty acid oxidation of more metabolic intermediates (e.g.,

acetyl coenzyme A and NADH) (106). However, a study with

opposite results found reduced expression of peroxisome

proliferator-activated receptor g (PPARg) in hepatic CSCs. As

PPARg regulates the expression of many genes involved in fatty

acid oxidation, the researchers concluded that fatty acid b-oxidation
is inhibited in hepatic CSCs (107). We believe that this reflects the

flexibility of CSCs metabolism; however, its specific effect on

ferroptosis is unknown.

3.2.5 Increased lipid droplets in CSCs
Lipid droplets (LDs) are dynamic and functional organelles with an

outer monolayer of phospholipids that store neutral lipids, such as

triacylglycerides (TAGs), cholesteryl esters, and retinol, and an

increased number of lipid droplets is associated with high tumor

aggressiveness and drug resistance (83, 108). A significant increase in

LDs has been reported in colon, breast, ovarian, and prostate CSCs

(10). Functionally, LDs not only maintain membrane and ER

homeostasis by translocating potentially toxic lipids to the inner LD

to isolate and tightly regulate lipid synthesis and catabolism but also

actively respond to the need for fatty acid oxidation within the

mitochondria (109). More importantly, during oxidative stress, LDs

inhibit PUFA oxidation by translocating PUFAs from the membrane

to the LD core to protect neuroblastoma cells (110). In ovarian CSCs,

researchers have found higher LD content in CSCs with a higher

proportion of unsaturated lipids (94). LDs play an important protective

role in CSCs against ferroptosis and other cytotoxic effects (83).
3.3 Phospholipid remodeling enhanced
in CSCs

Regardless of the extent of intracellular accumulation of Fe2+ and

lipid peroxides, ferroptosis is ultimately reflected in the disruption of

membrane stability, which includes not only the plasmamembrane, but

also the membranes of organelles such as mitochondria, lysosomes, and

the endoplasmic reticulum (39, 111, 112). The most significant changes

in cell morphology were observed in the mitochondria. Upon

ferroptosis, mitochondria decrease in volume, increase in membrane

density, experience a reduction or disappearance of cristae, and undergo

rupture of the outer membranes (21). Phospholipid remodeling is

particularly important for maintaining membrane homeostasis.
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Glycerophospholipids (GPLs) are essential components of the

cytoplasmic membrane that are produced by cells via de novo

synthesis and lipid uptake. During the remodeling of GPLs (also

known as the Lands cycle), phospholipase A2 (PLA2) cleaves

oxidized PUFAs at the sn-2 position, whereas SFAs and MUFAs

are acylated at the sn-1 and sn-2 positions of GPLs, limiting the

accumulation and spread of lipid peroxides across the membrane,

thereby reducing the susceptibility to ferroptosis (70). Subsequently,

lysophospholipids (LPLs) re-acylate PUFAs at the sn-2 position,

catalyzed by lysophosphatidylcholine acyltransferase 3 (LPCAT3)

(113). It was also easy to identify the inhibitory effect of PLA2 on

ferroptosis and the ferroptosis-promoting effect of LPCAT3. PLA2

is highly expressed in pancreatic, hepatocellular, breast, colon, and

prostate cancers and is strongly associated with poor prognosis

(113). In contrast, knockdown of LPCAT3 allows cells to avoid

ferroptosis (70).

Long-chain acyl-CoA synthetase (ACSL) is also important for

phospholipid remodelling, with ASCL3 and ASCL4 specifically

activating MUFAs and PUFAs, respectively, prior to remodelling,

both of which have been shown to influence cellular sensitivity to

ferroptosis by regulating the proportion of MUFAs and PUFAs in

membrane PLs (114). Thus, phospholipids containing MUFAs

protect cells from ferroptosis, whereas phospholipids containing

PUFAs are highly susceptible to peroxidation, thereby promoting

ferroptosis (70). Thus, it is clear that ACSL3 inhibits ferroptosis by

increasing membrane stability through its involvement in the

remodelling of PL-MUFAs, and that high expression of ACSL3 in

human melanoma is associated with poorer prognosis (115). In

contrast, ACSL4 overexpression sensitizes breast cancer cells to

ferroptosis (116). The ACSL4 knockout has also been shown to

inhibit ferroptosis (70). Interestingly, increased ACSL4 expression

is associated with increased aggressiveness and drug resistance in

breast and prostate cancers (117). Thus, we suggest that ACSL4

exerts different effects on ferroptosis under different conditions.

ACSL1 can act as either a promoter or an inhibitor of ferroptosis

under different conditions (70).

In summary, there are two main aspects of lipid peroxidation in

the CSCs. First, the expression levels of enzymes involved in the

mechanism of enzymatic lipid peroxidation are upregulated in

CSCs; although the extent to which these enzymes play a role is

not yet fully understood, their role cannot be ignored. Furthermore,

as the levels of Fe2+ in the LIP in CSCs increase, their mediated non-

enzymatic lipid peroxidation is also enhanced. Therefore, the

mechanism of lipid peroxidation is enhanced in CSCs. The

second mechanism involves the synthesis and remodelling of

phospholipids, which are substrates for lipid peroxidation.

Although the mechanisms of lipid metabolism in CSCs are

flexible and variable in all aspects to facilitate their survival in a

hostile environment, the end result is an increase in intracellular

lipid content and lipid unsaturation. Therefore, under the action of

these two factors, the production of intracellular lipid peroxidation

also increases, which is consistent with the finding in many studies

that CSCs are more sensitive to ferroptosis (72, 114) and appear to

have a strong lipid peroxide scavenging capacity.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1251561
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1251561
4 Increased lipid peroxide scavenging
capacity in CSCs

Lipid peroxidation in membranes has been reported to

significantly alter physiological roles such as membrane

permeability, membrane fluidity, ionic gradients, and signaling

pathways (118). As mentioned above, CSCs are characterized by

high ferrous levels, high lipid levels, and high lipid unsaturation;

however, the consequences triggered by these characteristics seem

to point to an increase in intracellular lipid peroxidation, which

plays an important role for CSCs in tumor recurrence, metastasis,

and drug resistance. Furthermore, ROS are maintained at lower

levels compared to non-CSCs (119), particularly during the

quiescent phase (14). This suggests that CSCs have a powerful

redox system that can scavenge peroxidized lipids in a timely and

effective manner to maintain membrane stability and avoid

ferroptosis. It has been reported that a robust antioxidant and

ROS scavenging system may not only reduce basal ROS levels in

colon CSCs but also promote drug resistance by preventing lethal

ROS elevation during drug treatment (14). Among the antioxidant

defense networks present in the cell, the main mechanisms of lipid

peroxidation scavenging are the GPX4-GSH axis and ferroptosis

suppressor protein 1-coenzyme Q10 (FSP1-CoQ10) axes, which are

the main defense strategies during ferroptosis.
4.1 GPX4-GSH axis activity increased
in CSCs

GPX4 is the main enzyme that protects cells from ferroptosis

(120). It uses GSH as a substrate to convert lipid peroxides into

nontoxic lipid alcohols and produces oxidized glutathione

molecules (GSSG) to reduce the intracellular accumulation of

lipid peroxides and prevent ferroptosis (121, 122). GSH depletion

directly affects the activity and stability of GPX4, thereby promoting

cellular ferroptosis (122). GSH is a major intracellular antioxidant

composed of cysteine, glutamate, and glycine (123). SLC7A11 (also

known as xCT) is a cystine/glutamate retrotransport protein

expressed in the plasma membrane that imports extracellular

cystine into the cell, which is then reduced to cysteine for GSH

synthesis (102). The rate-limiting step in GSH synthesis is catalyzed

by glutamate cysteine ligase (GCL) and glutathione synthetase

(GSS) (124). GCL is a heterodimeric protein consisting of a

catalytic subunit (GCLC) and modifying subunit (GCLM)

expressed by different genes (125). Studies have shown that

downregulation of GCLC expression can lead to GSH depletion

and susceptibility to oxidative stress in a mouse model of liver

cancer (126). In addition, the expression of ChaC glutathione-

specific gamma-glutamyl-cyclotransferase 1 (CHAC1), which

degrades GSH, can effectively induce ferroptosis in hepatoma

cells (127).

In a previous study, we suggested that CSCs have a strong

peroxidative lipid scavenging capacity and that the GPX4-GSH axis,

a major mechanism of peroxidative lipid scavenging, is upregulated

in CSCs and contributes to the acquisition and maintenance of
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stemness characteristics (15). A growing number of studies have

shown that the GPX4-GSH axis plays an important antioxidant role

in promoting or maintaining the stemness profile and drug

resistance of colorectal, gastric, breast, pancreatic, liver, biliary,

lung, and glioma CSCs (27, 34, 128–133). In addition, the stem

genes CD133 (134), CD44 (6), SOX2 (135), KLF4 (131), YAP/TAZ

(130), and DKK1 (136) directly and/or indirectly (via nuclear factor

erythroid-2-related factor 2 (NRF2)) upregulate the GPX4-GSH

axis to enhance lipid peroxide scavenging by CSCs to prevent

ferroptosis. NRF2 plays a key role in this process. It has been

reported that NRF2 expression is upregulated in both CSCs and

CSC models (15, 134), that activation of the NRF2 pathway

promotes tumorigenicity and stemness in CSCs (137), and that

silencing NRF2 inhibits the spherogenic ability of colon CSCs and

the expression of markers of stemness (134). More importantly, the

activation of NRF2 signaling leads to the maintenance of low ROS

levels in CSCs (15). It is now known that NRF2 can upregulate the

expression of SCL7A11, GPX4, GCLC, and GSS, and promote the

synthesis of GSH and the scavenging of lipid peroxidation. This

finding demonstrates the importance of the cellular redox system

involving NRF2 in CSCs.

Given the importance of GPX4-GSH in scavenging lipid

peroxides, many researchers have attempted to promote

ferroptosis by targeting this system to eradicate CSCs. For

example, some researchers have used dihydroartemisinin (DHA)

to downregulate GPX4 expression, leading to intracellular lipid

peroxide accumulation and ferroptosis promotion in glioblastoma

(138). Other studies have targeted xCT using salazosulfapyridine

and protein kinase C alpha (PKCa) inhibitors to reduce intracellular
GSH levels and promote ferroptosis in neuroblastoma stem

cells (139).
4.2 FSP1-CoQ10 axis activity increased
in CSCs

FSP1 was originally known as apoptosis-inducing factor

mitochondria-associated 2 (AIFM2), it was later found that FSP1

can also remove lipid peroxidation and prevent ferroptosis in the

absence of GPX4 (140). The inhibitory effect of FSP1 on ferroptosis

is mediated by CoQ10: reductive CoQ10H2 captures and removes

free radicals, and FSP1 uses NADH/NADPH to reduce CoQ10 to

CoQ10H2 (70, 140). Recent studies have shown a significant

upregulation of the protein levels ACSL1 in highly metastatic

ovarian cancer cell lines. This, in turn, increases the protein levels

FSP1 by blocking protein degradation. Thus, the FSP1-CoQ10 axis

is activated, causing iron death resistance, and elevating cancer cell

spheroidogenesis and drug resistance. (141). Triple-negative breast

cancer (TNBC) displays the breast cancer stem cell (BCSC)

phenotype of CD44+/CD24-, possesses tumor-initiating

properties, and is associated with stem cell-like characteristics in

breast cancer (142). This study revealed that enhanced FSP1-

mediated ubiquinone redox metabolism in TNBC inhibited

ferroptosis, whereas disruption of the FSP1/CoQ10 axis overcame

ferroptosis resistance and inhibited TNBC (143). FSP1 is a

downstream effector of NRF2 in lung cancer cells. Moreover,
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NRF2 has been shown to inhibit ferroptosis through the FSP1-

CoQ10 axis, which leads to cancer cell radioresistance. (144) As

previously mentioned, NRF2 expression is upregulated in CSCs.

Therefore, it is worth considering whether the FSP1-CoQ10 axis is

similarly upregulated in CSCs. Therefore, further studies

are required.

Previous studies have shown that the GPX4-GSH axis is the

primary mechanism for preventing ferroptosis in cells.

Dihydroorotate dehydrogenase (DHODH) and GTP cycle hydrolase

1 (GCH1)/tetrahydrobiopterin (BH4), independent of the GPX4-GSH

axis, scavenge lipid peroxides and inhibit ferroptosis (145). However,

only a few studies have drawn convincing conclusions. In summary,

the GPX4-GSH axis and FSP1-CoQ10 axes were significantly

upregulated in CSCs and played important antioxidant roles in

inducing and maintaining the stemness properties of CSCs.
5 Efforts to develop drugs to induce
ferroptosis in CSCs

In recent years, promising results have been achieved in the

development of drugs that induce ferroptosis in CSCs (Table 1). This

was reflected in two main areas. The first step is the development of

new drugs. Nanocarriers have been proven to be an effective means of
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targeting CSCs. Researchers have coupled salinomycin with

biocompatible polyethylene glycol-coated gold nanoparticles

(AuNPs) to improve their specificity for breast CSCs and induce

ferroptosis, thereby targeting CSC elimination (156). Drugs loaded

onto nanocarriers are flexible and diverse. Researchers developed a

GSH-bioimprinted nanoparticle-loaded drug, GNPIPP12MA, which

targets leukemic stem cells and induces ferroptosis by depleting

intracellular GSH, thereby enhancing the efficacy of chemotherapy

and immunotherapy (146). Other researchers have designed

hyaluronic acid-encapsulated iron oxyhydroxide-based nanosystems

that target breast CSCs and inhibit their proliferation by increasing

GSH depletion, Fe2+ levels, and iron efflux to increase ferroptosis. The

second is the new use of old drugs. For example, drugs, such as

ibuprofen, phenazine derivatives, itraconazole, and dihydroartemisinin,

promote ferroptosis to kill CSCs or increase their sensitivity to

antitumor drugs (39, 138, 150, 153, 155). Since no CSC-targeted

ferroptosis-inducing drugs have been approved for clinical use, these

older drugs seem to be the closest to clinical application in terms of

strategies to induce ferroptosis in CSCs; however, they also affect

normal cells indiscriminately while inducing ferroptosis in CSCs

(157), so the side effects of these drugs need to be considered in their

application. Nanodrugs, althoughmore targeted, face a similar problem

of reducing side effects while ensuring efficacy; therefore, there is still a

long way to go in the development of new drugs, but also a lot of hope.
TABLE 1 Summary of ferroptosis-based drugs for CSCs therapy.

Name Target Mechanism Type of cancer References

GNPIPP12MA GSH Targeting the FTO/m6A pathway to deplete
intracellular GSH

Leukemic stem cells
(146)

Ferroptotic polymer micelles
(RSL3)

GPX4 RSL3 targets and inhibits GPX4 Drug-resistant persistent ovarian
cancer cells

(147)

Disulfiram xCT
GPX4

Downregulation of xCT and GPX4 expression
Glioblastoma cells

(148)

ALZ003 GPX4 Decreasing GPX4 expression Glioblastoma cells (149)

Ibuprofen Nrf2
xCT
GPX4

Downregulation of Nrf2 signaling pathway Glioblastoma cells (150)

FeOOH/siPROM2@HA Prominin2
GPX4

Inhibiting Fe3+ efflux and Fe3+ consumes GSH to
generate Fe2+

Breast CSCs
(151)

AuNP-PHF Ferritin Inducing ferritin degradation Breast CSCs (152)

Phenazine derivatives Iron Sequestering iron in lysosomes Breast CSCs (153)

Dichloroacetate Iron Sequestering iron in lysosomes Colorectal CSCs (112)

Atranorin@SPION GPX44
SLC24A4

Inducing ferritin degradation Gastric CSCs (154)

Itraconazole Iron Sequestering iron in lysosomes Nasopharyngeal CSCs (155)

Dihydroartemisi-nin GPX4 Downregulation of GPX4 Glioblastoma cells (138)

Sal-AuNPs Iron
GPX4

Iron accumulation and inhibition of antioxidant
properties

Breast CSCs
(156)

Salinomycin DMT1 Blocking lysosomal iron translocation Breast CSCs (45)

Inhibitor of PKCa (Sulfasalazine,
C2-4)

GPX4 Downregulating GPX4 activity and stimulating lipid
peroxidation

Neuroblastoma CSCs (139)
frontiersin.org

https://doi.org/10.3389/fonc.2023.1251561
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1251561
6 Summary and outlook

Drug resistance, relapse, and metastasis have always plagued the

treatment of tumors, and as research has progressed, we have

become increasingly aware of the important role of CSCs.

Therefore, there is an urgent need for more effective strategies to

eradicate CSCs and improve the prognosis of patients with tumors.

Over the past decade, considerable progress has been made in the

study of ferroptosis, which has raised hopes for its potential as an

antitumor therapy, but what we can do therapeutically still seems

limited with no significant breakthrough in clinical application.

Ferroptosis is cell death caused by an imbalance in the production

and clearance of lipid peroxides mediated by Fe2+(158). Many

studies have been conducted to elucidate the morphological

changes, biochemical manifestations, lipid peroxidation

mechanisms, and redox regulation mechanisms of ferroptosis;

however, there are still many issues that require further

investigation. For example, what is the role of the mitochondria

in ferroptosis? Why are the mechanisms of action of certain

enzymes involved in ferroptosis contradictory? At what point

does lipid peroxide accumulate before completely disrupting

membrane homeostasis? And to what extent do other cellular

antioxidant systems play a role in ferroptosis since, after all, the

synthesis requires NADPH. In addition, given that the mechanism

for inducing ferroptosis in normal and tumor cells is flexible and

changeable, and that there are many genes and metabolic

mechanisms involved in ferroptosis, self-renewal of CSCs is more

flexible in dealing with ferroptosis.

Despite the many difficulties, an increasing number of researchers

are focusing on the eradication of CSCs by ferroptosis to achieve the

desired therapeutic effects. From the above analysis and summary, it

can be seen that to maintain stemness and self-metabolism, CSCs

maintain higher levels of iron, Fe2+, lipids, and unsaturated lipids in

cells than non-CSCs, and they should also be subjected to more iron-

mediated unsaturated lipid peroxidation, which may be the

vulnerability of CSCs. Although CSCs have a stronger antioxidant

system, they appear to have reached the upper limit of the threshold

that cells can withstand, and many studies have found that CSCs,

mesenchymal tumor cells, and drug-resistant tumor cells are more

sensitive to ferroptosis (34, 124, 159). CSCs are also more susceptible to

ferroptosis than apoptosis (160). It is as if CSCs are “daring” to dance

on the knife edge of ferroptosis, which is more exciting but also more

dangerous. However, this suggests that eradicating CSCs by inducing

ferroptosis is likely to be an effective antitumor strategy.
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In conclusion, given the great potential and application of

therapeutic strategies targeting CSCs through ferroptosis

induction in tumor treatment, further research on CSCs and

ferroptosis is needed to develop effective antitumor drugs

targeting CSCs.
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