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A clinical-radiomics nomogram
based on multimodal ultrasound
for predicting the malignancy
risk in solid hypoechoic
breast lesions

Guo Shiyan, Jiang Liqing, Yan Yueqiong and Zhang Yan*

Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
Background: In routine clinical examinations, solid hypoechoic breast lesions are

frequently encountered, but accurately distinguishing them poses a challenge.

This study proposed a clinical-radiomics nomogram based on multimodal

ultrasound that enhances the diagnostic accuracy for solid hypoechoic breast

lesions.

Method: This retrospective study analyzed ultrasound strain elastography (SE)

and automated breast volume scanner images (ABVS) of 423 solid hypoechoic

breast lesions from 423 female patients in our hospital between August 2019 and

May 2022. They were assigned to the training (n=296) and validation (n=127)

groups in a 7:3 ratio by generating random numbers. Radiomics features were

extracted and screened from ABVS and SE images, followed by the calculation of

the radiomics score (Radscore) based on these features. Subsequently, a

nomogram was constructed through multivariate logistic regression to assess

the malignancy risk in breast lesions by combining Radscore with Breast Imaging

Reporting and Data System (BI-RADS) scores and clinical risk factors associated

with breast malignant lesions. The diagnostic performance, calibration

performance, and clinical usefulness of the nomogram were assessed by the

area under the curve (AUC) of the receiver operating characteristic curve, the

calibration curve, and the decision analysis curve, respectively.

Results: The diagnostic performance of the nomogram is significantly superior to

that of both the clinical diagnostic model (BI-RADS model) and the multimodal

radiomics model (SE+ABVS radiomics model) in training (AUC: 0.972 vs 0.930 vs

0.941) and validation group (AUC:0.964 vs 0.916 vs 0.933). In addition, the

nomogram also exhibited a favorable goodness-of-fit and could lead to

greater net benefits for patients.
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Conclusion: The nomogram enables a more effective assessment of the

malignancy risk of solid hypoechoic breast lesions; therefore, it can serve as a

new and efficient diagnostic tool for clinical diagnosis.
KEYWORDS

nomogram, breast, radiomics, automated breast volume scanner, strain elastography
1 Introduction

As the most prevalent cancer in the world, breast cancer poses a

grave threat to people’s health and survival (1). Given its high

metastatic tendency and high mortality rate (2, 3), coupled with the

significant differences in treatment modalities for benign and

malignant breast tumors, early definitive diagnosis is a critical first

step in the therapeutic management of breast lesions, which plays a

crucial role in improving patient outcomes and survival (3–5).

With the recent advancements in ultrasound imaging technology,

ultrasound plays an increasingly important role in the detection of

breast lesions. Strain elastography (SE) allows for a quick and intuitive

display of differences in elasticity coefficients within the lesion through

color-coded imaging, therefore, it serves as a powerful diagnostic aid to

offer valuable reference values for lesion diagnosis (6, 7). Automated

breast volume scanner (ABVS) provides good reproducibility of

diagnostic results due to its standardized operating procedures (8), it

can acquire the whole breast volume information and perform

multiplanar imaging on the acquired information. Studies have

shown that ABVS exhibits comparable diagnostic accuracy to

handheld ultrasound scanners for detecting breast lesions, while also

providing additional information (9, 10). In routine ultrasound

examinations, it is frequent to encounter patients with solid

hypoechoic breast lesions, physicians can make an initial assessment

of the malignancy risk of breast lesions based on their morphological

appearance on ABVS image and elastic performance on SE images.

The combination of ABVS and SE imaging techniques demonstrates

significant diagnostic efficacy in evaluating breast lesions (11).

However, the dependability of diagnostic outcomes generated by

conventional imaging techniques is largely contingent on the

proficiency of the examining physician and is markedly susceptible

to interobserver variability (12).

Radiomics is in line with the current trend toward precision

medicine, as it transforms ordinary visual images into high-

throughput data through deep mining of medical images, allowing for

the capturing of the internal heterogeneity of the entire tumor in a non-

invasivemanner (13–15). Therefore, itmay provide novel biomarkers to

facilitate diagnosis for better clinical decision-making. There are already

several radiomics studies on ultrasound (US), mammography, and

magnetic resonance (MR) in breast cancer diagnosis that have yielded

promising results (16–29). However, there have been no studies on the

combination of ABVS and UE radiomics features with clinical

ultrasound factors for the diagnosis of breast cancer. Therefore, we

conducted a radiomics analysis on SE andABVS images, then combined
02
these features with traditional imaging risk assessments and other

clinical risk factors, resulting in a novel nomogram to help physicians

accurately diagnose solid hypoechoic breast lesions.
2 Materials and methods

2.1 Patients

The retrospective study was approved by the institutional

review board at our hospital. The inclusion criteria were: (1)

Patients who underwent both ABVS and SE examinations at our

hospital between August 2019 and May 2022 and subsequently

underwent biopsy or surgical resection within two weeks with a

pathologically confirmed diagnosis. (2) Patients with complete

imaging data. (3) Patients’ breast lesions were hypoechoic solid

lesions. The exclusion criteria were: (1) Patients whose images were

of poor quality; (2) Patients who underwent aspiration or clinical

treatment before examining target lesions. Eventually, we included

423 solid hypoechoic breast lesions from 423 female patients. By

generating random numbers, they were allocated into training and

validation groups in the ratio of 7:3. The flow is shown in Figure 1.
2.2 Image acquisition and assessment

In this study, all images used were obtained using the ACUSON

S2000 US machine and its accompanying ABVS system.

2.2.1 SE image
Patients were instructed to breathe normally while lying supine

on the examination bed with their breasts fully exposed. A 9L4

probe in two-dimensional ultrasound mode was used to examine

the breast in all planes. The imaging mode was then switched to the

elastic mode when scanning the largest two-dimensional section of

the lesions, and the patient was required to cooperate by holding her

breath. The probe is placed perpendicularly over the breast without

applying any pressure during the capture of SE images, with the

lesion positioned at the center of an elasticity sampling window at

least twice the size of the area of interest.

2.2.2 ABVS image
Instruct the patient to raise both arms over the head and remain

in the supine position. A sufficient amount of coupling agent was
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applied uniformly to the breast. Before scanning, parameters such

as depth and overall gain were adjusted to achieve optimal image

quality. During the scanning procedure, patients were instructed to

breathe normally. Each breast was routinely scanned in two

positions using a 14L5BV high-frequency linear array automatic

scanning US probe. The nipples were marked after the scanning,

and the acquired images were saved and transferred to a

workstation for processing and analysis. Images with the

maximum section image of the target lesion in coronal,

transverse, and sagittal planes were selected for subsequent region

of interest (ROI) segmentation and feature extraction.

Refer to the BI-RADS criteria which were defined by the

American College of Radiology in 2013 (30), we evaluated the

morphology, margin, border, orientation, posterior echogenicity of

the lesion, microcalcification within the lesion, and conditions of

retraction in its coronal plane on the saved images. This is followed

by a combination with ultrasound elastic strain performance of the

lesions (elasticity score using a 5-point scale (31)), enabling an

accurate classification of the risk of malignancy of the lesions.

All of the above steps were performed by a physician who

has over ten years of expertise in ultrasound breast disease

diagnosis.
2.3 Extraction and selection of
radiomics features

The ABVS and SE images were sequentially imported into 3D

Slicer 5.2.1 for image processing, manual segmentation of the ROI
Frontiers in Oncology 03
and extraction of radiomics features. We delineated ROI for lesions

in both SE and ABVS images. Notably, in the ABVS images, we

delineated the ROI on the coronal, sagittal, and transverse planes of

the lesions, respectively. Further details can be found in Figure 2.

This procedure was performed with the participation of two

physicians. Physician A, with five years of experience in

ultrasound-based breast disease diagnosis, performed outlining

for all the lesions. Physician B, with eight years of experience in

ultrasound-based breast disease diagnosis, conducted lesion

outlining on the training group to validate ROI outlining

reproducibility. Then, we utilized the Pyradiomics package within

3D Slicer to extract radiomics features from the SE and ABVS

images, respectively. The features extracted encompassed first-order

statistics features, texture features (including the gray level co-

occurrence matrix (glcm), gray level dependence matrix (gldm),

gray level run length matrix (glrlm), gray level size zone matrix

(glszm), and the neighbouring gray tone difference matrix

(ngtdm)), as well as post-wavelet transformed features.

Subsequently, we subjected the extracted features to screening. By

utilizing the intra-class correlation coefficient (ICC) analysis, we can

identify features that exhibit high levels of reproducibility (ICC >

0.75) (32), subsequently, radiomics features extracted from the

region of interest segmented by physician A were utilized for

further analysis. All feature values were normalized using Zscore.

The radiomics features of both modalities were subjected to

dimensionality reduction through the Mann-Whitney U test and

least absolute shrinkage and selection operator (LASSO) regression

and to identify features with strong qualitative diagnostic ability for

solid hypoechoic breast lesions.
FIGURE 1

The grouping process of this study.
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2.4 Development of models

2.4.1 Radiomics models
Based on radiomics features of SE and ABVS images, logistic

regression analysis was utilized to build the radiomics model, including

the SE radiomics model, the ABVS radiomics model, the SE+ABVS

radiomics model that was developed by combining the two. The

radiomics score (Radscore) for each lesion was computed by

weighting the coefficients of features in the SE+ABVS radiomics model.

2.4.2 Clinical diagnostic model
The BI-RADS model was constructed through logistic

regression analysis of lesion’s BI-RADS categories in the

training group.
2.5 Development and performance
validation of nomogram

This study performed a univariate analysis in order to determine

the risk predictive variables associated with breast cancer(P<0.05),

which were then combined with the results of conventional imaging

assessment and radiomics analysis. Based on these findings, we

integrated relevant clinical risk factors, the Radscore, and the BI-

RADS category of lesions to develop a nomogram for assessing the

malignancy risk in such breast lesions by multivariate logistic

regression analysis. Subsequently, the nomogram’s diagnostic

performance was compared to that of the BI-RADS model and SE

+ABVS radiomics model. To evaluate the diagnostic performance of

the models, we calculated the area under the receiver operating

characteristic curve (AUC) for each model in the training group,

validation group, and in the BI-RADS category 4 lesions within both
Frontiers in Oncology 04
groups. Furthermore, the DeLong test was used to examine differences

in AUC values between different models. The nomogram’s goodness of

fit was investigated graphically and by calculating significance by

plotting the calibration curve and conducting the Hosmer-Lemeshow

test. Lastly, clinical decision analysis curves were drawn for quantifying

the net benefits of the BI-RADS model, SE+ABVS radiomics models,

and nomogram at various threshold probabilities.

2.6 Statistical analysis

SPSS 23.0, R 4.2.2, and MedCalc 19.6.0 were utilized for

statistical analysis and graph plotting. The ‘psych’, ‘survival’,

‘glmnet’, ‘rms’, ‘ResourceSelection’, and ‘rmda’ packages were

used in R. We performed normality tests on each group of data

and selected the appropriate hypothesis test based on the results to

compare the distribution of data between the training and

validation groups. The study has chosen a significance level of

0.05 as the threshold for detecting statistical differences.

3 Results

3.1 Comparison of clinical basis
information and sonographic features

The study included 423 breast lesions that were pathologically

confirmed to include 215 benign lesions and 208 malignant lesions.

Table 1 demonstrates that both the clinical basis data and sonographic

features of lesions were evenly distributed in the training and validation

groups, indicating no statistically significant differences between the

two groups (P>0.05). Furthermore, the univariate risk analysis revealed

that patients with malignant lesions had significantly higher age and

lesion’s maximum diameter compared to those with benign lesions in
A B

DC

FIGURE 2

An instance of manually delineating a region of interest (ROI). The strain elastography (SE) and automated breast volume scanner (ABVS) images of a
41-year-old female with a solid hypoechoic lesion measuring approximately 16x11x12mm on her left breast. The lesion was irregular in shape,
parallel in position, with still well-defined borders, sharp margins, and scattered microcalcifications visible internally, and exhibited no significant
posterior echogenicity change or retraction in the coronal plane, and the ultrasound elasticity score was 4, finally, the lesion was classified as BI-
RADS category 4a. Pathological examination confirmed it as invasive ductal carcinoma. ROI segmentation was performed on both the SE image (A)
and ABVS coronal image (B), with delineation along the boundary of the lesion followed by uniform outward expansion of its edges by 3 mm to
encompass some surrounding tissue.ROI segmentation was performed on ABVS transverse (C) and sagittal (D) images, respectively, and meticulous
delineation was performed along the lesion’s contour and borders on these two views.
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TABLE 1 Clinical basis information and sonographic features of patients with breast lesions.

Characteristic Training group (n=296) Validation group (n=127)

Benign group
(n=151)

Malignant group
(n=145)

PIntra

value
Benign group

(n=64)
Malignant group

(n=63)
PIntra

value
PInter

value

Age

Median±SD 39±10.85 51±10.73 <0.01* 41±9.83 53±10.82 <0.01* 0.34

maximum
diameter

Median±SD 13±7.36 19±8.23 <0.01* 15±9.24 18±8.52 <0.05* 0.37

Location

Left 72 (47.68%) 79 (54.48%) 0.24 32 (50%) 30 (47.62%) 0.79 0.68

right 79 (52.32%) 66 (45.52%) 32 (50%) 33 (52.39%)

Morphology

Regular 77 (50.99%) 17 (11.72%) <0.01* 28 (43.75%) 5 (7.94%) <0.01* 0.24

Irregular 74 (49.01%) 128 (88.28%) 36 (56.25%) 58 (92.06%)

Border

Clear 110 (72.85%) 45 (31.03%) <0.01* 43 (67.19%) 19 (30.16%) <0.01* 0.50

Not Clear 41 (27.15%) 100 (68.94%) 21 (32.81%) 44 (69.84%)

Margin

Circumscribed 127 (84.11%) 22 (15.17%) <0.01* 51 (79.69%) 12 (19.05%) <0.01* 0.89

Not circumscribed 24 (15.89%) 123 (84.83%) 13 (20.31%) 51 (80.95%)

Orientation

Parallel 128 (84.77%) 79 (54.48%) <0.01* 54 (84.38%) 32 (50.79%) <0.01* 0.65

Not parallel 23 (15.23%) 66 (45.52%) 10 (15.62%) 31 (49.21%)

Posterior
echogenicity

Enhancement 11 (7.28%) 17 (11.72%)

0.28

4 (6.25%) 6 (9.52%) 0.82 0.52

No difference 130 (86.10%) 111 (76.56%) 57 (89.06%) 52 (82.54%)

Shadowing 10 (6.62%) 17 (11.72%) 3 (4.69%) 5 (7.94%)

Retraction sign

Presence 0 (0%) 32 (22.07%) <0.01* 0 (0%) 16 (25.40%) <0.01* 0.60

Absence 151 (100%) 113 (77.93%) 64 (100%) 47 (74.60%)

MicroCalcification

Presence 16 (10.60%) 66 (45.52%) <0.01* 3 (4.69%) 26 (41.27%) <0.01* 0.30

Absence 135 (89.40%) 79 (54.48%) 61 (95.31%) 37 (58.73%)

Ultrasonic
elasticity score

1 point 16 (10.60%) 0 (0%) 7 (10.94%) 0 (0%)

2 points 49 (32.45%) 1 (0.69%) 22 (34.37%) 3 (4.76%)

3 points 65 (43.05%) 21 (14.48%) <0.01* 27 (42.19%) 14 (22.22%) <0.01* 0.70

4 points 20 (13.24%) 55 (37.93%) 8 (12.50%) 24 (38.10%)

5 points 1 (0.66%) 68 (46.90%) 0 (0%) 22 (34.92%)

(Continued)
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both groups (P<0.05). However, no correlation was seen between the

location of the lesion and the malignant risk of the lesion (P>0.05).

Hence, we regarded age and lesion size as predictor variables in the

context of breast cancer. Regarding the sonographic features of the

lesions, there were statistically significant differences (P<0.01) observed

in morphology, borders, margins, orientation, microcalcifications,
Frontiers in Oncology 06
retraction condition of the coronal plane, and elasticity scores

between benign and malignant lesions within both groups. while no

statistical differences were found in posterior echogenicity (P>0.05).

This study assessed the malignancy risk of lesions by these sonographic

features of them, and the BI-RADS categories obtained were also

significantly different in benign and malignant lesions (P<0.01).
A

B

D

C

FIGURE 3

Screening of radiomics features. Selection of strain elastography (SE) radiomics features (A), automated breast volume scanner (ABVS) coronal plane
radiomics features (B), ABVS transverse plane radiomics features (C), and ABVS sagittal plane radiomics features (D) using the least absolute
shrinkage and selection operator (LASSO) regression model. The coefficient profiles of LASSO for each modal radiomics feature are presented on
the left. The right shows that the tuning parameter l (lambda) in the LASSO model was selected using tenfold cross-validation, and the binomial
deviance was plotted as a function of log(l), with vertical dashed lines drawn at the minimum deviation (log(l.min)) and the 1 standard error of the
minimum deviation (log(l.1se)). Selected the non-zero coefficient features in the model when the horizontal coordinate was log(l.1se).
TABLE 1 Continued

Characteristic Training group (n=296) Validation group (n=127)

Benign group
(n=151)

Malignant group
(n=145)

PIntra

value
Benign group

(n=64)
Malignant group

(n=63)
PIntra

value
PInter

value

BI-RADS

3 64 (42.38%) 4 (2.76%) 27 (42.19%) 2 (3.17%)

4a 82 (54.31%) 21 (14.48%) <0.01* 34 (53.12%) 11 (17.46%) <0.01* 0.77

4b 4 (2.65%) 27 (18.62%) 3 (4.69%) 12 (19.05%)

4c 1 (0.66%) 30 (20.69%) 0 (0%) 17 (26.98%)

5 0 (0%) 63 (43.45%) 0 (0%) 21 (33.34%)
front
* p < 0.05.
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3.2.Screening of radiomics features

The SE and ABVS images generated 837 and 2511 radiomics

features (ABVS cross plane, sagittal plane, and coronal plane, each

generated 837 features), respectively. The training group’s SE radiomics

features aswell as theABVS coronal plane, transverse plane, and sagittal

plane radiomics features underwent sequential ICC analysis, Mann-

WhitneyU test, LASSO regression analysiswith tenfold cross-validation

for dimensionality reduction. Finally, a total of 14 features were selected,

comprising four SE radiomics features and tenABVS radiomics features

(two from the coronal plane, three from the transverse plane, and five

from the sagittal plane). All of these radiomics features are texture

features, one of which was from the original image and thirteen were

obtained after wavelet transform (Figure 3).
3.3 Comparison of radiomics models

By comparing and validating the diagnostic efficacy of the

radiomics models (Figure 4, Table 2), the AUC values of the

selected ABVS and SE features for distinguishing between benign

and malignant solid hypoechoic breast lesions were consistently

above 0.8 in both the training and validation groups. Moreover,

compared to any single-modality radiomics models, the SE+ABVS

radiomics model, which integrated the radiomics features of two

imaging modalities, demonstrated significantly higher AUC values

in both training (All P<0.01) and validation groups (compared to

the ABVS radiomics model: P<0.01, compared to SE radiomics

model: P<0.05). These outcomes suggest that combining radiomics

features from both SE and ABVS could enhance the accuracy of

diagnostic models. Thus, the Radscore for each patient was obtained

by weighting the corresponding coefficients for each feature in the

SE+ABVS radiomics model., the formula is shown below, the
Frontiers in Oncology 07
Radscore for malignant lesions was found to be significantly

higher than that for benign lesions within both groups. (Training

group: 2.86 + 2.66, -2.34 + 1.80, P<0.01; Validation group:

2.60 + 2.31, -2.17 + 1.85, P<0.01).
A B

FIGURE 4

The receiver operator characteristic curves for various radiomics models in the training (A) and validation groups (B).
TABLE 2 The AUC values of radiomics models in the training and
validation groups.

Model AUC
(95%CI)

P
(AUC compare
to SE radiomics

model)

P
(AUC compare

to ABVS
radiomics
model)

Training group

SE
radiomics
model

0.920 (0.883,
0.948)

<0.01*

ABVS
radiomics
model

0.865 (0.821,
0.902)

<0.01*

SE+ABVS
radiomics
model

0.941 (0.907,
0.965)

<0.01* <0.01*

Validation group

SE
radiomics
model

0.892 (0.824,
0.940)

0.08

ABVS
radiomics
model

0.811
(0.732,0.875)

0.08

SE+ABVS
radiomics
model

0.933
(0.875,0.970)

<0.05* <0.01*
*P< 0.05.
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Radscore = 1:944469*original glszm GrayLevelVariance _ SE

+0:03492*wavelet − LHL glszm GrayLevelNonUniformity _ SE

+0:634491*wavelet − LHH gldm LargeDependenceLowGrayLevelEmphasis _ SE

+0:465968*wavelet − LLL glcm SumSquares _ SE

+0:133391*wavelet −HHL glszm GrayLevelNonUniformity _ ABVS _Coronal

−1:515639*wavelet − LLL glszm ZoneEntropy _ ABVS _Coronal

+0:010666*wavelet − LHH glszm ZoneEntropy _  ABVS _ Transverse

+1:292836*wavelet −HLL glszm ZoneEntropy _  ABVS _ Transverse

+0:043941*wavelet −HHL glszm GrayLevelNonUniformity _  ABVS _ Transverse

−1:828919*wavelet − LHH glcm MCC _ABVS _ Sagittal

+0:813141*wavelet − LHH glszm ZoneEntropy _ ABVS _ Sagittal

−0:008279*wavelet −HLL glszm GrayLevelNonUniformity _ ABVS _ Sagittal

+1:520859*wavelet −HLH glszm ZoneEntropy _ ABVS _ Sagittal

+0:271946*wavelet −HHL glszm GrayLevelNonUniformity _ ABVS _ Sagittal

−25:66532
3.4 Evaluation of nomogram performance

Based on the clinical risk factors identified through univariate

analysis, BI-RADS categories determined from imaging

assessments, and Radscore obtained from radiomics analysis, we

constructed a nomogram using multivariate logistic regression to

visually assess the risk of malignancy in solid hypoechoic breast

lesions, the nomogram incorporated the patient’s age, lesion’s

maximum diameter, Radscore, and BI-RADS category. As

illustrated in Figure 5, Radscore had the highest weightage

followed by BI-RADS score while age and maximum diameter of

the lesion exerted less influence on assessment results.

Figure 6 and Table 3 present that the BI-RADS model, SE

+ABVS radiomics model, and nomogram are effective in predicting

the malignancy risk in solid hypoechoic breast lesions, Notably, the

nomogram exhibits superior diagnostic performance with higher

AUC values (0.972, 0.964) in training and validation group

compared to both the BI-RADS model (AUC: 0.930, 0.916) and

SE+ABVS radiomics models (AUC: 0.941, 0.933). Furthermore, its

difference with BI-RADS model and SE+ABVS radiomics model

was statistically significant in both groups (P<0.05). Besides, we

further compared the diagnostic efficacy of the three models for BI-
Frontiers in Oncology 08
RADS category 4 lesions within the two groups. The results revealed

that the nomogram (AUC: 0.952, 0.930) consistently exhibited

higher AUC values than both the BI-RADS model (AUC:0.844,

0.839) and SE+ABVS radiomics model (AUC:0.915, 0.899).

Moreover, there were consistently statistically significant

differences between the nomogram and BI-RADS model (All

P<0.01). However, in comparison to the SE+ABVS model, the

nomogram was only statistically different from it in the training

group (P<0.05), but not in the validation group (P>0.05). Other

than that, in terms of diagnostic sensitivity, specificity, and

accuracy, Although the specificity of the nomogram was slightly

inferior to that of the BI-RADS model in the training group, it

significantly improved diagnostic sensitivity. Furthermore, its

diagnostic parameters were at the highest level across all

validation groups. These results suggest that the nomogram

exhibited the best overall diagnostic performance. Finally, we

observed that the AUC values of the SE+ABVS Radiomics model

consistently outperformed those of the BI-RADS model, and a

statistically significant difference was found between them when

diagnosing BI-RADS category 4 lesions of the training group

(P<0.05). This finding highlights the ability of radiomics analysis

to detect deep-seated features within the images, ultimately leading

to improved diagnostic efficiency.

The calibration curve exhibits a favorable fit of the nomogram

(Figures 7A, B). indicating that the predicted risk by the nomogram

was close to the observed risks. The results from the Hosmer-

Lemeshow test further proved that the differences between them did

not present statistical significance in either the training group

(P=0.70) or validation group (P=0.95).

The clinical decision analysis curve (Figure 7C) indicates that

utilizing the BI-RADS model, SE+ABVS radiomics model, and

nomogram for decision-making significantly improved the net

benefit for patients compared to the assumption of intervention

for all lesions or no intervention at all. Furthermore, the nomogram

provided a greater net benefit to patients compared to both the BI-

RADS model and SE+ABVS radiomics model.
4 Discussion

The study combined radiomics features of ABVS and SE images

with conventional imaging diagnosis criteria along with clinical risk

factors for developing a clinical-radiomics nomogram that

demonstrated excellent diagnostic efficacy, as well as good

calibration capabilities, and significant clinical usefulness.

Although ABVS and SE examination techniques offer significant

advantages in breast screening, the examiner’s naked eye remains

incapable of capturing deep image information. Radiomics provides

a pathway to capture internal tumor information at a more

profound level. Wang et al. derived radiomics features from

ABVS images and constructed multiple machine learning models

for breast cancer diagnosis, the best of which was the support vector

machine model with an AUC of 0.857 (17). Additionally, Liu et al.

employed radiomics features extracted from SE images for breast

cancer prediction, yielding a Radscore with an AUC of 0.866 in the

test set (18). Besides, Ma et al. developed a multivariate logistic
FIGURE 5

The Nomogram for predicting the malignant risk of solid
hypoechoic breast lesions.
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model by combining SE, B-mode, and ABVS coronal radiomics

features, with an AUC value of 0.946 in the internal validation group

(19). In this study, we performed radiomics analysis on both ABVS

and SE images. For ABVS images, we delineated the ROI across

sagittal, transverse, and coronal planes. While outlining the ROI in

the ABVS coronal planes and the SE image, we incorporated a

portion of the lesion’s peripheral tissues to capture additional

information. As a result, the ABVS and SE features that we

acquired demonstrated good predictive capabilities for breast

cancer, and the combination of the two yielded a higher

diagnostic efficacy than the BI-RADS model that obtained by a

highly experienced physician based on visual assessment alone

(AUC: 0.933 vs. 0.916). Additionally, this study analyzed clinical

risk factors related to breast cancer and revealed that age and lesion

size exhibited significantly higher values in the malignant group

compared to the benign group, which is consistent with previous

research findings (33–35). Therefore, we developed a nomogram by

integrating Radscore, patient’s age, maximum diameter of the

lesion, and BI-RADS scores using multivariate logistic regression

analysis. The AUC of this nomogram in the internal validation

group was 0.964, which surpassed that of both the SE+ABVS

radiomics model and the clinical model. Furthermore, we

conducted an analysis on the clinical utility of this nomogram,

and the decision analysis curves revealed that it could offer superior
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net benefit to patients across a broad range of threshold intervals.

Consequently, the nomogram holds significant value as a point of

reference for clinicians, particularly novice practitioners lacking

diagnostic expertise in identifying suspicious lesions.

In addition, this nomogram has demonstrated significant

advantages in the diagnosis of BI-RADS category 4 lesions. The

appearance of these lesions on imaging can be highly deceptive, so

they span a wide range of malignancy risks (36, 37), which makes

clinical diagnosis extremely challenging, often necessitating biopsies

to definitively determine the nature of such lesions (30). However,

routine biopsy results are often influenced by the spatial

heterogeneity of the lesion and operator expertise (38), while also

being an invasive procedure with potential complications such as

bleeding (39). The majority of radiomics studies for this category of

lesions have predominantly utilized MR images, and these studies

have yielded favorable outcomes (26–29). Nevertheless, MR

examinations are expensive, time-consuming, and not suitable for

common screenings (40, 41). Based on ABVS images, Wang et al.

integrated clinical ultrasound factors and Radscore to develop a

nomogram for the diagnosis of BI-RADS category 4 lesions, which

achieved an AUC value of 0.925 in the internal validation group and

effectively minimized unnecessary biopsies (20). During this study,

we constructed nomogram that also achieved an AUC value of

0.930 for the diagnosis of BI-RADS category 4 lesions in the
A B

DC

FIGURE 6

The receiver operator characteristic curves of the BI-RADS model, SE+ABVS radiomics model, and Nomogram in the training group (A), the
validation group (B), the BI-RADS category 4 lesions in the training group (C), and the BI-RADS category 4 lesions in the validation group (D).
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validation group, surpassing the performance of the clinical model

(AUC: 0.839), thereby further validating its good diagnostic

efficacy. This may be attributed to the fact that the radiomics

features selected for this study are all texture features with the

majority derived from wavelet transform. Previous studies have

demonstrated the value of wavelet transform-based texture features

for the diagnosis of tumor lesions (42). The primary advantage of

wavelet transform in image analysis lies in its multi-scale analysis

capability, allowing it to capture the texture information of an

image at various granularities. It possesses directional sensitivity,

enabling it to accurately identify texture changes in multiple

directions, while its time-frequency localization property allows it

to keenly detect local variations in images. Additionally, wavelet

transform can enhance image contrast, exhibit certain resistance to

noise, and effectively compress image information, making feature

extraction more robust and efficient (43). By quantifying the
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textural variances of breast lesions, we successfully captured the

subtle heterogeneity within these lesions, thereby effectively

distinguished between benign and malignant breast lesions.

Lambin et al. introduced the radiomics quality score (RQS) to

provide a framework for clinical researchers to evaluate and guide

their radiomics studies (44). This study has given comparatively

detailed elaboration on image acquisition, feature extraction and

screening, and model construction in order to ensure the

reproducibility of the study. Two physicians independently

del ineated the lesions, effect ively achieving mult iple

segmentations. The features extracted from both segmentations

were then subjected to ICC analysis. Consequently, only the

features demonstrating excellent repeatability and robustness were

selected. To prevent model overfitting, we standardized the feature

values. Features with strong discriminative ability were obtained

through the U-test, LASSO regression with tenfold cross-validation
TABLE 3 The diagnostic parameters of the BI-RADS model, SE+ABVS radiomics model, and Nomogram in each group.

Model AUC
(95%CI)

Sensitivity
%

Specificity
%

Accuracy
%

P
(AUC compare to BI-

RADS model)

P
(AUC compare to SE+ABVS

radiomics model)

Training group

BI-RADS model 0.930(0.894,
0.956)

82.76 96.69 89.86 0.46

SE+ABVS
radiomics model

0.941(0.907,
0.965)

87.59 90.07 88.85 0.46.

Nomogram 0.972(0.946,
0.988)

89.66 94.04 91.89 <0.01* <0.01*

Validation group

BI-RADS model 0.916(0.853,
0.958)

79.37 95.31 87.40 0.52

SE+ABVS
radiomics model

0.933(0.875,
0.970)

85.71 85.94 85.83 0.52

Nomogram 0.964(0.916,
0.989)

87.30 95.31 91.34 <0.05* <0.05*

BI-RADS category 4 lesions in the
Training group

BI-RADS model 0.844(0.779,
0.895)

73.08 94.25 84.24 <0.05*

SE+ABVS
radiomics model

0.915(0.862,
0.953)

84.62 87.36 86.06 <0.05*

Nomogram 0.952(0.907,
0.979)

84.62 89.66 87.27 <0.01* <0.05*

BI-RADS category 4 lesions in the
Validation group

BI-RADS model 0.839(0.738,
0.913)

72.50 91.89 81.82 0.13

SE+ABVS
radiomics model

0.899(0.809,
0.956)

82.50 83.78 83.12 0.13

Nomogram 0.930(0.848,
0.975)

82.50 91.89 87.01 <0.01* 0.12
*P<0.05.
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from ABVS and SE images, respectively. Subsequently, we evaluated

the constructed nomogram using calibration curves and the

Hosmer-Lemeshow test, which demonstrated excellent calibration

performance. Based on these analyses, the nomogram appears to be

a robust and generalizable tool, offering accurate risk prediction

with potential for practical clinical implementation. Although the

development of this nomogram necessitates a combination of

diverse factors, these data can be retrospectively obtained without

imposing an additional examination burden on patients.

Admittedly, This study was subject to certain limitations: It was

conducted as a single-center retrospectively study thus selection

bias may have occurred, and lacked external validation, which

necessitates further multicenter large-sample studies and

prospective trials for the validation of our developed nomogram.
5 Conclusion

The nomogram developed in this study, which combined SE

and ABVS radiomics features, with traditional imaging assessment
Frontiers in Oncology 11
criteria and clinical risk factors, it can serve as a reliable and non-

invasive analytical tool to assist physicians in accurately assessing

the malignancy risk in solid hypoechoic breast lesions, leading to

better clinical decision-making.
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30. Mendelson EB, Böhm-Vélez M, Berg WA, et al. ACR BIRADS® Ultrasound, in:
ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System. American College of
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.1002/ijc.33693
https://doi.org/10.1016/j.semcancer.2019.08.012
https://doi.org/10.1016/j.clbc.2014.02.004
https://doi.org/10.3389/fimmu.2022.1035402
https://doi.org/10.3389/fimmu.2022.1035402
https://doi.org/10.7863/jum.2007.26.6.807
https://doi.org/10.1016/j.diii.2013.02.006
https://doi.org/10.1016/j.ejrad.2013.03.005
https://doi.org/10.1016/j.ultrasmedbio.2013.04.003
https://doi.org/10.1016/j.ejrad.2015.07.028
https://doi.org/10.1186/1471-2407-14-798
https://doi.org/10.1186/1471-2407-14-798
https://doi.org/10.1016/j.ultrasmedbio.2017.09.012
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.crad.2016.09.013
https://doi.org/10.1038/s41598-019-48488-4
https://doi.org/10.1002/jum.15845
https://doi.org/10.3389/fonc.2022.992509
https://doi.org/10.3389/fonc.2022.992509
https://doi.org/10.2147/BCTT.S410356
https://doi.org/10.3390/diagnostics12010172
https://doi.org/10.3389/fonc.2020.573630
https://doi.org/10.3389/fonc.2020.573630
https://doi.org/10.1038/s41523-017-0045-3
https://doi.org/10.1016/j.ultrasmedbio.2016.12.01
https://doi.org/10.1016/j.ultrasmedbio.2016.12.01
https://doi.org/10.1016/j.compbiomed.2022.105920
https://doi.org/10.1155/2019/4507694
https://doi.org/10.3389/fonc.2021.733260
https://doi.org/10.21037/atm-21-5441
https://doi.org/10.3389/fonc.2023.1074060
https://doi.org/10.3389/fonc.2020.531476
https://doi.org/10.3389/fonc.2023.1256146
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shiyan et al. 10.3389/fonc.2023.1256146
Radiology, Reston, 2013 VA. Available at: https://www.acr.org/Clinical-Resources/
Reporting-and-Data-Systems/Bi-rads (Accessed 11 Jan 2023).

31. Zhi H, Xiao XY, Ou B, Zhong WJ, Zhao ZZ, Zhao XB, et al. Could ultrasonic
elastography help the diagnosis of small (≤2 cm) breast cancer with the usage of
sonographic BI-RADS classification? Eur J Radiol (2012) 81(11):3216–21. doi: 10.1016/
j.ejrad.2012.04.016

32. Büsing KA, Kilian AK, Schaible T, Debus A, Weiss C, Neff KW. Reliability and
validity of MR image lung volume measurement in fetuses with congenital
diaphragmatic hernia and in vitro lung models. Radiology (2008) 246(2):553–61.
doi: 10.1148/radiol.2462062166

33. Marzbani B, Nazari J, Najafi F, Marzbani B, Shahabadi S, Amini M, et al. Dietary
patterns, nutrition, and risk of breast cancer: a case-control study in the west of Iran.
Epidemiol Health (2019) 41:e2019003. doi: 10.4178/epih.e2019003

34. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, et al. Risk factors and
preventions of breast cancer. Int J Biol Sci (2017) 13(11):1387–97. doi: 10.7150/
ijbs.21635

35. Gity M, Arabkheradmand A, Taheri E, Shakiba M. Diagnostic investigation of
breast magnetic resonance imaging in Malignant and benign mass lesions. Arch Med
Sci (2018) 14(5):1061–9. doi: 10.5114/aoms.2016.62281

36. Zou X, Wang J, Lan X, Lin Q, Han F, Liu L, Lin Q, Han F, Liu L, et al. Assessment
of diagnostic accuracy and efficiency of categories 4 and 5 of the second edition of the
BI-RADS ultrasound lexicon in diagnosing breast lesions. Ultrasound Med Biol (2016)
42(9):2065–71. doi: 10.1016/j.ultrasmedbio.2016.04.020
Frontiers in Oncology 13
37. Liu G, Zhang MK, He Y, Liu Y, Li XR, Wang ZL. BI-RADS 4 breast lesions: could
multi-mode ultrasound be helpful for their diagnosis? Gland Surg (2019) 8(3):258–70.
doi: 10.21037/gs.2019.05.01

38. Teng R, Wei Q, Zhou J, Dong M, Jin L, Hu W, et al. The influence of preoperative
biopsy on the surgical method in breast cancer patients: a single-center experience of 3,966
cases in China. Gland Surg (2021) 10(3):1038–45. doi: 10.21037/gs-21-7

39. Nakano S, Imawari Y, Mibu A, Otsuka M, Oinuma T. Differentiating vacuum-
assisted breast biopsy from core needle biopsy: Is it necessary? Br J Radiol (2018) 91
(1092):20180250. doi: 10.1259/bjr.20180250

40. Wang L. Early diagnosis of breast cancer. Sensors (Basel) (2017) 17(7):1572.
doi: 10.3390/s17071572

41. Raber B, VJ B, Bedrosian I. How does MR imaging help care for my breast cancer
patient? Perspective of a surgical oncologist.Magn Reson Imaging Clin N Am (2018) 26
(2):281–8. doi: 10.1016/j.mric.2017.12.010

42. Jiang Z, Yin J, Han P, Chen N, Kang Q, Qiu Y, et al. Wavelet transformation can
enhance computed tomography texture features: a multicenter radiomics study for
grade assessment of COVID-19 pulmonary lesions. Quant Imaging Med Surg (2022) 12
(10):4758–70. doi: 10.21037/qims-22-252

43. Sudarshan VK, Mookiah MR, Acharya UR, Chandran V, Molinari F, Fujita H,
et al. Application of wavelet techniques for cancer diagnosis using ultrasound images: A
Review. Comput Biol Med (2016) 69:97–111. doi: 10.1016/j.compbiomed.2015.12.006

44. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J,
et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat
Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/nrclinonc.2017.141
frontiersin.org

https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-rads
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-rads
https://doi.org/10.1016/j.ejrad.2012.04.016
https://doi.org/10.1016/j.ejrad.2012.04.016
https://doi.org/10.1148/radiol.2462062166
https://doi.org/10.4178/epih.e2019003
https://doi.org/10.7150/ijbs.21635
https://doi.org/10.7150/ijbs.21635
https://doi.org/10.5114/aoms.2016.62281
https://doi.org/10.1016/j.ultrasmedbio.2016.04.020
https://doi.org/10.21037/gs.2019.05.01
https://doi.org/10.21037/gs-21-7
https://doi.org/10.1259/bjr.20180250
https://doi.org/10.3390/s17071572
https://doi.org/10.1016/j.mric.2017.12.010
https://doi.org/10.21037/qims-22-252
https://doi.org/10.1016/j.compbiomed.2015.12.006
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.3389/fonc.2023.1256146
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	A clinical-radiomics nomogram based on multimodal ultrasound for predicting the malignancy risk in solid hypoechoic breast lesions
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.2 Image acquisition and assessment
	2.2.1 SE image
	2.2.2 ABVS image

	2.3 Extraction and selection of radiomics features
	2.4 Development of models
	2.4.1 Radiomics models
	2.4.2 Clinical diagnostic model

	2.5 Development and performance validation of nomogram
	2.6 Statistical analysis

	3 Results
	3.1 Comparison of clinical basis information and sonographic features
	3.2.Screening of radiomics features
	3.3 Comparison of radiomics models
	3.4 Evaluation of nomogram performance

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References


