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Perilesional edema diameter
associated with brain metastases
as a predictive factor of response
to radiotherapy in non-small cell
lung cancer
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Enrique Caballé-Pérez 1, Luis Lara-Mejı́a 1,
Jenny G. Turcott1, Salvador Gutiérrez1, Francisco Lozano-Ruiz2,
Luis Cabrera-Miranda1, Andrés Mauricio Arroyave-Ramı́rez3,
Federico Maldonado-Magos4, Luis Corrales5, Claudio Martı́n6,
Ana Pamela Gómez-Garcı́a 1, Bernardo Cacho-Dı́az7

and Andrés F. Cardona8
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Instituto Nacional de Cancerologı́a (INCan), México City, Mexico, 5Oncology Department, Hospital
San Juan de Dios, San José, Costa Rica, 6Thoracic Oncology Unit, Alexander Fleming Institute,
Buenos Aires, Argentina, 7Neuro-oncology Unit, Instituto Nacional de Cancerologı́a (INCan), México
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Background: Different prognostic scales exist in patients with brain metastasis,

particularly in lung cancer. The Graded Prognostic Assessment for lung cancer

using molecular markers (Lung-molGPA index) for brain metastases is a powerful

prognostic tool that effectively identifies patients at different risks. However,

these scales do not include perilesional edema diameter (PED) associated with

brain metastasis. Current evidence suggests that PED might compromise the

delivery and efficacy of radiotherapy to treat BM. This study explored the

association between radiotherapy efficacy, PED extent, and gross tumor

diameter (GTD).

Aim: The aim of this study was to evaluate the intracranial response (iORR),

intracranial progression-free survival (iPFS), and overall survival (OS) according to

the extent of PED and GT.

Methods: Out of 114 patients with BM at baseline or throughout the disease, 65

were eligible for the response assessment. The GTD and PED sum were

measured at BM diagnosis and after radiotherapy treatment. According to a

receiver operating characteristic (ROC) curve analysis, cutoff values were set at

27 mm and 17 mm for PED and GT, respectively.

Results: Minor PED was independently associated with a better iORR [78.8% vs.

50%, OR 3.71 (95% CI 1.26–10.99); p = 0.018] to brain radiotherapy. Median iPFS

was significantly shorter in patients with major PED [6.9 vs. 11.8 months, HR 2.9
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(95% CI 1.7–4.4); p < 0.001] independently of other prognostic variables like the

Lung-molGPA and GTD. A major PED also negatively impacted the median OS

[18.4 vs. 7.9 months, HR 2.1 (95% CI 1.4–3.3); p = 0.001].

Conclusion: Higher PED was associated with an increased risk of intracranial

progression and a lesser probability of responding to brain radiotherapy in

patients with metastatic lung cancer. We encourage prospective studies to

confirm our findings.
KEYWORDS

central nervous system, tumor diameter, perilesional edema, lung adenocarcinoma,
lung cancer, local therapy, radiation therapy
1 Introduction

Lung cancer (LC) is the leading cause of cancer-related

mortality worldwide, with 1.8 million deaths in 2020 and an

estimated incidence of 2.2 million (1). Non-small cell lung cancer

(NSCLC) represents 85% of LC cases and is the leading cause of

brain metastases (BM) (2). Patients with oncogenic driver

alterations own the highest cumulative incidences of BM, with a

lifetime prevalence between 46% and 80% (3, 4). Other factors

associated with a higher BM incidence are the adenocarcinoma

subtype, solid predominant tumors (5), disease burden, and

carcinoembryonic antigen (CEA) levels (6).

In patients with LC, BM is associated with significant morbidity,

mortality, reduced quality of life, and a substantial economic

burden (7–9). Some Latin American regions have barriers to LC

attention, increasing the mortality of patients with BM (10). Whole-

brain radiation therapy (WBRT) has been the standard approach

for local control in LC patients, and it remains the preferred

modality in case of multiple lesions or symptomatic disease, with

a significant improvement in symptom relief, local and distant

recurrences, and response rates of 70%–93% (11–13). Nevertheless,

WBRT is associated with detrimental effects on cognitive function,

no overall survival (OS) benefit, and a median OS of 3–6

months (14).

Stereotactic radiosurgery (SRS) has emerged as a radiation

modality for a limited number and size of BM, with high rates of

local control comparable with WBRT, lower incidence of

neurocognitive effects, and increased overall quality of life (11).

Despite the broad introduction of target therapy and

immunotherapy in actionable and non-actionable driver gene

NSCLC, WBRT remains the most common upfront radiotherapy

modality with extremely heterogeneous clinical outcomes (14–16).

However, considering the current high effectiveness of CNS-

penetrant systemic treatments and novel radiotherapy techniques,

selecting patients suitable for local therapy has become controversial.

Extensive efforts have focused on predicting survival outcomes

for NSCLC with BM. In this context, several prognostic indexes,

such as Recursive Partitioning Analysis (RPA), Graded Prognostic
02
Assessment (GPA) (17, 18), and recently an update of the Disease-

Specific GPA using molecular markers (Lung-molGPA index),

which introduced EGFR, ALK, and PD-L1 status (19, 20), have

been developed to estimate survival and guide clinical decision-

making. Nevertheless, limited advances in clinical predictors of

radiation therapy response in patients with BM-NSCLC have been

studied (11).

The PED has been linked to hypoxia, and HIF1a production

promotes pro-angiogenic pathways and the induction of

neovascularization, which limits response to radiation therapy

(21). In this regard, perilesional edema diameter (PED) has been

associated with worse radiological responses and increased risk of

new brain lesions in patients with NSCLC (22, 23). A clinical

surrogate marker of a radioresistant phenotype might represent a

potential predictive factor associated with treatment failure that

could help to design highly effective strategies at a central nervous

system (CNS) level, minimizing toxicity and extending survival.

This study aimed to evaluate the impact of PED on the intracranial

response (iORR) and their association with survival outcomes in

NSCLC patients with BM receiving radiation therapy.
2 Materials and methods

2.1 Patient selection

An institutional research committee reviewed and approved the

study under project 2021/054.

A retrospective cohort study was conducted between 2014 and

2021. The clinical characteristics, histopathological diagnostic,

molecular status, and systemic treatment details were examined

through shared medical records. Eligible patients were those with

recurrent or metastatic histologically proven NSCLC and

measurable intracranial disease according to the Response

Assessment in Neuro-oncology (RANO) working group criteria

(24), and those who underwent radiation therapy after BM

diagnosis. The RANO criteria define measurable disease as

bidimensional contrast-enhancing lesions with defined margins,
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with two perpendicular diameters of at least 10 mm, visible on ≥2

axial slices. Patients with previous local BM-directed treatment

(including surgical resection or former radiation treatment),

meningeal carcinomatosis, and lack of baseline MRI were omitted.
2.2 MRI acquisition and measurements

All MRI scans were performed on a 1.5-T Signa HDxt scanner

(GE Healthcare). Routine MRI pulse sequences included axial T1-,

T2-weighted, and fluid-attenuated inversion recovery (FLAIR). A

radiation oncologist evaluated baseline neuroimaging features

before local therapy. The most representative images were

selected based on tumor maximum diameter and maximum

edema extent on midplane axial, sagittal, or coronal sections. GT

was established as the sum of the maximum diameter (mm) of the

three most representative T1-weighted gadolinium-enhanced

lesions. In contrast, PED was defined as the sum of the maximum

diameter (mm) of the perilesional hyperintense area on a T2-

weighted or FLAIR MRI sequence. The PED/GT ratio was

calculated by dividing the PED maximum extent by the

maximum tumor diameter. Figure 1 provides guidance on how

clinicians performed the measuring method in this study, which

could help to incorporate PED in further treatment decisions.
2.3 Radiation treatment

Treatment decisions were made on a case-by-case basis by a

multidisciplinary tumor board. SRS was performed on the Gamma

Knife Radiosurgery platform (Elekta, Stockholm, Sweden).

Treatment plans were generated from thin-slice MRI merged with

a stereotactic computed tomography scan. SBRT was delivered in

cases with up to four intra-axial metastatic lesions, and the regimen

was a single dose of 18–24 Gy, resulting in an equivalent dose
Frontiers in Oncology 03
(EQD2) of 42–68 Gy. The prescription could vary on tumor size

and location according to the RTOG-90-05 protocol (25).

Whole brain radiation therapy (WBRT) was delivered as a

palliative therapy with a conventional megavoltage external beam

radiotherapy administered with a linear accelerator (energy 6 MV).

According to the institutional protocol, for all patients treated with

WBRT, the regimen was 30 Gy in 10 fractions, resulting in an EQD2

of 32.5 Gy and a biologically effective dose (BED) of 39 Gy,

estimated with an alpha/beta ratio of 10. An expert radio-

oncologist prescribed hippocampal avoidance, corticosteroid dose,

and duration courses.
2.4 Outcome measures

The main outcome was the intracranial objective response rate

(iORR), defined as the proportion of patients who achieved

complete response (CR) and partial response (PR) according to

the RANO criteria. Secondary outcomes included the intracranial

clinical benefit rate (iCBR) determined as the sum of CR, PR, and

stable disease (SD); intracranial duration of response (iDoR)

defined as the time from radiation therapy to intracranial

progression or death; and depth of response (iDpR) defined as

the percentage of maximal tumor reduction from the baseline of

intracranial target lesions. Patients were grouped into four quartiles

based on the most significant proportion of reduction in

intracranial target lesions from the baseline. They were compared

with patients with no tumor reduction (NTR). A brain contrast-

enhanced MRI was performed at baseline and 8 to 12 weeks after

radiation therapy, then every 4 to 6 months or as clinically

indicated. An independent radiation oncologist reviewed all

response assessments. Intracranial progression-free survival (iPFS)

was defined as the time from radiation therapy until intracranial

progression or death. OS was defined as the time from radiation

treatment until death from any cause.
A B

FIGURE 1

Method used for measuring peritumoral edema extent. We selected the most representative images based on the tumor’s maximum diameter and
maximum edema extent on midplane axial, sagittal, or coronal sections. (A) Gross tumor (GT) was established as the sum of the maximum diameter
(mm) of the three most representative T1-weighted gadolinium-enhanced lesions. Perilesional edema (PE) was defined as the sum of the maximum
diameter (mm) at the perilesional hyperintense area on a T2-weighted or FLAIR MRI sequence. (B) Examples of perilesional edema diameter (PED)
measurement on MRI FLAIR sequences (axial) and gross tumor diameter (GTD) measurement on MRI T1 gadolinium-enhanced scans (axial). GT was
established as the sum of the maximum diameter of the three most representative lesions. PED was defined as the sum of the maximum diameter of
the perilesional hyperintense area. Dotted black lines indicate the maximum GTD in millimeters (mm). Solid black lines indicate the maximum PED in
mm. The PED/GT ratio was calculated by dividing the PED maximum extent by the maximum tumor diameter. GT, gross tumor; GTD, gross tumor
diameter; PED, perilesional edema diameter.
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2.5 Statistical analysis

Continuous variables were summarized as arithmetic means

with standard deviations or medians with their respective

interquartile range. Categorical variables were reported as

numbers and percentages. Comparisons between two independent

groups were made using the Student’s t-test or nonparametric

Mann–Whitney U-test, according to data distribution determined

by the Kolmogorov–Smirnov test. The chi-square test (c2) and the

Fisher exact test assessed the differences between the categorical

variables as a function of the size of the groups within the

comparisons. The quantitative variables were defined as pre-

established dichotomous variables and were modeled using

bivariate and multivariate logistic regression. The performance of

PED and GT diameters to discriminate iORR was assessed by

receiver operating characteristic (ROC) curve analyses. Cutoff

values were optimal when the product of sensitivity and

specificity was maximal. Cutoff point values discriminate between

major and minor lesions (mm) related to the edema and tumor. The

results were presented as odds ratios (ORs) with corresponding 95%

confidence intervals (CIs) and p-values and were modeled using

bivariate and multivariate logistic regression. Progression-free

survival and OS results were analyzed using the Kaplan–Meier

estimate, whereas the log-rank test was used to estimate differences

among subgroups. All variables were dichotomized for the survival

analysis. Predefined variables were chosen for the adjusted

multivariate Cox regression model. Hazard ratios (HRs) and their

corresponding 95% CIs were calculated to measure association.

Statistical significance was set at a p-value ≤ 0.05, two-tailed. All

statistical analyses were conducted using Stata/MP 14.0 for Mac

(Stata Corp LP, 2015), and GraphPad Prism 9.0.1 for macOS

(GraphPad Software, 2021) was used for plotting.
3 Results

A total of 114 patients with NSCLC and BM diagnosis were

identified and eligible for the analysis (Figure S1). Patients’ baseline

clinical and pathological characteristics and the Lung-molGPA

index are summarized in Table 1. The mean age was 57.5 ± 12.4

years, and 62 (54.4%) were men. At BM diagnosis, 70 (61.4%)

patients had a Karnofsky Performance Status (KPS) of ≤80. The

most common histological subtype was adenocarcinoma [98

(86.0%)]; 33 (28.9%) patients harbored a sensitive EGFR

mutation (del exon 19 or L858R) or an ALK rearrangement. Only

51 (44.7%) patients had a Lung-molGPA score ranging from 1.5 to

2. Additionally, 83 (72.8%) had multiple lesions in brain MRI, with

a median of 2 (1–5) brain lesions. Among these, 43 (37.7%) had five

or more BM at diagnosis, and 79 (69.3%) were in the supratentorial

compartment. Steroids were employed in 48 (42.1%) of the 114

cases at baseline MRI evaluation. At the MRI response assessment,

28 (43.1%) of the 65 patients used steroids. WBRT was used in 103

(90.4%) patients and SRS in 11 (9.6%). The median prednisone dose

did not significantly affect the entire court or between the

two groups.
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3.1 Discriminating values of gross tumor
diameter and perilesional edema diameter
as potential predictive factors

The best discriminating GTD cutoff value was 17 mm, with a

sensitivity of 26.1% and a specificity of 76.2% [AUC = 0.658 (0.44–

0.73)] (Figure S2A). The best discriminating PED cutoff value for

iORR was 27 mm, with a sensitivity of 34.8% and a specificity of

73.8% [AUC = 0.60 (0.46–0.75)] (Figure S2B).
3.2 Major perilesional edema diameter and
clinical characteristics

Amajor PED (≥27 mm) was identified in 63 (55.2%) patients and

was significantly associated with male patients, KPS ≤ 80, multiple

brain lesions located in the supratentorial compartment, and more use

of steroids at diagnosis. From patients with major PED, 61 (59.2%)

were treated mainly withWBRT, and 11 (44.4%) had a Lung-MolGPA

score of 0–1. Patients with a PED ≥27 mm had a median GTD larger

than those with PED < 27 mm (40.6 vs. 17.0 mm) (Table 1).
3.3 Intracranial objective response rate

The iORR was assessed by a post-RT MRI within 8–12 weeks,

and post-radiation therapy was available in 65 (57.0%) cases of the

entire cohort. The investigator-assessed iORR was 64.6%. The iORR

was significantly higher among patients with minor PED [78.8% vs.

50.0%, OR 3.71 (1.26–10.99; p = 0.018)]; however, the GTD showed

no significant association (Figures 2A, B). In the bivariate analysis,

only a minor PED was associated with better intracranial responses

[OR 3.71, (95% CI 1.26–10.99); p = 0.018) (Figure 2C).

Partial response was reached in 35 (53.8%) patients and showed

no significant difference between PED subgroups. Patients who

responded utterly belonged to the minor PED subgroup (21.2%, p <

0.006). The median iDoR was 9.5 (4.5–14.5) months, with 36

(55.4%) patients achieving a durable response ≥ 6 months. When

PED subgroups were compared, the median iDoR was longer in

those with a minor PED [13.3 (5.9–20.7) vs. 4.5 (1.2–7.9); p <

0.001]. The proportion of patients with a durable response ≥ 6

months favored the subgroup with a minor PED [24 (72.7%) vs. 12

(37.5%), p = 0.004]. In patients with any reduction of tumor

diameter, DpR was more pronounced among cases with a minor

PED. A tumor reduction ≥ 75% was only observed in the subgroup

with a minor PED [8(24.2%); p = 0.006] (Table 2). The maximum

percentage change in target lesion size after radiotherapy according

to the PED size at baseline is summarized in Figure 3A.
3.4 Intracranial progression-free survival

At the data cutoff (22 July 2022), the median follow-up time was

10.2 [3.2–18.9] months. The median iPFS was 8.9 months [7.3–10.5],

and the 6-month iPFS rate was 57.0% for the entire cohort (n = 114).
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TABLE 1 Demographic and histological characteristics of patients.

Overall

Perilesional edema
diameter (PED), mm

p-value
Minor PED

<27
Major PED

≥27

Patients n = 114 n = 51 n = 63

Age, years <65 78 (68.4) 36 (70.6) 42 (66.7)

≥65 36 (31.6) 15 (29.4) 21 (33.3)

57.5 ± 12.4 56.8 ± 12.3 58.1 ± 12.5 0.581

Sex Female 52 (45.6) 32 (62.7) 20 (31.7)

Male 62 (54.4) 19 (37.3) 43 (68.3) 0.001

KPS at BM diagnosis 90–100 44 (38.6) 31 (60.8) 13 (20.6)

≤80 70 (61.4) 20 (39.2) 50 (79.4) <0.001

BM occurrence Synchronous 77 (67.5) 31 (60.8) 46 (73.0)

Metachronous 37 (32.5) 20 (39.2) 17 (27.0) 0.165

Smoking status Present 58 (50.9) 20 (39.2) 38 (60.3)

Absent 56 (49.1) 31 (60.8) 25 (39.7) 0.025

Histology Adenocarcinoma 98 (86.0) 48 (94.1) 50 (79.4)

Squamous cell carcinoma 7 (6.1) 1 (2.0) 6 (9.5)

Other 9 (7.9) 2 (4.0) 7 (8.3) 0.236

Adenocarcinoma classification Lepidic 9 (7.9) 5 (10.4) 4 (8.0)

Acinar 34 (29.8) 18 (37.5) 16 (32.0)

Papillary 13 (11.4) 7 (14.6) 6 (12.0)

Micropapillary 4 (3.5) 1 (2.1) 3 (6.0)

Solid 35 (30.7) 16 (33.3) 19 (38.0)

NOS 3 (2.6) 1 (2.1) 2 (4.0) 0.869

Mutation status Wild type/Unknown 81 (71.1) 27 (52.9) 54 (85.7)

EGFR/ALK-positive 33 (28.9) 24 (47.1) 9 (14.3) <0.001

Lung-molGPA index 0.0–1.0 33 (28.9) 5 (9.8) 28 (44.4)

1.5–2.0 51 (44.7) 26 (51.0) 25 (39.7)

2.5–3.0 26 (22.8) 16 (31.4) 10 (15.9)

3.5–4.0 4 (7.8) <0.001

Number of BM 1 31 (27.2) 20 (39.2) 11 (17.5)

2–4 40 (35.1) 17 (33.3) 23 (36.5)

≥5 43 (37.7) 14 (27.5) 29 (46.0) 0.023

BM location Supratentorial 79 (69.3) 41 (80.4) 38 (60.3)

Infratentorial 35 (30.7) 10 (19.6) 25 (39.7) 0.021

Steroids at baseline MRI evaluation Present 48 (42.1) 12 (23.5) 36 (57.1)

Absent 66 (57.9) 39 (76.5) 27 (42.9) <0.001

Steroids at MRI response assessment (n = 65) Present 28 (43.1) 11 (33.3) 17 (53.1)

Absent 37 (59.9) 22 (66.7) 15 (46.) 0.087

(Continued)
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According to the extension of PED, median PFS was 11.8 (8.3–15.3)

months in the group with a minor PED versus 6.9 (3.5-10.2) months

in those with a major PED [HR 2.9 (1.7–4.4); p < 0.001] (Figure 3B).

The 6-month iPFS rate was also higher in the minor PED

subgroup, 73.5% versus 41.5%, p <0.001, respectively. On bivariate

analysis, factors associated with a higher hazard for intracranial

progression or death were male patients, a Lung-molGPA index of

0–1 and 1.5–2.0, infratentorial lesions, major PED, and no tumor

response to radiotherapy (Table 3).

Multivariate analysis showed that only the Lung-mol GPA and

the PED were significant factors associated with the risk of

intracranial progression. After the adjustment for significant

factors in model 1, a major PED remained a negative risk factor

for intracranial progression [HR 3.3 (95% CI 1.6–5.8)]
Frontiers in Oncology 06
independently of Lung-molGPA [Index of 0–1 HR 34.8 (95% CI

3.9–31.0); and 1.5–2.0 HR 9.9 (95% CI 1.24–79.6)]. In contrast, the

GTD <17 mm became a protective factor for intracranial

progression [HR 0.51 (95% CI 0.27–0.96)] after the adjustment

(Table 3). A second multivariate model was built for progression

and survival with the components of the Lung-molGPA displayed

separately in Table S1. The major PED continued to be a negative

factor for intracranial progression.
3.5 Overall survival

The median OS was 11.8 [95% CI 7.9–15.7] months, with a 6-

month OS rate of 64.9% for the entire population. According to
A

B

C

FIGURE 2

Intracranial response rate according to (A) gross tumor diameter, (B) Perilesional edema diameter, and (C) Forest plot of odds ratios random effects for ICR.
Black diamonds and horizontal lines correspond to the ORs and 95% confidence intervals. The two-way solid arrow at the bottom of the graph represents the
combined odds ratio and 95% confidence interval. The dotted vertical line corresponds to no effect of response to treatment (odds ratio 1.0). Two-tailed P
values ≤ 0.05 were considered statistically significant (Bold values). CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease;
PED, perilesional edema diameter; GTD, gross tumor diameter.
TABLE 1 Continued

Overall

Perilesional edema
diameter (PED), mm

p-value
Minor PED

<27
Major PED

≥27

Median dose of prednisone at MRI response assessment (n = 65) 15.0 [5.0–25.0] 20.0 [5.0–45.0] 5.0 [5.0–20.0] 0.578*

RT modality WBRT 103 (90.4) 42 (40.8) 61 (59.2)

SRS 11 (9.6) 9 (17.6) 2 (3.2) 0.012‡

Median gross tumor diameter (GTD), mm 28.1 [15.7–49.1] 17.0 [9.1–26.2] 40.6 [27.5–60.6] <0.001*
fro
Data are reported as numbers and percentages, n (%), otherwise as mean ± standard deviation or median with interquartile range [IQR]. Normal distribution was tested by Kolmogorov–
Smirnoff. Normal distribution assuming not equal variances was analyzed using independent-samples Student´s t-test; otherwise, *Mann–Whitney U-test was applied. Nominal variables were
analyzed by the Pearson Chi-Square test, except where a small size (n < 5) was required using ‡ Fisher’s exact test. Two-tailed significance was set at p ≤ 0.05 (bold values). ALK, anaplastic
lymphoma kinase; BM, brain metastases; EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma viral oncogene homolog; KPS, Karnofsky performance status; Lung-molGPA,
Graded Prognostic Assessment for NSCLC using molecular markers; RT, radiotherapy; WBRT, whole-brain radiotherapy; SRS, stereotactic radiosurgery. SD, standard deviation. IASLC/ATS/
ERS Lung Adenocarcinoma classification (n = 98).
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TABLE 2 Intracranial response in evaluable population.

Overall
Perilesional edema diameter (PED)

p-Value
<27 mm ≥27 mm

Patients N = 65 N = 33 N = 32

Investigator-assessed response

Intracranial objective response (iORR) 42 (64.6) 26 (78.8) 16 (50.0) 0.015

Complete response (CR) 7 (10.7) 7 (21.2) 0.006

Partial response (PR) 35 (53.8) 19 (57.6) 16 (50.0) 0.540

Stable disease (SD) 15 (23.0) 5 (15.2) 10 (31.3) 0.124

Progressive disease (PD) 8 (12.3) 2 (6.1) 6 (18.8) 0.120

Intracranial disease control rate (iDCR) 57 (87.7) 31 (93.9) 26 (81.3) 0.120

iDoR median (95% IC), mo 9.5 [4.5–14.5] 13.3 [5.9–20.7] 4.5 [1.2–7.9] <0.001

Durable response (CR + PR) ≥6 mo 36 (55.4) 24 (72.7) 12 (37.5) 0.004

Depth of response (DpR) category

NTR 8 (12.3) 3 (9.1) 5 (15.6) 0.423

Q1 > 0% to 25% 10 (15.4) 3(9.1) 7 (21.9) 0.153

Q2 > 25% to 50% 23 (35.4) 8 (24.2) 15 (46.9) 0.056

Q3 > 50% to 75% 16 (24.6) 11 (33.3) 5 (15.6) 0.098

Q4 > 75% to 100% 8 (12.3) 8 (24.2) 0.003
F
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TABLE 3 Bivariate and multivariate analysis (model 1) of progression-free and overall survival.

Progression-free survival Overall survival

Bivariate analysis Multivariate analysis Bivariate analysis Multivariate analysis

HR 95 CI% p HR 95 CI% p HR 95 CI% p HR 95 CI% p

Sex

Female 0.47 0.30–0.72 0.646 0.37-1.10 0.111 0.55 0.36–0.85 1.0

Male 2.15 1.37–3.36 0.001 1.0 1.81 1.18–2.77 0.006 1.21 0.70–2.08 0.486

IASLC/ATS/ERS adenocarcinoma subtype

LEP 0.64 0.29–1.40 0.69 0.30–1.60 1.0

ACI/PAP 1.01 0.64–1.60 0.78 0.49–1.23 0.869 0.50–1.48 0.607

SOL/MIP 1.20 0.75–1.89 0.265 1.49 0.94–2.38 0.089 1.56 0.59–4.09 0.364

Lung-molGPA index

0.0–1.0 3.81 2.25–6.45 34.85 3.91-310.6 0.001 5.27 3.26–8.54 11.89 2.27–62.2 0.003

1.5–2.0 1.56 1.02–2.41 9.93 1.24-79.6 0.031 1.32 0.86–2.02 3.61 0.80–16.2 0.95

2.5–3.0 0.39 0.23–0.64 3.16 0.39-25.1 0.277 0.23 0.13–0.42 0.727 0.15–3.4 0.685

3.5–4.0 0.11 0.09–0.77 <0.001 1.0 0.29 0.07–1.19 <0.001 1.0

Radiation treatment modality

WBRT 1.84 0.95–3.58 1.27 0.61-2-61 0.514 1.70 0.88–3.30

SRS 0.51 0.24–1.06 0.071 1.0 0.32 0.13–0.77 0.012

BM location

Supratentorial 0.59 0.38–0.93 0.63 0.41–0.96

Infratentorial 1.69 1.08–2.66 0.022 1.60 1.04–2.48 0.034

Perilesional edema diameter (PED), mm

≥27
<27

2.88
0.35

1.83-4.55
0.22–0.55 <0.001

3.13
1.0

1.68-5.84 <0.001
2.23
0.47

1.34-3.27
0.31–0.73 0.001

1.85
1.0

0.93–3.66 0.76

Gross tumor diameter (GTD), mm

<17 0.78 0.50–1.23 0.518 0.278-0.968 0.039 0.88 0.56–1.39 0.471 0.23–0.95 0.036

≥17 1.28 0.82–2.00 0.287 1.00 1.13 0.72–1.78 0.593 1.00

PED/GTD ratio

<1.0 0.61 0.15–2.52 0.90 0.29–2.89

≥1.0 1.61 0.40–2.82 0.503 1.09 0.35–3.49 0.872

Best overall response

CR + PR 0.57 0.33–0.99 0.52 0.29–0.92

SD + PD 1.74 1.00–3.02 0.050 1.93 1.08–3.45 0.026

DpR category

NTR 3.68 1.67–8.16 3.54 1.60–7.88

Q1 0.89 0.43–1.88 1.06 0.51–2.22

Q2 1.28 0.72–2.26 0.81 0.44–1.52

Q3 0.83 0.46–1.56 0.76 0.37 -1.59

Q4 0.46 0.20–1.07 0.007 0.77 0.32–1.81 0.034
F
rontiers in Oncol
ogy 08
 front
iersin.or
DpR, depth of response; PS, performance status; WBRT, whole brain radiotherapy; SRS, stereotactic radiosurgery; CR, complete response; PR, partial response; SD, stable disease; PD, progressive
disease; IASLC, International Association of the Study of Lung Cancer; ATS, American Thoracic Society; ERS, European Respiratory Society. Histological grading of differentiation provides a
simple architectural grading system, most applicable to resection specimens, with grade 1 (well differentiated; lepidic [LEP] predominant), grade 2 (moderately differentiated; acinar or papillary
[ACI/PAP] predominant), and grade 3 (poorly differentiated; solid or micropapillary [SOL/MIP] predominant). Two-tailed significance was set at p ≤ 0.05 (bold values).
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PED, median OS was 18.4 (95% CI 14.9–21.8) versus 7.9 (95% CI

6.0–9.7) months [HR 2.1, (95% CI 1.4–3.3); p = 0.001] in the minor

versus major PED subgroup, respectively (Figure 3C). The 6-month

OS rate was 72.5% vs. 45.9%, p = 0.007, favoring those patients with

a minor PED.

On bivariate analysis, factors associated with a higher hazard for

death were male patients, Lung-molGPA index of 0–1,

infratentorial brain lesions, a major PED, and stable or

progressive disease as a best intracranial response. In contrast,

protective factors for death were using SRS as the chosen

radiation modality. On the multivariate analysis in model 1, only

the Lung-mol GPA score of 0–1 increased the risk of death [HR 11.8

(95% CI 2.2–62.2)]. In contrast, a GTD < 17 mm was associated

with a better OS [HR 0.47 (95% CI 23–0.95); p = 0.036]. PED ≥

27 mm only showed a tendency to increase the risk of death [HR

1.85 (95% CI 0.93–3.66); p = 0.76] (Table 3).

The PED was not a significant factor for death in the

multivariate analysis in model 2. However, a GTD <17 mm

continued to be a protective factor for death [HR 0.38 (95% CI

0.15–0.93), p < 0.035] after the adjustment by the individual

components of the Lung-molGPA score (Table S1).
4 Discussion

This retrospective single-center study highlights the relevance

of PED as a potential biomarker for intracranial response to

radiation therapy in patients with NSCLC and BM. Our results

strongly indicate a negative predictive role of PED on response and

risk of progression. Peritumoral vasogenic cerebral edema is a

significant cause of morbidity and mortality in patients with CNS

tumors, including NSCLC BM. This condition is associated with

blood–brain barrier (BBB) disruption, leakage of plasma fluid and

proteins, increased interstitial fluid pressure (IFP), poor tissue

perfusion, and inefficient delivery of oxygen, which results in a

hypoxic tumor microenvironment (26).

Hypoxia-mediated radioresistance in CNS tumors is mediated by

multiple mechanisms related to cell survival, accelerated tumor

proliferation, and repopulation ability (27). Hypoxia-inducible factors

(HIFs) play a critical role in regulating genes enabling cell survival in

hypoxic environments, including those involved in glycolysis,

angiogenesis, and expression of growth factors that promote tumor

regrowth (28). Hypoxic tumor microenvironment also drives genomic

instability and downregulates DNA repair, leading to cancer

progression and radioresistance (29). Furthermore, tumor hypoxia is

strongly associated with acquired stem cell phenotype expression in

which cancer stem cells (CSCs) are characterized by a reduced

accumulation of radiation-induced DNA damage, an increased

capacity of DNA Damage Response (DDR) pathway repair, and the

activation of anti-apoptotic signaling (29). In addition, CSCs also have

lower levels of reactive oxygen species (ROS) and tend to overexpress

ROS scavengers, which limits the extent of ROS-dependent damage

induced by ionizing radiation (30). Such hypothesis would be

supported by the observations of a significantly decreased proportion

of tumor shrinkage among patients with greater PED extent.
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In the response analysis dataset, a negative association was

found between PED and iORR, where patients with a higher PED

have a decreased likelihood of achieving intracranial response,

consistent with previously published reports (22, 23, 31).

Moreover, the study showed a significant association between

iDpR and long-term outcomes, which clarifies the significant role

of intracranial tumor reduction for survival. Additional studies may

further evaluate the role of iDpR as a surrogate endpoint for

treatment efficacy in BM.

Measurement of PED represents a simple and accessible

potential tool for predicting intracranial response following

radiation therapy. Furthermore, it could be easily integrated into

clinical practice to identify high-risk patients suitable for treatment

intensification strategies. It could also support the rationale to

combine anti-angiogenesis agents with radiation therapy to

reduce peritumoral vasogenic edema and improve outcomes.

In preclinical and clinical models, agents that target the VEGF

signaling pathway have the potential to normalize tumor vasculature,

decrease permeability, alleviate edema, lower IFP, improve tissue

oxygen levels, and enhance the efficacy of cytotoxic therapies like

radiation, chemotherapy, or immunotherapy (32–34). Vascular

normalization facilitates the delivery of exogenous agents (35) and

enhances DNA damage and cell death through increased ROS after

irradiation (35). Additionally, it activates tumor immune response

by promoting the maturation and activity of dendritic cells and

infiltration of T cells (36, 37), minimizing steroid use and facilitating

immunotherapy. Few studies have explored the efficacy and safety of

radiotherapy (WBRT or SRS) combined with anti-VEGF, especially

bevacizumab, demonstrating encouraging response rates and

acceptable safety profile but without consistent survival benefit

(38–40).

In the survival analysis, the crucial prognostic role of PED for

survival outcome was confirmed; however, it did not remain

significant after the adjustment for other relevant prognostic

factors. Noteworthy, the PED remained significantly associated

with iPFS when adjusted by the other clinical–pathological

variables. Notably, PED remained independently associated with

poorer outcomes even in the presence of robust prognostic indexes,

such as Lung-molGPA. Thus, it is worthwhile to explore the

addition of PED to established graded predictive assessment

models to improve the accuracy of prognosis for NSCLC patients

with BM.

The limitations of this study are the retrospective nature design

and the limited number of patients, which prevent us from applying

more advanced statistical methods to diminish potential bias. Also,

the heterogeneity of the analyzed population, including many

oncogene-addictive tumors and various therapies involving target

therapy, makes our results difficult to generalize. However, despite

the fact that one-third of our cohort harbored an oncogene

addictive alteration, the EGFR-TKIs employed were first and

second generation in most cases; thus, we did not expect that this

factor would affect intracranial response and progression-free

outcomes due to the limited brain penetration of these drugs.

Moreover, our population received different radiotherapy

modalities, which can introduce significant biases to drive
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definitive conclusions. Of note, WBRT was the chosen radiation

modality in 90%, which limits driving conclusions in those patients

treated with SRS. Finally, the PED measurement was a fundamental

difference between prior studies that might compromise the

reproducibility of results.
5 Conclusion

PED is a strong predictor of response to radiation therapy in

NCSCLC BM. Identification of PEDmight help better tailor therapy

in this context and identify candidates for intensification strategies

to improve intracranial response. PED could be a user-friendly tool

to predict the survival of patients. It is worthwhile to explore the

addition of PED to established graded prognostic assessment

models. Further studies are needed to validate these findings. The

potential efficacy of anti-angiogenic agents in high-risk patients

needs further examination through phase III randomized

controlled trials.
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