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Cellular specificity of lactate
metabolism and a novel lactate-
related gene pair index for
frontline treatment in clear cell
renal cell carcinoma

Xiangsheng Li, Guangsheng Du, Liqi Li and Ke Peng*

Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
Background: Although lactate metabolism-related genes (LMRGs) have

attracted attention for their effects on cancer immunity, little is known about

their function in clear cell renal cell carcinoma (ccRCC). The aim of this study was

to examine the cellular specificity of lactate metabolism and how it affected the

first-line treatment outcomes in ccRCC.

Methods:GSE159115 was used to examine the features of lactatemetabolism at the

single-cell level. Utilizing the transcriptome, methylation profile, and genomic data

from TCGA-KIRC, a multi-omics study of LMRG expression characteristics was

performed. A prognostic index based on a gene-pair algorithmwas created to assess

how LMRGs affected patients’ clinical outcomes. To simulate the relationship

between the prognostic index and the frontline treatment, pRRophetic and

Subclass Mapping were used. E-MTAB-1980, E-MTAB-3267, Checkmate, and

Javelin-101 were used for external validation.

Results: The variable expression of some LMRGs in ccRCC can be linked to

variations in DNA copy number or promoter methylation levels. Lactate

metabolism was active in tumor cells and vSMCs, and LDHA, MCT1, and MCT4

were substantially expressed in tumor cells, according to single-cell analysis. The

high-risk patients would benefit from immune checkpoint blockade

monotherapy (ICB) and ICB plus tyrosine kinase inhibitors (TKI) therapy,

whereas the low-risk individuals responded to mTOR-targeted therapy.

Conclusions: At the single-cell level, our investigation demonstrated the cellular

specificity of lactate metabolism in ccRCC. We proposed that the lactate-related

gene pair index might be utilized to identify frontline therapy responders in

ccRCC patients as well as predict prognosis.

KEYWORDS

lactate metabolism, single cell analysis, gene pair algorithm, mTOR-targeted therapy,
immune checkpoint blockade
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Introduction

Metabolic disorders are widely involved in the occurrence and

development of various diseases (1, 2), and recent evidence has

accumulated that metabolic disorders in cancer cells are not only a

hallmark of cancer, but may also be the fundamental cause of tumors.

In 1923, Otto Warburg observed that tumor cells tend to take up large

amounts of glucose and produce excess lactic acid through anaerobic

glycolysis. This property will not change in the presence of sufficient

oxygen, a phenomenon known as the Warburg effect (3). Lactate has

long been considered a metabolic waste product, but recent studies

have identified lactate as one of the most significant metabolites in the

tumor microenvironment that contributes to microenvironmental

acidosis and immunosuppression. Malignant cell-produced lactic

acid causes acidification of the tumor microenvironment (TME),

promotes proliferation and accumulation of myeloid-derived

suppressive cells (MDSCs), and inhibits the cytolytic function of

effector cells (4). Lactic acid inhibits the differentiation and

maturation of monocytes into dendritic cells, and several studies

have confirmed the ability of lactic acid to induce polarization into

M2-type macrophages (5–7). Lactic acid inhibits antigen presentation

function by activating GPR81 in DC cells and inhibiting the

production of cAMP, IL-6, IL-12, MHC-II, and other

immunoreactive factors (8). A recent study reported that lactate

inhibits RIG-I-like signaling and suppresses type I interferon

production by inhibiting MAVS protein polymerization (9). Lactate

signaling also promotes Treg differentiation and its mediated

inhibition, promotes inflammatory Th17 cell differentiation, and

inhibits the killing effect of CD8+ T cells and NK cells (10, 11).

Moreover, lactate serves as an important carbon source for tumor

cells as well as immune cells, and it is taken up by cells to mediate

various intracellular signaling and function changes. Zhao et al.

reported for the first time that lactate can also act as a modifying

substrate to mediate lysine lactylation modification of histones under

the action of histone acetyltransferase p300, which regulates the

expression of genes related to macrophage polarization during

immune activation (12, 13). Subsequently, HDAC1-3 was identified

as the most potent lysine lactylation modification “eraser” (14).

The modern lifestyle has greatly changed the disease spectrum of

cancer. In developed countries or urban areas, the incidence rate of

cancer related to obesity and westernized lifestyle raised very high,

including colorectal cancer, prostate cancer, kidney cancer and bladder

cancer {Chen:fh}. Clear cell renal cell carcinoma (ccRCC) is a typical

metabolic disorder tumor with robust lipid and glycogen

accumulation, and recent studies have increasingly focused on the

role of lactate-related metabolic factors in renal carcinogenesis. Lactate

dehydrogenase, which catalyzes the production of lactate from

pyruvate and is deeply involved in the regulation of the Warburg

effect, was the first widely studied regulator in RCC.Hala et al. reported

for the first time the correlation between LDHAupregulation and poor

prognosis in RCC patients through tissue immunohistochemical

studies (15). Zhao et al. discovered that LDHA was highly expressed

in RCC tissues and that it mediated tumor metastasis by promoting

epithelial-mesenchymal transition (EMT) (16, 17). Further research

revealed that the promoting effect of lactate on EMT may be partially
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dependent on Sirtuin-1 activity inhibition (18). LDH reflects tumor

tissue hypoxia and neovascularization levels and is widely used as a

tumor load-related marker. A retrospective clinical trial reported that

serum baseline LDH levels were an independent risk factor for

postoperative PFS in patients with metastatic ccRCC treated with

Nivolumab and were associated with poorer PFS in patients in the

IMDC staging favorable group (19). Systematic reviews and meta-

analyses announced that a high baseline serum LDH to lymphocyte

ratio was independently correlated to the prognosis of metastatic RCC

patients treated with tyrosine kinase inhibitors (TKI) (20, 21). Zhang

et al. conducted a meta-analysis of lactate dehydrogenase’s prognostic

role in metastatic RCC and found that high preoperative serum LDH

levels were significantly correlated with poor postoperative overall

survival (OS) and progression-free survival (PFS) (22). In addition,

MCTs, which mediate the intercellular lactate shuttle, have also

received extensive attention. By analyzing microarray data

constructed from a large number of surgical specimens and

performing immunohistochemical staining, Paul et al. demonstrated

that MCT1 was an independent predictor of cancer-specific survival

(CSS) in ccRCC (23). Overexpression of MCT1 and its partner CD147

have also been used to predict ccRCC progression (24). These findings

suggest that lactate-related metabolism factors profoundly influence

RCC progression and hold predictive value for frontline

adjuvant therapy.

The value of lactate metabolism-related genes (LMRGs) in the

prognosis of ccRCC has been recently investigated, but there are

several shortcomings (25, 26). First, the lactatemetabolism regulators

discussed in prior publications were not comprehensive; second,

their conclusions have not been validated in real-world patient

cohorts treated with targeted therapy or immune checkpoint

blockade (ICB); and, in addition, there is a lack of single-cell level

investigation to elucidate the cell type specificity of lactate

metabolism. In the present study, we explain the alteration of

lactate metabolism-related processes and regulators with respect to

different immune cell types. We proposed a novel prognostic index

by constructing lactate-related gene pairs, which has exhibited robust

stability and predictive power in previously published datasets

because it does not depend on absolute gene expression level. Most

importantly, validation in cohorts treated with TKI or ICB directly

demonstrated the value of the lactate-related gene pair index

(LRGPI) in guiding the selection of frontline adjuvant strategies.
Materials and methods

Data acquisition and pre-processing

In this study, we integrated several independent datasets for

comprehensive analysis. We obtained transcriptomic and 450K

methylation sequencing profiles and the Masked Copy Number

segment file for the TCGA-KIRC cohort from the Xena portal as a

development dataset. FPKM values were transformed into TPM

values to maintain comparability with MicroArray platform-

derived data. Gene expression and clinical profiles of E-MTAB-

1980 and E-MTAB-3267 were obtained from the ArrayExpress
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portal (https://www.ebi.ac.uk/arrayexpress/) as the test set. In

addition, several datasets were obtained from the GEO portal

(https://www.ncbi.nlm.nih.gov/gds/?term=) for external

validation. Specifically, six datasets based on the GPL570 platform

(GSE36895, GSE53757, GSE66272, GSE73731, GSE46699, and

GSE22541) were combined into the external validation set

GPL570, and three datasets based on GPL10588 (GSE40435,

GSE105261, and GSE65615) were merged into GPL10588. The

“sva” function of the “Combat” package was used to merge data

generated from the same platform to remove batch effects. The

Checkmate cohort consisted of 181 cases of metastatic ccRCC

treated with Nivolmab and 130 cases treated with Everolimus,

with TPM transcriptome data and corresponding clinical

information obtained from the report of Brau et al. (27). In

addition, the phase III clinical trial Javelin-101 enrolled 726 cases

of advanced RCC and compared the efficacy of Sunitinib and

Avelumab plus Axitinib. The TPM transcriptome data and

clinical outcome of Javelin-101 were obtained from Motzer et al.

(28). The log ratio transformed proteomic expression data and their

biospecimen information were downloaded from the CPTAC portal

(https://proteomics.cancer.gov/programs/cptac) for protein level

validation. Briefly, there were 83 normal samples and 111 ccRCC

tumor samples in the CPTAC-ccRCC cohort. Representative

normal kidney tissue and renal cancer pathology IHC slides were

downloaded from the HPA portal (https://www.proteinatlas.org).
Curation of genes involved in the lactate
metabolism process

Six GO processes involved in lactate metabolism were archived

and collected from MSigDB, including GO_LACTATION,

GO_LACTATE_METABOLIC_PROCESS, GO_LACTATE_TRA

NSMEMBRANE_TRANSPORT, GO_LACTATE_TRANSMEMB

RANE_ TRANSPORTER_ACTIVITY, GO_LACTATE_

DEHYDROGENASE_ACTIVITY , GO_L_LACTATE_

DEHYDROGENASE_ACTIVITY. In total, these gene sets contain

74 hub genes related to lactate metabolism.
Differentially expressed genes analysis and
genomic heterogeneity analysis

The “limma” package was used to perform DEG analysis on

high throughout sequencing/Microarray-derived data.

Nonsynonymous mutations of a single gene were extracted from

the Mutect file and defined with reference to Brau et al (27). The

methylation data were preprocessed with reference to the published

report (29). The gene promoter region was defined as TSS1500,

TSS200, 5’-UTR, and 1stExon. The median value of the promoter

region probe was used to represent the promoter region

methylation level of a single gene. The copy number variation

(CNV) file and reference markers file were submitted to the GISTIC

2 .0 modules in the GenePat t e rn p la t form (ht tps : / /

cloud.genepattern.org/gp/pages/index.jsf) to perform CNV
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analysis. The Human Hg38 reference genome was set as a

reference, the amplifications and deletions threshold were set at

0.3 (q value<0.05), and the confidence level was set at 0.99.
Single-cell RNA sequencing data analysis

sc-RNA seq data for seven ccRCC tumors and six normal samples,

along with cell type annotations, were stored as GSE159115 in the GEO

database. The “Seurat” package was used to create single-cell objects for

each sample, retaining cells with mitochondrial genes 25% of the time

and nFeature_RNA > 300. The data of each sample was normalized,

and 2000 genes with the highest variance were chosen based on

variance stabilization transformation. Anchors were identified using

the FindIntegrationAnchors function, and all samples were integrated

into one Seurat object using the IntegrateData function to remove

batch effects. The Seurat objects were then downscaled using the umap

method, and visualization was done using the “scRNAtoolVis”

package. Gene set enrichment assessment at the single-cell level was

performed using the “AUCell” and “SCpubr” packages, respectively.

Cell-specific molecular markers were identified by the FindAllMarkers

function (logFCfilter=0.25, adjusted p-value <0.05, min.pct=0.25).

CytoTRACE can assess the differentiation status of individual cells

while also generating a numeric vector of each gene’s Pearson

correlation with CytoTRACE (30). The degree of dedifferentiation of

individual tumor tissues was assessed using a curated stem gene set of

109 genes with proliferation and immune-related genes removed as

proposed by Miranda et al. (31).
Western blotting

The human normal renal epithelial cell line HK2 and the tumor

cell lines ACHN, 786-O, and OS-RC-2 were used for western

blotting analysis in according to the standard procedure. The

antibodies were purchased from the ABclonal Technology

company (LDHA, #A0861, LDHB, #A7625).
Lactate metabolism-related gene
pairs construction

Gene alias in different datasets was manually checked to keep

consistent with the current gene symbols in Genecard (https://

www.genecards.org/), and we retained 64 lactate metabolism genes

detected in all datasets to construct lactate-related gene pairs. The

gene pair construction procedure was based on that previously

reported in the literature, with some modifications to the details

(32). The main steps include the following: 1) identification of genes

significantly associated with OS using uni-variate Cox regression

(p<0.05); 2) pairwise comparison of the prognostic gene Gi with all

LMRGs Gj, and for each gene pair (Pij) starting with Gi, Scoreij=1 if

Gi > Gj and 0 otherwise; 3) if Scoreij is consistent (i.e. Scoreij = 0 or

1) in more than 70% of the samples, then this gene pair was

abolished. This method calculates scores based on the relative
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expression levels between gene pairs without considering absolute

gene expression levels or data normalization methods, thus

providing superior stability and cross-platform reproducibility.
Development of a prognostic index using
adaptive LASSO algorithm

To enhance the stability of the prognostic index, patients with

an OS time shorter than 1 month were excluded before the

construction and validation of the prognostic index. LMRGPs

found to be significantly associated with OS by performing

univariate Cox regression (p < 0.05) were chosen as LRGPI

candidates. To minimize the excessive penalty of parameters in

traditional LASSO regression, we applied the adaptive lasso method

to screen the best combination of parameters to construct LRGPI.

Adaptive lasso is done using the “glmnet” package. Specifically, the

process consists of the following steps: 1) run a 10-fold cross-

validated ridge regression to obtain penalty weight coefficients; 2)

run a 10-fold cross-validated LASSO regression based on the

penalty weights. The adaptive lasso gives the optimal combination

of parameters and the corresponding non-zero coefficients for

reaching the minimum partial likelihood deviation, and LRGPI is

calculated as the sum of LMRGP scores (1 or 0) multiplied by the
Frontiers in Oncology 04
corresponding coefficients. The scheme of LRGPI construction and

workflow of this study is illustrated in Figure 1.
Deconvolution of the immune infiltration
and gene set activity evaluation

We used the “IOBR” package to analyze the TME components.

IOBR integrated nine mostly used deconvolution methods,

including CIBERSORT, EPIC, MCPcounter, xCELL, ESTIMATE,

TIMER, quanTIseq, and IPS, and numeric published gene sets

related to tumor metabolism, cancer hallmarks, TME, etc. (33).

CIBERSORT was selected for deconvolution assessment of the level

of infiltrating immune cells. The “ssgsva” algorithm built into this

package was used for gene set enrichment to assess the activity of

the tumor metabolism activity. Enrichment analysis of cancer

hallmarks and TME was performed using the “fgsea” package.
Predicting the correlation of LRGPI with
frontline adjuvant therapy

The “pRRophetic” package was used to estimate the drug

sensitivity of individual samples, as reported by Zhou et al. (34).
FIGURE 1

Graphical Abstract: The scheme of LRGPI construction and workflow of this study.
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Specifically, the transcriptomic data of urological cell lines and

experimentally determined IC50 values for the target drugs were

designated as standard data, and the package used the

transcriptomic data of the samples to be tested to construct a

ridge regression model, thereby deriving the estimated IC50

values of the samples to be tested. A gene expression pattern

similarity comparison was performed using the Subclass Mapping

module of the GenePattern portal. Specifically, 47 melanoma

patients treated with CTLA4/PD-1 blockade and their drug

response labels were designated as standards. Their transcriptome

data and tags were submitted to the portal module together with the

samples to be tested and grouping labels to obtain gene expression

similarity test p-values (35).
Statistical analysis

Visual image plotting and statistical analysis of this study were

completed using R 4.1.1. The classic Kaplan-Meier curve was used

to visualize patient survival status, while the log-rank test was used

to differentiate survival differences between groups. The prognostic

value of numerical or categorical factors was assessed using

univariate or multivariate Cox regression models, and forest plots

were drawn using the “forestplot” package. The nomogram under

the univariate model was plotted using the “rms” package, and the

predictive efficacy of the model was assessed using ROC curves and

calibration curves. The heat map in the paper is drawn using the

“ComplexHeatmap” package. We used the Wilcoxon test or the

Kruskal-Wallis test for two-group or multi-group continuous

variables, and a two-sided test with a p-value < 0.05 was

considered a statistically significant difference. The Bonferroni

correction was used to reduce the likelihood of Type I error in

multiple replicate tests.
Results

Multi-omics analysis of differentially
expressed lactate metabolism-related
genes in ccRCC

DEG analysis of the three cohorts (TCGA-KIRC, GPL570, and

GPL10588) identified 30 DELMRGs (Figures S1A–C). The

mutation landscape did not find high-frequency mutations in

DELMRGs (Figure 2A, frequency > 5%), but CNV analysis

revealed frequent gene copy number amplification and deletion

(Figure 2B). Further, we examined the promoter methylation levels

of DELMRGs and found that several genes (such as OAS2, KALRN,

SLC16A7, PER2) had significantly lower methylation levels in

tumor samples, while several genes (SLC6A3, CDO1, and

SERPINC1) were significantly higher methylated (Figure 2C).

Proteomic data verified that LDHA, HK2, NCOR2, CAV1,

CCND1, OAS2, VEGFA, MED1, and PAM were significantly

higher expressed, while PFKFB2, LDHB, PNKD, LDHD, HAGH,

SLC16A7, SLC5A12, GOT2, and SLC25A12 were lower expressed

in tumor samples (Figure S1D; Supplementary Table 1). In addition,
Frontiers in Oncology 05
the DELMRGs were further validated in protein expression level by

their representative normal and tumor tissue staining slides in HPA

portal (Figure S2). We then described the correlation and

prognostic value of the DELMRGs using an integrated network

(Figure 2D). Most DELMRGs interacted positively, and many

genes, including MED1, ZBTB7B, SOCS2, SLC6A3, SLC5A12,

SLC25A12, PRLR, PER2, PAM, NCOA1, LDHD, LDHA,

KALRN, HAGH, GOT2, CCND1, and APLN played protective

roles in patients’ overall survival (OS).
Disordered lactate metabolism processes
in different cell types

Sc-RNA seq data can provide complementary information on

cell-level variation beyond bulk-tissue sequencing data. According

to the original literature (36), tumor tissue-derived cells were

annotated into 13 cell types (Figure 3A). Each single cell was

scored for six lactate metabolism-related biological process

activities by the AUCell algorithm, and activities of these

processes of the tumor tissue-derived cells were all significantly

higher than those of the normal tissue-derived cells (Figure 3B).

Further comparison across all tumor tissue cell types revealed that

tumor cells, pericytes, endothelial cells, and vSMC cells hold the

highest lactate metabolism activity than other cell types, while

lactate transport across membranes was most active in tumor

cells. The lactate dehydrogenase and L-lactate dehydrogenase

activities of tumor cells, CD8+ T cells, vSMC cells, and MKI67+

macrophages were also higher than other cell types (Figures S3A–

F). In addition, the enrichment results produced by “SCpubr”

package highlighted the prominent lactate dehydrogenase and L-

lactate dehydrogenase activities in tumor cells (Figure 3C).

We explored the expression levels of four major lactate

dehydrogenase (LDHA, LDHB, LDHC, and LDHD) and found

that LDHA was significantly higher expressed in tumor tissue-

derived cells and LDHB was higher expressed in normal tissue-

derived cells (Figure 4A). Further, cell line experiments showed a

significant increase in LDHA expression and a significant decrease

in LDHB expression in the tumor cell lines ACHN, 786-O, and OS-

RC-2 relative to the human normal renal epithelial cell line HK2

(Figure 4B). Cell-specific molecular markers were then extracted

(Supplementary Table 2). We observed the expression level of

LMRGs in different cell types, and we found that LDHA was

mainly expressed in tumor cells and ACKR1+ endothelial, while

LDHB was highly expressed in vSMC, tumor cells, mast cells, and

CD8+ T cells (Figure S4). Cells absorb glucose via GLUT1(SLC2A1),

hypoxic cells release lactate through MCT4(SLC16A4), while tumor

cells and endothelial cells absorb lactate through MCT1(SLC16A1).

We explored the expression levels of transporter proteins in

different cell types and found that GLUT1 and MCT1/4 were

most highly expressed in ccRCC tumor cells (Figure 4C). These

results suggest the idea that that lactate in the TME is mainly

produced by vSMC and consumed and utilized by ccRCC tumor

cells. Moreover, pericytes, endothelial cells, MKI67+ macrophages,

and CD8+ T cells also hold a certain lactate uptake ability,

suggesting the potential impact of lactate on their biological
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functions. In addition, the results of CytoTRACE showed that

LDHA is highly correlated with inferred cancer stemness at the

single-cell level (Figure 4D), and we verified the correlation at the

bulk-tissue level using the TCGA cohort (Figure 4E).
Establishment of a LRGPI to predict
patients` prognosis

Here, we wonder whether the lactate metabolism-related

prognostic index could be used to assess the clinical outcome of

ccRCC patients. To minimize the impact caused by different

sequencing platforms and standardization methods, we converted

the lactate metabolism-related gene expression matrix into a gene

pair matrix with values of 0 or 1. The univariate Cox regression

identified 29 prognosis-related lactate metabolism genes. A total of

129 gene pairs were generated, and 96 gene pairs were significantly

correlated to patients` OS. Adaptive lasso regression yielded the

best combination of 18 gene pairs (Figures 5A, B, Supplementary

Table S3). LRGPI was calculated as the method described. Patients

were divided into high-and low-LRGPI groups based on the median

LRGPI value, and the survival curves showed that patients in the

high- LRGPI group had significantly lower overall survival (OS) and

disease-free survival (DFS) rates than those in the low-LRGPI group

(Figures 5C, D). The predictive efficiency of LRGPI for 1-year, 3-

year, and 5-year prognosis reached 0.778, 0.755, and 0.803 for OS

and 0.678, 0.720, and 0.723 for DFS, respectively (Figures 5E, F).

LRGPI was proved to be an independent risk factor for patients`

prognosis by adjusting clinical parameters in the multivariate Cox

model (Figure 5G). To further improve the accuracy of clinical

application, we integrated tumor T-stage, histologic grade,

metastatic status, patient age, and LRGPI to construct a
Frontiers in Oncology 06
nomogram to predict patients` OS (Figure 5H). The ROC curve

was used to assess the predictive capacity of the nomogram, and the

area under the curve (AUC) reached 0.89, 0.85, and 0.86 for overall

survival at 1, 3, and 5 years, respectively (Figure 5I). The predictive

accuracy of the nomogram was further evaluated using the

calibration curve, and the predicted OS status at 1, 3, and 5 years

was found to be very close to the actual observation, indicating a

robust predictive capability of the nomogram (Figure 5J).

The GSEA results suggest activation of metabolic activities such

as glycolysis, lipogenesis, fatty acid metabolism, and hypoxia in the

high-LRGPI group samples, indicating high proliferation and

energy demand in these samples. Meanwhile, immune response

signals such as IFN responses, TGFb signaling, IL2/STAT5

signaling, and KRAS signaling were also significantly upregulated

(Figure S5A). To elucidate the association between LRGPI and

cancer metabolism, enrichment scores for 103 tumor metabolism

signals were calculated, and 75 signals were differentially distributed

between the two groups (Figure 6A). We found that aerobic energy

production pathways such as glycogen degradation, sugar

degradation, the tricarboxylic acid cycle, pyruvate metabolism,

and lactate degradation were significantly inhibited in patients

with high LRGPI scores. At the same time, LRGPI was also

negatively correlated to fatty acid degradation and long-chain

fatty acid synthesis (Figure 6B), suggesting that fatty acids

accumulated in the samples of the high-LRGPI subgroup.
External validation and efficacy comparison
of LRGPI

LRGPI were then generated for each tumor sample in E-

MTAB1980 and E-MTAB3267 for external validation. Similar to
B

C

D

A

FIGURE 2

(A) Heatmap with bar plots displayed the mutation rates of DELMRGs. (B) Heatmap displayed the amplification and deletion landscape of 30
DELMGs. (C) Heatmap showed the promoter methylation level of 30 DELMGs. (D) Integrated network of correlation and prognostic value of the
DELMRGs.
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the TCGA-KIRC, patients in the high-LRGPI subgroup identically

showed significantly lower OS or PFS rates than patients in the low-

LRGPI subgroup (Figures 6C, D). The predictive efficacy of LRGPI

for 1-year, 3-year, and 5-year OS in E-MTAB-1980 was 0.753, 0.780,

and 0.722, respectively (Figure 6E). For metastatic ccRCC patients

treated by Sunitinib, the predictive power for PFS at 1, 2, and 3 years

was 0.657, 0.725, and 0.768, respectively (Figure 6F). LRGPI

remained an independent risk factor after adjusting clinical

factors in E-MTAB1980 (Figure S5B). In addition, we applied the

nomogram established in TCGA-KIRC to E-MTAB1980 (Figure

S5C), and the calibration curve still observed a high degree of
Frontiers in Oncology 07
agreement between predicted and actual survival status (Figure

S5D). The clinical nomogram achieved impressive predictive

powers of 0.89, 0.92, and 0.87 for 1-year, 3-year, and 5-year OS,

respectively (Figure S5E).

Sun et al. used 3 lactate metabolism genes (FBP1, HADH, and

TYMP) to establish a prognostic signature to predict the ccRCC

prognosis (26). We compared the predictive efficacy of Sun with

LRGPI (Figures 6G–J). LRGPI achieved comparable or higher

predictive power with Sun in all cohorts, but only in the TCGA-

KIRC did the difference in the AUC value reach a statistically

significant level.
B

C

A

FIGURE 3

Lactate metabolism was activated in ccRCC tumor samples and different cell types. (A) UMAP reduction plots of cells grouped by sample and cell
types. (B) The boxplots presented the “AUCell” scores that evaluated lactate metabolism processes at the single-cell level between tumor and
normal samples. (C) Heatmap presented the enrichment scores produced by ‘Scpubr’ package in tumor sample-derived single cells.
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Correlation of LRGPI and targeted therapy
for ccRCC patients

E-MTAB-3267 included 53 patients with metastatic ccRCC

treated with sunitinib and responsive labels. For Sun`s lactate

score, no significant difference in PFS between the high-and low-

score groups was observed (Figure 7A). Patients were grouped

according to Sunitinib responsiveness, and no significant differences

in IRGPI or Sun`s lactate score were observed between the two

groups (Figures 7B, C). The Checkmate trial documented clinical

data from patients who failed initial treatment with sunitinib, and

among 130 advanced ccRCC patients with complete records, we

found that while no significant difference in PFS between the high-

and low-IRGPI groups was observed, patients in the low-IRGPI

subgroup showed extended OS time (Figures 7D, E). To further

validate our findings, ridge regression was run to calculate the

estimated IC50 values for each tumor sample in the 4 cohorts

(TCGA, E-MTAB1980, GPL570, and GPL10558) using drug

sensitivity data (IC50 values) provided by GDSC for urological

tumor cell lines. Simulation results for the four cohorts consistently

showed significantly lower IC50 values for Sunitinib and

Temsirolimus in the low-IRGPI subgroup samples than in the

high-IRGPI subgroup samples (Figures 7F–I). Validation results

from drug-sensitivity simulation extrapolation and real-world

cohorts exhibited a high degree of consistency in terms of

mechanistic target of rapamycin (mTOR)-targeted agents,

suggesting that patients in the low-IRGPI subgroup could benefit

from mTOR-targeted therapy.
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Correlation of LRGPI and immunotherapy
benefit for ccRCC patients

According to the immunophenotype, inflammatory and

lymphocyte-depleted ccRCC scored the lowest, and the wound-

healing subtype scored the highest (Figure S5F). Using CIBERSORT

to deconvolute the immune components, we found that the low-

IRGPI subgroup harbored a significantly higher abundance of

antigen-presenting cells (DCs, macrophages), monocytes, mast

cells, and memory CD4+ T cell infiltrates, whereas the high-

IRGPI subgroup had a higher abundance of Treg (Figure 8A). We

then performed GSEA analysis of 119 TME-related signals and

found significant activation of important immune activation

markers such as angiogenic genes (GPAGs), effector CD8+ T,

TCR signaling, antigen presentation signaling, MHC-II class

signaling, natural killer cytotoxicity, and Merck18 signaling, as

well as activation of ICB resistance signaling in the high-IRGPI

subgroup (Figure 8B).

To clarify whether the immunoreactivity difference ultimately

affects immunotherapy outcomes, we divided all patients in the

Checkmate cohort into high- and low- LRGPI subgroups and found

that patients in the low- IRGPI subgroup who received Nivolumab

treatment showed no significant survival benefit beyond those who

received Everolimus in terms of either PFS or OS (Figures S6A, B).

However, patients in the high-IRGPI subgroup who received

Nivolumab showed significantly longer OS time in comparison to

those treated with Everolimus (Figures S6C, D). There are two

possible explanations: either the high-IRGPI subgroup patients
B C

D E

A

FIGURE 4

(A) Stacked violin plot displayed the expression level of LDHA, LDHB, LDHC, and LDHD in tumor and normal sample cells in sc-RNA Seq data
(GSE159115), (B) LDHA and LDHB expression level were validated in RCC cell lines by Western blot. (C) Clustered dot plots of SLC2A1, SLC16A1, and
SLC16A4 in tumor sample cells. (D) Bar plot showed the Pearson`s correlation of the top20 genes with dedifferentiation status calculated by
CytoTRACE. (E) Scatter plot with a linear regression correlation of LDHA expression and cancer stemness evaluated by PNAS stem gene set in
TCGA-KIRC.
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were not the best population to benefit from Everolimus, or the

high-IRGPI subgroup patients had a significant response to

Nivolumab. To test the above conjecture, we performed a gene

expression profile comparison using melanoma samples treated

with CTLA4/PD-1 blockade. The results showed that the gene

expression profiles of the high-IRGPI samples showed significant

concordance with PD-1-responsive melanoma samples in the four

cohorts (Figures 8C–F, Bonferroni adjusted p-value < 0.05),

demonstrating that the high-IRGPI samples were likely to

respond to PD-1 blockade. High-IRGPI samples showed

significantly higher levels of PD-1 expression in the four cohorts

(Figures 8G–J).

The strategy of ICB plus TKI adjuvant therapy has pushed the

adjuvant treatment of RCC into a new era, and the combination

strategy is believed to be beneficial in reducing the multiple adverse

effects of monotherapy and improving patient response rates (37).

We then ask whether LRGPI has predictive value for the
Frontiers in Oncology 09
combination treatment outcomes. The Javelin-101 trial enrolled

354 RCC patients treated with Avelumab plus Axitinib. Patients`

survival differences were not observed when grouping patients

based on median LRGPI values (Figure 8K). When PD-L1

staining positive or negative subgroups were compared

(Figures 8L, M), we were ecstatic to discover that the high-IRGPI

subgroup had significantly longer PFS among PD-L1 patients. This

is an interesting finding, and more prospective clinical trial cohorts

are needed to further validate our findings in the future.
Discussion

It has been well known that the lactate content of tumor tissue is

higher than that of normal tissue, and lactate is necessary for cancer

development. Lactate-related coding genes, or LncRNA, have been

identified and shown to have predictive value in cancers such as
B
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FIGURE 5

(A, B) The best combination of LMRG pairs was selected by adaptive-Lasso regression. (C, D) Survival analysis showed a different survival portion
between the high- and low- LRGPI subgroups in TCGA-KIRC for OS (C) and DFS (D). (E, F) Time-dependent ROC curves evaluated the prediction
capacity of LRGPI for OS (E) and DFS (F) in TCGA-KIRC cohort. (G) Forest plots of uni- and multivariate Cox regression models demonstrated that
LRGPI is an independent risk factor for patients` prognosis. (H) Nomogram to predict patients’ OS in TCGA-KIRC. The model incorporated the AJCC
T stage, ISUP grade, metastatic status, patients’ age, and LRGPI. (I) Time-dependent ROC curves to evaluate the prediction capacity of the
nomogram for patients` OS. (J) Calibration curves evaluated the prediction accuracy of the nomogram for patients` OS. ***p<0.001.
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colon cancer and lung cancer in thorough studies of tumor bulk

tissue sequencing data (38, 39). The prognostic value of LMRGs in

ccRCC was first discussed and reported by Sun et al. including 267

LMRGs involved in the lactate metabolic process, HP increased

serum lactate, HP lactic acidosis, and HP lactic aciduria (26).

Almost at the same time, Guo et al. focused on 27 genes involved

in lactate metabolism and transport in ccRCC. In this presented

report, we included 64 LMRGs from lactate metabolism, transporter

proteins, and lactate dehydrogenase activity, which is a difference

from previous reports (25). Here we constructed a novel prognostic
Frontiers in Oncology 10
index, the IRGPI, and demonstrated the advantage of the LRGPI in

distinguishing the prognosis of ccRCC patients. Compared to the

previously developed lactate-related scoring system, re-assigning

gene pairs by comparing the relative expression levels of genes

within each gene pair to construct a scoring system has stability

across detection platforms, which means that individual tumor

scores can be easily reproduced through quantitative RT-PCR in

clinical practice (40).

The combined multi-omics analysis revealed that the different

expression levels of these LMRGs can be partially attributed to
B
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FIGURE 6

(A) Heatmap displays the differentially distributed cancer metabolism gene sets between high- and low-LRGPI subgroups in TCGA-KIRC cohort. The
samples are ordered by LRGPI from lowest to highest. (B) Scatter plots with a linear regression correlation of LRGPI and fatty acid degradation and
fatty acid elongation activity. (C, D) Survival analysis showed a different survival portion between the high- and low- LRGPI subgroups in E-MTAB-
1980 for OS (C) and in E-MTAB-3267 for PFS (D). (E, F) Time-dependent ROC curves evaluated the prediction capacity of LRGPI for OS in E-MTAB-
1980 (E) and for PFS in E-MTAB-3267 (F). (G–J) ROC curves displayed the prognosis prediction power of LRGPI and Sun`s lactate score for
patients` clinical outcomes in several cohorts.
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changes in promoter methylation levels or to single-gene DNA copy

number variation. We provide the first single-cell level evidence to

confirm the disordered regulation of lactate metabolism, lactate

transport processes, and lactate dehydrogenase activity in ccRCC

tumor samples. We identified lactate metabolism markers for

ccRCC cell types and found high expression levels of LDHA in

tumor cells and CD8+ T cells. Besides tumor cells, MCT1 was also

expressed on Pericytes and endothelial cells, while MCT4 was

expressed on vSMC. Meanwhile, we observed highly active lactate

dehydrogenase in tumor cells, ACKR1+ endothelial cells, MKI67+

macrophages, CD8+ T cells, and vSMC cells. Mild lactate metabolic

activity was also observed in endothelial cells such as vSMC,

Plasmacytes, Pericytes, and endothelial cells, but lactate transport

was invariably inhibited in these cell types (Figure 3C). These

findings suggest that vSMC cells act as the “producers” of lactic

acid, while tumor cells and peripheral cells are the “consumers”

under certain conditions. The phenomenon of tumor cells and

vascular endothelial cells being able to survive, proliferate, and

migrate in hypoxic environments has long been observed. The new
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vascular system can withstand the challenging environment of

fluctuating oxygen tension because to the choice of respiratory-

independent metabolism in endothelial cells. In addition, the

accumulation of lactic acid in tumors is achieved by inhibiting

PHD2 and activating HIF1-a and NF-kB, and to a large extent, it

contributes to the angiogenesis phenotype (41). The driving force of

lactic acid promoting angiogenesis provides new therapeutic

options without the drawbacks of traditional anti-angiogenic

drugs for ccRCC (42, 43). Interestingly, despite such high lactate

dehydrogenase activity in T cells and MKI67+ macrophages, there is

an apparent lack of lactate metabolic processes. Although this is

consistent with the previously observed near absence of glycolytic

activity in tumor-infiltrating T cells, no plausible mechanistic

elaboration can be provided for this purpose (8, 44). Ubaldo et al.

(45) first reported that lactic acid promotes stemness-related genes

expression in breast cancer. Vineet et al. found that the LDHA

product L-2 hydroxyglutamic acid (L-2HG) acts as an epigenetic

modifier leading to H3 hypermethylation, thereby regulating

stemness-related gene transcription in pancreatic tumors (46). To
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FIGURE 7

(A) Survival curves showed no significant difference in PFS between high- and low- Sun`s lactate score subgroups. (B, C) Boxplots displayed the
comparison of Sun`s lactate score and LRGPI between the Sunitinib response and non-response samples. (D, E) Survival curves demonstrated that
LRGPI was able to distinguish the OS (D) but not the PFS (E) in Everolimus-treated patients. (F–I) The predicted IC50 values of ccRCC samples for
Sunitinib and Temsirolimus between high- and low- LRGPI groups in the TCGA-KIRC (F), E-MTAB-1980 (G), GPL570 (H), GPL10588 (I) cohorts.
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our knowledge, this is the first report to propose the correlation

between LDHA and ccRCC stemness, and future elaborate

experiments in vivo and in vitro are warranted to reveal the

underlying mechanism.

Of note, Sun et al. reported that the low score samples were

sensitive to Sunitinib and Temsirolimus, but did not validate their

inference in a real-world cohort. We replicated the Sun`s lactate

score and validated it in E-MTAB-3267, but unfortunately failed to

find the efficacy of the Sun`s score in distinguishing sunitinib

responsiveness or patients’ prognosis. IRGPI was sufficient to

distinguish the prognosis of Sunitinib-treated patients, but the

difference between responders and non-responders in the real-

world cohort also did not reach statistical significance. One

possible reason is that the number of cases included in E-MTAB-
Frontiers in Oncology 12
3267 was too small, and further validation in a larger cohort is

desired. Our drug sensitivity simulation inference and real-world

cohort validation confirmed the responsiveness of the low-LRGPI

samples to Temsirolimus. The PI3K-Akt-mTOR-HIF axis drives

cellular glycolysis and the Warburg effect, and its dysregulation is

common in carcinogenesis (47). Thus, the intrinsic link between

LRGPI and the responsiveness of mTOR-targeted therapy is not

difficult to understand.

Proliferating tumor cells and activated immune cells exhibit

enhanced metabolic activity, taking up large amounts of glucose to

generate lactic acid via the Warburg effect and transporting the

products for uptake by surrounding cells as energy-consuming

substances or anabolic substrates. The idea that harmful lactate

accumulation in the TME is one of the main causes of
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FIGURE 8

(A) Boxplot displayed the percentage of infiltrated immune cell types deconvoluted by CIBERSORT in TCGA-KIRC cohort. Wilcoxon test, ns, p>0.05,
*p<0.05, **p < 0.01; ***p<0.001. (B) GSEA table of significantly altered TME-related gene sets between high- and low-LRGPI subgroups in TCGA-
KIRC cohort. (C–F) Heatmaps displayed the nominal and Bonferroni-corrected p-values of Subclass mapping results in the TI-KIRC (C), E-MTAB-
1980 I, GPL570 (E), GPL10588 (F) cohorts. (G–J) Boxplots showed that PD-1 was higher expressed in the high-LRGPI groups in the TCGA-KIRC (G),
E-MTAB-1980 (H), GPL570 (I), GPL10588 (J) cohorts. (K–M) Survival curves showed that LRGPI was able to distinguish the PFS in PD-L1- patients
under Avelumab plus Axitinib treatment. ns, p<0.05.
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immunosuppression has been widely recognized (47, 48). Lactate

accumulation inhibits the viability and cytotoxic products of

antitumor effector cells, such as CD8+ T cells and NK cells, and

promotes the differentiation and expansion of immunosuppressive

cell populations, such as Treg, TAM, and MDSC (47). We

investigated the relationship between LRGPI and the TME of

ccRCC and found decreased antigen-presenting cells (DC, M1)

and increased Treg/Tfh infiltration, as well as activation of CD8+ T

effector signaling, TCR signaling, IFN signaling, antigen-presenting

signaling, and NK cytotoxicity in high-LRGPI samples. We also

observed elevated PD-1 expression in high-IRGPI samples and

similar gene expression patterns to PD-1-blockade responders.

The inference and external validation demonstrate that high-

LRGPI ccRCC samples would benefit from PD-1 blockade

therapy. Recently, Kumagai et al. reported that lactate upregulates

PD-1 expression on Treg through massive uptake by MCT1 but

inhibits PD-1 expression in CD8+ T cells. PD-1 blockade leading to

Treg activation but not CD8+ T cells is the main mechanism of

lactate-induced ICB failure (49). In addition, it has been

demonstrated that ICB plus lactate b lockade/ lactate

dehydrogenase inhibitors synergistically reduce Treg function,

resulting in a more potent anti-tumor capacity than ICB

monotherapy (11). The use of the LDH inhibitor oxamate to

reduce lactate production in combination with pembrolizumab

significantly increased CD8+ T cell infiltration in a humanized

mouse model of non-small cell lung cancer and enhanced the effect

of pembrolizumab monotherapy (50). We are aware that there are

still no animal studies or clinical trials to test the lactate-targeted

regimen in RCC. Based on these pan-cancer study facts, it is

interesting to introduce the lactate-targeted strategy to RCC.

Notably, lactate and its products have significant cell type-specific

effects (51, 52). More detailed preclinical experiments are urgently

needed to explore the biological response of immune cells to lactic

acid changes before designing intervention strategies to precisely

manipulate anti-tumor immunity. We have examined the guiding

utility of LRGPI for patients undergoing combination therapy with

ICB + TKI for the first time, in contrast to earlier studies on the

establishment of prognostic markers for ccRCC. Interestingly, the

findings showed that LRGPI is a significant factor in determining

how patients with PD-L1-RCC would fare. Patients with greater

oxygen transport and lipid metabolism activity in the arm receiving

the combination of avelumab and Axitinib had longer PFS,

according to the original study by Mozter et al (28). In an era

where personalized treatment is increasingly emphasized, patient

subgroup analysis reveals that the patient population for which the

scoring system is applicable has more positive clinical significance.

This study has the inherent shortcomings of retrospective

bioinformatics studies; using real-world tumor samples for PCR

quantification of the LGRPI proposed in this study and validation of

its prognostic guiding value in ccRCC, or even RCC of different

pathological types, in different therapeutic contexts, will be the focus

of the next research efforts. In immune cells, the lactate signaling

pathway may be the link between metabolism and immunity. For

example, how are key lactate metabolism and transport molecules
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such as LDGA, GLUT1,MCT1, andMCT4 expressed in renal cancer

cells, vSMC, endothelial cells, macrophages, CD8+ T cells, and what

are the effects on lactate uptake and utilization in cells? How does

lactate in the microenvironment affect the aggregation and

functional activation of immune cell populations dominated by

macrophages and CD8+ T cells? Due to article length constraints,

exploration of the specific mechanisms by which lactate promotes

kidney cancer progression and modulates the immune

microenvironment will also be the focus of the next study.
Conclusion

Altogether, this study illustrates the cellular specificity of lactate

metabolism in ccRCC at the single-cell level. We proposed that

LRGPI could be used to not only predict prognosis but also effectively

distinguish frontline therapy responders in ccRCC patients.
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SUPPLEMENTARY FIGURE 1

(A-D) Volcano plots of DELMRGs identified in the TCGA-KIRC, GPL570,

GPL10588, and CPTAC-KIRC datasets. For CPTAC-KIRC cohort (D), protein
expression level of PER2, SLC6A3, CDO1, SOCS2, TP53, APLN, and PRLR were

not detected. Up-/down-regulated and not significantly altered LMRGs were
labeled in red, blue, and yellow, respectively.

SUPPLEMENTARY FIGURE 2

Representative normal and tumor tissue slides in HPA portal demonstrated

the overall staining level of LDHA, HK2, NCOR2, CAV1, CCND1, OAS2, VEGFA,
MED1, and PAM were significantly higher, while PFKFB2, LDHB, PNKD, LDHD,

HAGH, SLC16A7, SLC5A12, GOT2, and SLC25A12 were lower in tumor renal
cancer samples than normal samples.

SUPPLEMENTARY FIGURE 3

| (A-F) Violin plots of the AUCell-evaluated gene set enrichment scores in cell

types of tumor samples.
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SUPPLEMENTARY FIGURE 4

Cell-specific molecular markers were identified by the FindAllMarkers
function. Stacked violin plot displayed the expression level of key lactate

metabolism-related genes in different cell types.

SUPPLEMENTARY FIGURE 5

(A) GSEA table of significantly altered cancer hallmarks between high- and
low-LRGPI subgroups in TCGA-KIRC cohort. (B) Forest plots of uni-and

multi-variate Cox regression models demonstrated that LRGPI is an
independent risk factor for patients` OS in E-MTAB-1980. (C) Nomogram

to predict patients’OS in E-MTAB-1980. The model incorporated the AJCC T

stage, ISUP grade, metastatic status, patients’ age, and LRGPI. (D) Calibration
curves evaluated the prediction accuracy of the nomogram for patients` OS

in E-MTAB-1980. (E) Time-dependent ROC curves evaluated the prediction
capacity of the nomogram for patients` OS in E-MTAB-1980. (F) Boxplot
displayed the LRGPI of predefined immune subtypes of ccRCC.

SUPPLEMENTARY FIGURE 6

(A, B) No significant survival difference was observed between Nivolumab-
and Everolimus-treated groups in low-LRGPI subgroup patients. (C, D)
Nivolumab showed significant overall survival benefit over Everolimus in
high-LRGPI subgroup patients.

SUPPLEMENTARY TABLE 1

The differentially expressed proteins identified in CPTAC-KIRC cohort.

SUPPLEMENTARY TABLE 2

Cell markers of different cell types identified in sc-RNA seq GSE159115.

SUPPLEMENTARY TABLE 3

The gene pairs and coefficients to replicate the LRGPI.
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Glossary

CPTAC Clinical Proteomic Tumor Analysis Consortium

HPA the Human Protein Atlas

MDSC myeloid-derived suppressive cell

TAM tumor-associated macrophage

TME tumor microenvironment

EMT epithelial-mesenchymal transition

ccRCC Clear cell renal cell carcinoma

OS overall survival

PFS progression free survival

CSS cancer-specific survival

DFS disease-free survival

LMRG lactate metabolism-related genes

ICB Immune checkpoint blockade

LMRGP lactate metabolism-related gene pair

LRGPI Lactate-related gene pair index

Sc-RNA seg Single-cell RNA sequencing

FPKM fragments Per Kilobase Million

TPM transcripts Per Kilobase Million

CNV copy number variation

DEG differentially expressed gene

DELMRG differentially expressed lactate metabolism-related gene

AUC area under curve

ROC receptor operative curve

ssGSEA Single sample gene set enrichment analysis

TKI Tyrosine kinase inhibitors

mTOR Mechanistic target of rapamycin
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