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Immunotherapy for non-small cell lung cancer (NSCLC) has advanced

considerably over the past two decades. In particular, immune checkpoint

inhibitors are widely used for treating NSCLC. However, the overall cure and

survival rates of patients with NSCLC remain low. Therefore, continuous

investigation into complementary treatments is necessary to expand the

clinical advantages of immunotherapy to a larger cohort of patients with

NSCLC. Recently, the distinctive role of the gut microbiota (GM) in the

initiation, progression, and dissemination of cancer has attracted increasing

attention. Emerging evidence indicates a close relationship between the gut

and lungs, known as the gut–lung axis (GLA). In this review, we aim to provide a

comprehensive summary of the current knowledge regarding the connection

between the GM and the outcomes of immunotherapy in NSCLC, with particular

focus on the recent understanding of GLA. Overall, promising GM-based

therapeutic strategies have been observed to improve the effectiveness or

reduce the toxicity of immunotherapy in patients with NSCLC, thus advancing

the utilization of microbiota precision medicine.

KEYWORDS
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1 Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide. In 2022, lung

cancer was predicted to cause approximately 350 deaths per day in the United States (1).

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancers (2).

Lung adenocarcinoma, squamous cell carcinoma, and large-cell carcinoma are considered

the three main NSCLC subtypes (3). In the past two decades, there have been significant

advancements in the therapeutic strategies targeting of NSCLC (4, 5).

Immunotherapies currently available for lung cancer include nonspecific

immunotherapies, adoptive T-cell immunotherapy, and the use of monoclonal

antibodies, oncolytic viruses, or cancer vaccines (3). Immune checkpoint inhibitors

(ICIs) are monoclonal antibodies that have been demonstrated to prolong the life of
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patients with NSCLC; these ICIs have since become a routine

treatment for this disease, causing a paradigm shift in the

therapeutic management of NSCLC (6–9). Programmed cell

death-1 (PD-1), programmed cell death ligand-1 (PD-L1), and

monoclonal antibodies against cytotoxic T lymphocyte-associated

antigen-4 (CTLA-4) are the most common ICIs currently used for

NSCLC; these ICIs restrict T cell effector activity within tissues or

downregulate the amplitude of T cell activation (10). ICIs can

confer long-term therapeutic effects in some patients with lung

cancer. However, only 17–21% of patients with advanced-stage

NSCLC respond to ICIs, which is a significantly lower response rate

than that seen for melanoma (11). Primary ICI resistance affects 25–

44% of patients with NSCLC (12). Furthermore, immune-related

adverse events (irAEs) hamper the increased overall survival (OS) of

patients treated with ICIs (13). Therefore, studies aimed at

enhancing ICI response rates and reducing irAEs are crucial

for NSCLC.

To date, numerous combination treatments have been developed

to delay or prevent ICI resistance, including modulating the tumor

microenvironment (TME), blocking immunological co-inhibitory

signals, targeting T-cell priming, and activating T-cells with co-

stimulatory roles (14). The gut microbiota (GM) is drawing

increasing attention with regard to its ability to shape systemic

immune responses and influence ICI efficacy (15). The human body

contains up to 4×1013 microbial cells, which predominantly consist of

bacteria; these bacteria predominantly reside in the gut, accounting for

>95% of the total microbial population (16). Additionally, this

microbiome contain at least 100 times more genes than our own

genome (17). The GM consists of four major phyla (Bacteroidetes,

Firmicutes, Proteobacteria, and Actinobacteria) and two minor phyla

(Verrucomicrobia and Fusobacteria) (18). Specifically, the GM is

considered to be a potent “organ” capable of influencing metabolic,

nutritional, physiological, and immunological processes and potentially

modulating immunotherapy sensitivity (19).

Nonetheless, the effect of the GM and its metabolites on the

efficacy of ICIs in some cancer types such as NSCLC remains poorly

understood. In this review, we evaluate the latest information

regarding how the GM influences immunotherapy in NSCLC,

with an emphasis on the gut–lung axis (GLA). In addition, we

summarize the continuing efforts of GM-based manipulation

strategies in patients with NSCLC that are receiving

immunotherapy. Through this, we aim to provide an effective

resource to improve knowledge surrounding the importance of

the GM in immunotherapy and NSCLC and provide a foundation

for future research.
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2 Gut microbiota modulates
the effectiveness and toxicity
of NSCLC immunotherapy

Microorganisms within the gut influence systemic immune

responses and affect the efficacy of ICIs through several hallmark

mechanisms (12, 15). Multifactorial clinical responses to ICIs can be

divided into two categories: tumor-intrinsic factors (mutational

status and oncogenic signaling) and tumor-extrinsic factors

(microbiota, TME, and metabolic factors) (20). Insufficient

production of antitumor T cells, limited function of tumor-

specific T cells, and defective establishment of memory T-cells are

the three key explanations for ICI therapy failure (21). Mounting

evidence has linked the GM with the corresponding patient

response to ICI treatment in preclinical and clinical studies (22).

The GM augments the intermediate effects of innate immune cells

(dendritic cells, macrophages, and natural killer cells), and enhances

the antitumor effects of adaptive immune cells (CD8+ T cells, CD4+

T cells). Additionally, the GM alters TME immunity and host ICI

responses (23). The overall effects of GM on the efficacy and toxicity

of NSCLC immunotherapy are summarized herein.
2.1 Evidence in preclinical mouse models

Preclinical mouse models are important tools for cancer

research. The effect of GM on NSCLC immunotherapy was

initially illustrated using a mouse model (Table 1; Figure 1).

Individual mice were observed to possess varied responses to

NSCLC immunotherapy when fed different GM. Additionally,

Newsome et al. transplanted the feces of 65 patients with NSCLC

undergoing ICI treatment into germ-free wild-type (GF-WT) mice;

this transplantation reduced Lewis lung carcinoma (LLC) growth in

these mice. Overall, Bacteroides was enriched in the mouse cohort

that received transplantation from ICI responders, whereas

Ruminococcus was considerably enriched in the non-responding

mouse group (24). In the same mouse model, Routy et al.

demonstrated that the GM is vital for the response to PD-1

blockade. Specifically, they established that mice receiving fecal

microbiota transplantation (FMT) from responders exhibited a

greater response to anti-PD-1 treatment than mice receiving FMT

from non-responsive individuals. In addition, in mice recolonized

with fecal microbiota from non-responsive patients with NSCLC,

gavage therapy with Akkermansia muciniphila alone or in
TABLE 1 Preclinical evidence on the GM-dependent modulation of ICI efficacy in NSCLC.

Year Tumor
model

Treatment Beneficial bacterial
species

Effects Potential mechanisms Reference

2022 LLC Anti-PD-1 Bacteroides Reduced
tumor weight

CD8+ IFNg+ T cells, CXCR3+ CD4+ T cells, and
tumor-associated macrophages

(24)

2021 LLC Anti-PD-1 Bifidobacterium bifidum (K57 and
K18)

Reduced
tumor growth

IFN-g (25)

2018 LLC Anti-PD-1 Akkermansia muciniphila,
Enterococcus hirae, and Alistipes

Reduced
tumor sizes

CCR9+CXCR3+CD4+ T cells via IL-12 (26)
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combination with Enterococcus hirae alleviated anti-PD1

unresponsiveness (26). Interestingly, they also discovered that the

adjuvant impact of A. muciniphila on the anti-PD1 response

resulted in a corresponding increase in CD4+ T cells expressing

the chemokine receptor 9(CCR9), which was initiated via the IL-12-

dependent signaling pathway (26). Although both studies employed

identical LLC mouse models and anti-PD-1 ICIs, differences in the

detected bacter ia may be attr ibuted to the different

experimental conditions.

Strain-level differences in the GM can also affect the expression

and synthesis of relevant immunomodulatory components in

NSCLC and can, thereby, modulate immunotherapy efficacy (25).

A key study established that Bifidobacterium bifidum is enriched in

patients with NSCLC who are responsive to ICI treatment (25).

Subsequently, Lee et al. supplemented the GM in syngeneic mouse

models with four strains (K57, K18, B06, or R71) of B. bifidum.

Although all B. bifidum strains inhibited LLC growth, only two

(K57 and K18) exhibited beneficial synergistic effects with anti-PD-

1 therapy (25). Therefore, as not all strains exhibit identical effects,

elucidating the underlying mechanisms is crucial for creating live

biotherapeutic products (27). Importantly, it was determined that

certain strains of B. bifidum produce large quantities of

peptidoglycan, which act ivate T cel ls in NSCLC via

peptidoglycan-mediated interferon (IFN)signaling. In mouse

models of LLC, this ultimately leads to an enhanced

immunotherapy response (25).

Finally, comparable findings have been reported in other

preclinical solid tumor models, suggesting that the synergistic

effect of GM and ICI therapy may be applicable to ICI-resistant

cancer. In preclinical mouse models of melanoma, two studies

published in Science revealed that PD-1 and CTLA-4 inhibition

only suppressed tumor development in mice carrying

Bifidobacterium and Bacteroides fragilis species, respectively (28,

29). Further, Griffin et al. determined that Enterococcus spp. with

unique NlpC/p60 peptidoglycan hydrolase activity may produce

NOD2-active muropeptides; these muropeptides could then alter

the effectiveness of checkpoint blockade immunotherapy in vivo

(30). In mouse models of colorectal cancer, Mager et al. revealed

that bacterial inosine is associated with the GM-dependent response

to ICIs (31). FMT from responsive and non-responsive patients into

mice with human epidermal growth factor (HER2)-positive breast
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cancer mimicked the responses to ICIs observed in animal models

of breast cancer (32). In renal cell carcinoma (RCC) tumor-bearing

mice, oral gavage with feces from ICI-responding patients with

RCC reversed the initial resistance of these mice to ICI treatment

(33). In NSCLC, the relevant research is still blank. However, in

melanoma, gut dysbiosis attenuated the anti-tumour efficacy of

Tim-3 blockade in mice (34). In colon adenocarcinoma tumor-

bearing mice, the immunotoxicity of anti-CD137 immunotherapies

is dependent on GM (35).

These preclinical studies have successfully demonstrated that

GM composition has a clear impact on checkpoint blockade

effectiveness, and alteration of the GM can enhance response to

ICI treatment. Nevertheless, most preclinical investigations that

demonstrated the influence of GM on ICI response have been

limited to melanoma and colorectal cancer. Therefore, NSCLC

should receive more attention in future pre-clinical experiments

into the effect of the GM on ICI response.
2.2 Evidence in patients with NSCLC

The human GM does not necessarily colonize mice in the same

manner as it colonizes humans. Furthermore, the mucosal and

immunological responses of mice to introduced commensals are

not comparable to those in humans (36). Consequently, various

research groups have sought to define the function of the GM in

NSCLC immunotherapy outcomes to better understand the

difference in responders (Rs) and non-responders (NRs)

(Tables 2, 3). Overall, 16S rDNA sequencing and metagenomic

shotgun sequencing (MSS) were used to analyze the composition of

GM in these studies.

First, Routy et al. established that A. muciniphila is

overrepresented in the stool samples of patients with NSCLC who

benefit from PD-1 treatment. Specifically, they reported an

enrichment of A. muciniphila in R vs. NR, as well as a relative

underrepresentation of Bifidobacterium adolescentis and

Parabacteroides distasonis in those that responded to PD-1

treatment. Antibiotic (ATB) use has also been observed to have a

deleterious influence on the immune checkpoint blockade response

(26). Four years later, the same research group used microbiome

profiling to prospectively evaluate the benefits of fecal
FIGURE 1

Evidence of the effect of the gut microbiota in preclinical mouse models of NSCLC with immunotherapy.
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A.muciniphila in a large cohort of patients with advanced NSCLC

(n = 338) who were treated with first- or second-line ICIs. In this

study, ATB usage and the Clostridium genus were linked to ICI

resistance (39). Additionally, Martini et al. provided clinical
Frontiers in Oncology 04
evidence that two butyrate-producing GM (Agathobacter M104/1

and Blautia SR1/5) may improve immune responses in patients

with metastatic and chemorefractory NSCLC (44). Jin et al. also

reported that memory T cell and natural killer cell signatures in
TABLE 2 Clinical evidence on the GM-dependent modulation of ICI efficacy in NSCLC.

Study
year

Sample
size

Treatment Effects GM related to the response Potential interventions and
biological effects

Reference

2023 47 Anti-PD-(L)1 longer PFS Bacteroidaaceae, Barnesiellaceae, and
Tannerellaceae

Not discussed (37)

2023 113 Anti-PD-(L)1 longer PFS
and OS

Anaerostipes and Eubacterium
ventriosum

Systemic inflammatory marker-derived
neutrophil-to-lymphocyte ratio and lung
immune prognostic index

(38)

2022 338 Anti-PD-1 Higher ORR
and longer OS

A. muciniphila TH1 cells (39)

2022 16 Anti-PD-1 Improved
response and
survival rates

Bacteroides vulgatus, Parabacteroides
distasonis, Bacterium LF-3, and
Sutterella wadsworthensis HGA0223

T cells and effector T cells (40)

2021 75 Anti-PD-1 Improved
clinical
response

Alistipes, Anaerostipes, Desulfovibrio,
Faecalibacterium, and Bifidobacterium

Increased antigen presentation and
improved effector T cell function

(22)

2021 16 Anti-PD-1 Limited the
growth of
target lesions

Escherichia-Shigella, Akkermansia, and
Olsenella

IL-12 and IFN-g (41)

2020 70 Anti-PD-(L)1 Higher ORR
and longer
PFS

Ruminococcaceae UCG 13 and
Agathobacter

CD4+ and CD8+ T cells (15)

2020 63 Anti-PD-(L)1 Longer PFS Parabacteroides and Methanobrevibacter Not discussed (42)

2019 37 Anti-PD-1 Longer PFS Alistipes putredinis,
Bifidobacterium longum, and Prevotella
copri

Memory CD8+ T cells and natural killer
cells

(43)

2018 60 Anti-PD-1 Longer PFS A. muciniphila CD8+ TC1 T cells (26)
ORR, overall response rate; OS, overall survival; PFS, progression-free survival.
TABLE 3 Ongoing clinical trials on the association between the intestinal microbiome and immunotherapy in NSCLC (www.clinicaltrials.gov).

NCT# Age Sample
size

Study description Location Investigator Study
type

Length

NCT05037825 18+ 800 How microbiota and their byproducts
affect cancer immunotherapy

United
States

Diane Drobny Observational 11/21–09/28

NCT04804137 18+ 80 The GM tract of patients receiving
immunotherapy

France Marion Ferreira Observational 05/21–03/25

NCT04063501 18–100 80 Whether microbiota signatures can
predict patient response

United
States

Leopoldo N Segal Observational 09/20–09/24

NCT04682327 18-75 50 To analyze the composition and diversity
of gut microbiota in patients with
advanced or metastatic NSCLC, and to
explore the relationship between gut
microbiota and response to anti-PD-1/
PD-L1 therapy

China Chen Qi Observational 08/21-12/22

NCT04189679 18+ 60 Identifying predictive metabolic profiles
of immune checkpoint inhibitor response
in non-small cell lung cancer

France La Tronche Observational 01/20-12/23

NCT04136470 18+ 130 Detect microbiome differences between
cancer patients who respond to
immunotherapy and those who do not

Poland Martyna
Balawejder

Observational 04/19-03/21
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peripheral blood were higher in patients with advanced NSCLC

with high gut bacterial diversity (43). Therefore, patients with

NSCLC with high microbiome diversity were determined to

exhibit a longer progression-free survival (PFS) than those with a

low-diversity microbiome (43). Five other studies reported similar

results; the various GM compositions associated with improved ICI

responses in these studies are listed in Table 2. Overall, there are

substantial variations between the diversity and composition of GM

in the R and NR groups in patients with NSCLC. GM profiling in

patients with NSCLC revealed that a higher gut bacterial diversity

and an increased abundance of specific bacteria, such as A.

muciniphila, Bacteroides vulgatus, P. distasonis, bacterium LF-3,

Sutterella wadsworthensis HGA0223, Agathobacter, Blautia,

Alistipes , Anaerostipes , Desulfovibrio , Faecalibacterium ,

Bifidobacterium, Escherichia-Shigella, Olsenella, Ruminococcaceae

UCG 13, Methanobrevibacter, Alistipes putredinis, and Prevotella

copri, were associated with a stronger T-cell dependent antitumor

response, resulting in favorable ICI clinical outcomes in multiple

independent trials. Li et al. analyzed the gut microbiota to explore

potential causal associations with various subtypes of lung cancer

using mendelian randomization. They identified 10 groups

associated with lung adenocarcinoma and 9 groups associated

with squamous cell lung cancer. Notably, a significant causal

relationship between Peptococcaceae and lung adenocarcinoma

was observed, as reported in the literature (45). However, the

gastrointestinal microbiome does not always play a beneficial role

in NSCLC immunotherapy. According to a retrospective

investigation of two independent cohorts of patients with NSCLC,

Helicobacter pylori has been associated with an evident decrease in

the PFS of patients with NSCLC undergoing anti-PD-1 therapy (46)

(Figure 2). Studies have shown that gut microbiota plays an

important role in the response of NSCLC patients to anti-PD-1

therapy, and that gut microbiota diversity is significantly increased
Frontiers in Oncology 05
in patients who respond to anti-PD-1 therapy (47). A prospective

study of 63 patients with advanced NSCLC taking anti-PD-1

therapy found that b diversity in gut microbiota at baseline was

significantly increased in patients with progression-free survival

(PFS)≥ 6 months compared with patients with PFS<6 months; The

LEfSe analysis suggested that the most significantly associated

groups in patients with PFS≥6 months were Paracterium (LDA

score=3.8) and Methanobrevibacterium (LDA score=3.4), whereas

the PFS<6 months group was rich in Veillonella, Seleniomonas, and

Negativicutes. Further analysis showed that Paracobacterium and

Methanobrevibacterium species in NSCLC patients enhance their

responsiveness to Immune checkpoint inhibitors (42). The results

reported in a study showed that in NSCLC receiving first-or second-

line immunotherapy to detect its pre-treatment gut microbiota,

Akkermansia muciniphila (AKK+) patients were found to have a

higher immunotherapy response rate than AKK-patients (28% VS

18%), among which AKK+ patients, the response rate of first-line

immunotherapy was as high as 41%. For survival, overall survival

(OS) was longer in the AKK+ group than in the AKK-group (18.8

months vs 15.4 months) (39).

In summary, experimental and clinical evidence has

demonstrated that GM plays a key role in modifying the

effectiveness of immunotherapy in NSCLC. However, these

studies have several limitations that should be addressed. For

example, most clinical trials have been undertaken on a relatively

small number of patients with NSCLC; additionally, current

research seems to lack consensus on what GM compositions are

advantageous or antagonistic to ICI treatment of NSCLC.

Accordingly, several clinical studies are being conducted to

address these issues (Table 3). Further, the cause-and-effect

relationship between the GM and immunotherapy in NSCLC

remains unclear. Therefore, further research is required to

determine whether the GM modulates immunotherapy in
FIGURE 2

Evidence of the effect of the gut microbiota in patients with NSCLC undergoing immunotherapy.
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patients with NSCLC or whether immunotherapy alters the GM of

patients with NSCLC. Furthermore, the correlations between B cell

responses and the GM are yet to be thoroughly investigated in the

context of NSCLC immunotherapy.
2.3 Microbiota-derived metabolites and
immune-related adverse events

Although ICIs are the first-line therapy for NSCLC, several

irAEs have been reported. According to a multicenter cohort study,

623 patients with NSCLC treated with PD-(L)1 monotherapy

developed multisystem irAEs, the most prevalent of which were

pneumonitis thyroiditis, hepatitis thyroiditis, dermatitis thyroiditis,

and dermatitis pneumonitis (48). Anti-PD-(L)1-induced

checkpoint inhibitor pneumonitis is more common in patients

with NSCLC than in those with other malignancies. Disordered

T-cell subsets, elevated preexisting and emerging autoantibodies,

and imbalanced inflammatory cytokines are three pathways that

may explain this PD-(L)1 inhibitor–mediated pulmonary damage

(49). Additionally, according to Tang et al., the most frequently

observed irAE is checkpoint inhibitor colitis (50).

However, the treatment of irAEs remains a key source of

concern in NSCLC immunotherapy. In most cases of irAE,

immunotherapy may be withheld or stopped completely,

depending on the severity of toxicity (51). Several studies

considering the putative link between GM and irAEs in NSCLC

have been conducted. Hakozaki et al. obtained pre-ICI fecal samples

from 70 Japanese patients with advanced NSCLC who were then

treated with ICIs. Ultimately, they determined that Akkermansia,

Lactobacillaceae, and Raoultella were associated with milder irAEs,

whereas Agathobacter was associated with more severe irAEs (15).

Another study in which 37 patients were enrolled indicated that the

GM of patients who did not experience irAEs was relatively

enriched in Bifidobacterium and Desulfovibrio spp (52).

Bifidobacterium, Faecalibacterium, and Agathobacter were also

determined to be less abundant in patients with irAEs (53).

Zeng et al. observed notable alterations in butyrate-producing

bacteria within a cohort of patients experiencing secondary

resistance (SR) to ICIs. There was a downward trend in these

bacteria levels upon the onset of secondary resistance. Notably,

Bacteroides played a significant role in the variance between the

baseline and the occurrence of irAEs. The abundance of Bacteroides

declined after the onset of irAEs and subsequently returned to levels

comparable to the baseline after remission (54).

Furthermore, a multicenter non-interventional trial

(NCT04107168), involving up to 40 UK sites, is currently

underway. To examine mechanisms underlying irAEs,

longitudinal stool samples were collected prior to NSCLC

immunotherapy and following 6 weeks, 3 months, 6 months, and

12 months of treatment. A clear association between GM

composition and ICI toxicity was one of the initial results

established in this clinical trial (55).

Additionally, the GM has been reported to be associated with

irAEs in other cancers. For example, Andrews et al. established that

Bacteroides intestinalis mediates immune-related intestinal damage
Frontiers in Oncology 06
via IL-1b in melanoma (56). The link between irAEs and several

Lachnospiraceae species in melanoma has also been verified by

McCulloch et al. (57). Further, Mao et al. determined that a higher

GM diversity and relative abundance of the Firmicutes phylum may

be protective factors against irAEs in patients with hepatobiliary

cancer (58). Finally, compared with the post-treatment microbiota

of immune-related acute pancreatitis, a low Bacteroidetes/

Firmicutes ratio, a low relative abundance of Alistipes and

Bacteroides, and a high Lachnospiraceae abundance were observed

in the baseline microbiota of individuals with pancreatic

cancer (59).
3 Gut–lung axis

Gut microbiota not only regulates the immune response of

gastrointestinal tract, but also influences the health and disease of

distal organs such as respiratory system through intestinal

microecology. The relationship and interaction between the gut

and the lung is called Gut-lung axis (60).

Although the gut and the lungs are physically separate and

possess substantially different functions, they share several

similarities. First, they share a common embryonic origin and

structural similarities (61, 62). Specifically, both organs are

derived from the endoderm and consist of columnar epithelial

cells with projections of microvilli (gut) or cilia (lungs). Both organs

also secrete mucus through goblet cells (63). Additionally, both the

gut and the lungs possess an enormous surface area exposed to the

external environment; hence, they both serve as the first line of

defense against invading foreign pathogens and play important

roles in innate and adaptive immunity (64). The GLA hypothesis

arises from the understanding that intestinal and respiratory

disorders share pathological abnormalities; further, alterations in

the gut microenvironment may influence the pathology of various

lung disorders (65, 66).

Considerable evidence has indicated that dynamic crosstalk

between the gut and the lungs establishes the GLA. Additionally,

bronchi content aspiration can deliver up to 1011 live bacteria to the

intestines each day. Further, gut-derived harmful substances can

enter the lung circulation via intestinal lymphatics (67). Huang et al.

discovered a unique cell type (group 2 innate lymphoid cells) that

resides in the gut but can migrate to the lungs via sphingosine-1-

phosphate receptors and can, ultimately, contribute to host defense

(68). Moreover, Ruane et al. established that lung dendritic cells,

such as CD103(+) mesenteric lymph node (MLN) dendritic cells,

stimulate protective T lymphocyte migration to the gastrointestinal

tract (69). Further, microbiota administered into the nasal cavity of

mice can be observed in the gut following a short incubation

period (70).

However, the mechanisms mediating the communication

between the gut and lungs remain unclear. An idea, named the

common mucosal immune system, was proposed in 1978 (71). This

system operates according to the following scheme: Peyer’s patches

(PP) capture inhaled antigens and transport them to antigen-

presenting cells (APCs); naïve T and B cells are induced in the

PPs; after sensitization, T and B lymphocytes travel to the MLNs
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and the thoracic duct to reach the bloodstream; subsequently, these

sensitized T and B cells are distributed to several effector sites,

including the gut-associated lymphoid tissue (GALT) and

bronchus-associated lymphoid tissue (BALT) (67). The key

immunological roles of GALT and BALT include IgA synthesis

and secretion at mucosal surfaces, alongside establishing helper and

cytotoxic T cell responses (72, 73). Local immune responses to

GALT and BALT can affect systemic immunological responses;

nonetheless, these immune responses can also operate independent

of the systemic site (65). Thus, according to the common mucosal

immune system, the circulation of lymphatic fluid and blood

contributes to the interactions observed between the gut and the

lungs (Figure 3).

The bidirectional relationship between the gut and the lungs is

the foundation for understanding the role of the GM in NSCLC

immunotherapy. Different GM can act on the epithelial barrier to

activate innate and cognate immune responses against NSCLC

antigens; this activation occurs through a range of mechanisms,

including endoplasmic reticulum stress, intestinal crypt apoptosis,

inflammasome activation, Toll-like receptor signaling, nucleotide-

binding oligomerization domain activation, and chemokine

receptor signaling (74). In addition to the mucosal immune

system, three other mechanisms have been postulated to explain

the effects of the GM on lung immunity, which may be associated

with NSCLC immunotherapy response rate. First, cytokines and

growth factors generated by the gut mucosa in response to the GM

may enter the systemic circulation and affect other mucosal tissues.

Second, microbial-associated molecular patterns can be absorbed

and transported to the lungs, where they can regulate immune

responses. Third, metabolites ingested by the GM have been linked

to a phenomenon known as “metabolic reprogramming,” which

involves the manipulation of mucosal immunity (75); for example,

the concentration of circulating short-chain fatty acids (SCFAs) in

the intestine affects IL-6 and IL-8 levels at the NSCLC tumor

site (76).
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Through the down-regulation of mucosal addressin cell

adhesion molecule 1 (MAdCAM-1) in the ileum, post-antibiotic

(ABX) gut recolonization by Enterocloster species facilitated the

migration of enterotropic a4b7CD4 regulatory T 17 cells towards

the tumor. Conversely, fecal microbiota transplantation (FMT) or

neutralization of interleukin-17A prevented the ABX-induced

immunosuppression. Notably, in distinct cohorts of lung cancer

patients, reduced serum levels of soluble MAdCAM-1 were

associated with an adverse prognosis. This underscores the

significance of the MAdCAM-1-a4b7 axis as a modifiable gut

immune checkpoint in the context of cancer immunosurveillance

(77, 78).
4 Strategies to manipulate the GM for
NSCLC immunotherapy

There are a number of potential approaches to target regulation

of the gut microbiota to enhance NSCLC immunotherapy response

rates, including FMT, ATBs, prebiotics, probiotics, postbiotics,

synbiotics, bacteriophages, and diet. These approaches can alter

the composition and function of the gut microbiota and can be used

to promote gut microbiota ba lance and funct ion in

NSCLC immunotherapy.
4.1 Fecal microbiota transplantation

FMT involves the transfer of GM from a known donor to a

recipient via the upper or lower gastrointestinal route to restore

microbial diversity within the intestine (79). In 1958, Eiseman

published the first report on the use of FMT for the treatment of

severe pseudomembranous enterocolitis (80). Despite being a well-

established therapy for recurrent Clostridium difficile infections,

FMT is now being explored in the context of cancer treatment (81).
FIGURE 3

Gut–lung axis. The mechanisms of gut–lung communication are unclear. The common mucosal immune system theory suggests that Peyer’s
patches capture inhaled antigens and induce naive T and B cells. These sensitized T and B lymphocytes travel to the mesenteric lymph nodes and
bloodstream, which distribute these lymphocytes to effector sites, such as the gut-associated lymphoid tissue (GALT) and bronchus-associated
lymphoid tissue (BALT). GALT and BALT play immunological roles and can impact systemic responses. According to this system, circulation of the
lymphatic fluid and blood can contribute to gut–lung interactions.
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FMT is a potential therapy for various types of cancer and

cancer treatment–associated complications. In preclinical mouse

models, Shaikh et al. utilized FMTs from two NSCLC patients who

had contrasting responses to ICIs (R and NR); overall, R-FMT mice

exhibited superior antitumor responses when paired with ICI

treatment compared to that of NR-FMT mice (11). Baruch et al.

and Davar et al. reported the first-in-human clinical trials

conducted to determine whether FMT can influence the response

of pat ients with metastat ic melanoma to ant i–PD-1

immunotherapy. Both trials demonstrated signs of therapeutic

benefit in some treated patients, including a higher abundance of

taxa associated with an anti–PD-1 response and enhanced CD8+ T

cell activation (82, 83). Several clinical trials of NSCLC are currently

being conducted to evaluate whether combining FMT with

immunotherapy can enhance the outcomes of patients with

NSCLC (Table 4).

Despite the promising results of FMT in patients treated with

ICIs, concerns remain regarding its long-term safety. According to a

study published in Lancet, 32 (78%) of the 41 individuals receiving

FMT treatment experienced adverse events, the majority of which

were self-limiting gastrointestinal problems (84). Nonetheless, a

randomized, placebo-controlled trial that evaluated the safety of
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FMT for active peripheral psoriatic arthritis reported no serious

adverse events in patients treated with FMT (85). According to the

European consensus on FMT in clinical practice, FMT shows an

excellent short-term safety profile, with only a few mild adverse

events observed. However, long-term safety data are limited.

Therefore, theoretically, FMT may transfer potentially dangerous

microbial features as well. In conclusion, given that FMT is a highly

effective treatment for NSCLC patients, the benefit-to-risk ratio

should be considered for each individual (86).
4.2 Antibiotics and proton pump inhibitors

ATBs not only kill pathogenic bacteria but also alter the

diversity and composition of the GM, thereby disrupting gut

homeostasis (87–89). In the context of NSCLC, ATBs appear to

be associated with a reduction in ICI therapeutic impact (Table 5).

Specifically, PFS duration was considerably reduced in patients with

NSCLC who were treated with ATBs within 2 months of their initial

ICI therapy than in those who had not received ATB treatment

within this timeframe (96). Furthermore, the use of ATBs before ICI

therapy has been demonstrated to reduce GM diversity, and the
TABLE 4 Ongoing clinical trials on the effects of FMT on NSCLC outcomes (www.clinicaltrials.gov).

NCT# Age Sample
size

Study
type

Study description Location Investigator Status Phase Length

NCT04951583 18+ 70 Interventional Anti-tumor activity of FMT
in combination with ICI
therapy

Canada Bertrand Routy Recruiting 2 11/21–09/25

NCT04521075 18+ 42 Interventional Safety and efficacy of FMT
in combination with
nivolumab in patients with
metastatic or inoperable
NSCLC

Israel Guy Ben-Betzalel Recruiting 1 and 2 11/20–07/23

NCT05669846 18+ 26 Interventional Whether FMT improves the
body’s ability to fight cancer
in patients with relapsed/
refractory PD-L1-positive
NSCLC

United
States

Amy Rose Not yet
recruiting

2 07/23–07/28

NCT05502913 18+ 80 Interventional Safety and efficacy of FMT
in altering ICI response in
patients with metastatic
NSCLC

Israel Ismaell Massalha Not yet
recruiting

2 09/22–06/25

NCT03819296 18+ 800 Interventional The role of the gut
microbiome and
effectiveness of FMT on
patients with cancer
(including NSCLC)

United
States

Yinghong Wang Recruiting 1 and 2 02/21–01/23

NCT05008861 18-75 20 Interventional To evaluate the safety of
FMT in the treatment of
advanced NSCLC, and to
analyze the effect of FMT
on the intestinal flora and
immunophenotype of
patients

China Chen Qi Recruiting 1 09/21- 12/22

NCT05286294 18+ 20 Interventional Modulating patients’ gut
microbiome by FMT
addresses cancer for which
immunotherapy failed

Norway Jon Amund Kyte Recruiting 2 06/22-12/34
f
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presence of Ruminococcaceae in patients with advanced NSCLC

resulted in unfavorable outcomes (15). The effectiveness of cancer

therapies has also been revealed to be impaired in ATB-treated and

GF mice (97).

However, considering that many patients with NSCLC require

ATB treatment over the course of this disease, the current focus of

research is to determine what factors can reduce the effects of ATBs

on ICI therapy. First, the use of ATBs during the early

immunotherapy period may be associated with poor therapeutic

outcomes. Interesting data from Zitvogel et al. demonstrated that

patients receiving ATBs immediately before or after initiating ICI

therapy exhibited poor outcomes (26). Similarly, in a trial involving

72 patients with NSCLC who were treated with nivolumab, the early

use of ATBs had also been associated with a shorter OS (98). A

meta-analysis conducted on patients with NSCLC established that

exposure to ATBs shortly before or after ICI therapy had a notably

harmful impact, whereas ATB use later in the disease progression

had no significant effect on survival (99). Second, patients with

NSCLC that possessed a higher ATB-ICI exposure ratio (defined as

“number of days of ATB administration/number of days of ICI

administration” for the entire immunotherapy period) also

exhibited poor outcomes (100). Third, the effect of ATBs on ICI

effectiveness varies depending on the PD-L1 expression levels in

patients with advanced NSCLC. Specifically, a deleterious effect has

been observed in patients with ≥50% PD-L1 expression but not in

those with <50% PD-L1 expression (101). Finally, with all other

clinically relevant parameters constant, patients who received a

single course of ATBs were observed to exhibit a shorter median OS

and PFS, whereas those who received multiple courses or prolonged

ATB therapy exhibited the worst overall outcomes (95). Gut

microbiota plays a crucial role in immune response. The use of

antibiotics affects the efficacy of ICIs by altering the gut microbiota.

Alkan et al. showed that the use of antibiotics at the start of ICIS was

associated with reduced OS, PFS and objective response rate (ORR)

in NSCLC patients (102). This suggests that gut microbiota diversity
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may be one of the factors predicting ICI efficacy. Therefore,

cumulative ATB use is not recommended.

Similar to ATB, PPIs are negative prognostic markers in

patients with NSCLC who are undergoing immunotherapy. In a

clinical study involving 169 individuals, PPI use was associated with

shorter PFS in patients with NSCLC that were treated with

atezolizumab (91). Additionally, PPI use has been observed to

negatively influence ICI efficacy in patients with NSCLC who

received atezolizumab + carboplatin + paclitaxel treatment (ACP)

or atezolizumab + bevacizumab + carboplatin + paclitaxel

treatment (ABCP) but not in those who received bevacizumab +

carboplatin + paclitaxel treatment (BCP) (91). Moreover, a meta-

analysis indicated that PPI treatment is associated with a reduced

PFS and OS in patients with advanced cancer who were treated with

ICIs (103). Thus, when not clearly warranted, PPI medication

should be discontinued; additionally, the use of histamine H2-

receptor antagonists should be investigated as an alternative to

PPI treatment.

In conclusion, there is a consensus on the negative effects of

ATBs and PPIs on patients with NSCLC who are receiving

immunotherapy. Given that the prohibition of ATB use is

impractical for certain patients, modulating ATB-related GM

dysbiosis may be a viable strategy to improve clinical outcomes.

Therefore, the use of targeted antibiotics that al low

immunopotentiating bacteria to proliferate have been recently

proposed (104). However, the dosage, frequency, and delivery

methods for targeted ATBs remain to be elucidated.
4.3 Probiotics, prebiotics, postbiotics,
and synbiotics

Recently, probiotics, prebiotics, and postbiotics have gained the

attention of clinicians due to their potential to enhance ICI efficacy

(Table 6). “Probiotic” was first defined in 1965 (105); nonetheless,
TABLE 5 Clinical trials on the effects of ATBs on ICI outcomes in NSCLC.

Study
Year

Study
type

Sample
size

ICI Antibiotics
Used

Outcomes NCT# Reference

2023 Interventional 90 Anti–PD-1/PD-L1 No specifics
mentioned

Reduced PFS
and OS

Not Applicable (90)

2023 Interventional 115/187 Anti–PD-1/PD-L1 No specifics
mentioned

Reduced PFS
and OS

NCT04567446 (77)

2020 Interventional 757 Anti-PD-L1 Quinolones,
penicillins, and
cephalosporins

Reduced OS NCT01903993/
NCT02008227

(91)

2020 Observational 528 Anti-PD-1/PD-L1 Systemic antibiotics Reduced PFS
and OS

Not Applicable (92)

2018 Retrospective 239 Anti-PD-(L)1/Anti-PD-(L)1+
Anti-CTLA-4

b-lactam and
quinolones

Reduced OS Not Applicable (93)

2021 Interventional 50 Anti-PD-1/PD-L1 b-lactam and
quinolones

Reduced PFS NCT03563482 (94)

2020 Retrospective 64 Anti-CTLA-4/Anti-PD-1 No specifics
mentioned

Reduced PFS
and OS

Not Applicable (95)
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the most recent definition of probiotic is as follows: “live

microorganisms that, when administered in adequate amounts,

confer a health benefit on the host” (106). Prebiotics are fibers

that are digestible by individual commensal species; these bacteria

metabolize the prebiotics, thereby producing secondary metabolites

such as SCFAs (107). Any material released or produced via the

metabolic activities of microbes that has a direct or indirect positive

impact on the host is regarded as a postbiotic (108). Finally,

synbiotics are a mix of prebiotics and probiotics and have been

proven advantageous in inflammatory bowel disease; however, their

impact on cancer is not yet examined in clinical studies (104).

Probiotics, prebiotics, postbiotics, and synbiotics play important

roles in assisting immunotherapy in the treatment of NSCLC. A

retrospective study involving 294 patients established that probiotic

use is associated with favorable clinical outcomes in patients with

advanced or recurrent NSCLC who were subjected to anti-PD-1

monotherapy (109). Alternatively, a retrospective study evaluated 118

patients with advanced NSCLC who were treated with ICIs at

Kumamoto University Hospital. Significant improvements in PFS

and OS were observed in patients who received probiotic Clostridium

butyricum therapy, even in those who had previously undergone ATB

therapy before ICI therapy (110). Castalagin, the active ingredient in

camu-camu, can concentrate microorganisms (Ruminococcaceae

and Alistipes) associated with effective immunotherapeutic

responses and can enhance the CD8+/FOXP3+CD4+ ratio in the

TME. In preclinical ICI-resistant models, castalagin was determined

to re-establish the efficacy of anti–PD-1 in NSCLC (111). Further, in

addition to improving survival, 3-IAld (a microbial tryptophan
Frontiers in Oncology 10
catabolite) has been found to protect mice with ICI-induced colitis

from intestinal injury by acting on both the host and microbiota

(112). In a direct comparison study, the oral application of a

combination of four Clostridiales strains (CC4) was observed to

outperform anti-PD-1 therapy in mouse models of NSCLC.

Specifically, CC4 therapy has been found to suppress tumor growth

by increasing the number of IFN-g+ CD8+ T cells and natural killer

cells while reducing the number of PD-L1+ macrophages (113). A

meta-analysis determined that probiotics are favorably associated

with the OS and PFS of patients with NSCLC that are being treated

with ICIs, but had no effect on ORR (114). Similar results have also

been reported in other cancer types. For example, CBM588 appeared

to increase the PFS of patients with metastatic RCC who were being

treated with nivolumab-ipilimumab (115). Additionally, the

adjunctive probiotic Lactobacillus rhamnosus probio-M9 was

determined to enhance the effect of anti-PD-1 antitumor therapy

by repairing antibiotic-disrupted GM in mouse models of colorectal

cancer (116). Chen et al. showed that JK5G postbiotics may attenuate

immune-related adverse events irAEs and improve quality of life

(QoL) and nutritional levels in advanced NSCLC patients receiving

ICIs. JK5G postbiotics can also improve gut microbiota structure,

increase Faecalibacterium, Ruminococcaceae relative abundance, fecal

butyrate concentration, reduce Escherichia-Shigella relative

abundance, and improve tumor microenvironment and

inflammation (117). A study reveals that probiotic Lactobacillus

reuteri (Lr) uses its released dietary tryptophan catabolite indole-3-

aldehyde(I3A), it locally promoted the production of interferon-g by
CD8 T cells, thus bolstering ICI (90).
TABLE 6 Clinical trials for the use of prebiotics, probiotics, postbiotics, and synbiotics in combination with ICIs for the treatment of NSCLC.

NCT# Age Sample
Size

Microbiome−based
intervention

Location Investigator Status Study
type

Phase Length

NCT05303493 18+ 45 Camu Camu Capsules
(Akkermansia muciniphila) +
ICI

Canada Bertrand Routy Not yet
recruiting

Interventional 1 04/22–04/
27

NCT04699721 18–
80

40 Bifidobacterium trifidum live
powder + Nivolumab +
Paclitaxel + Carboplatin
AUC5

China Yang Gao Recruiting Interventional 1 07/20–12/
27

NCT04105270 18+ 82 Restorative microbiota
therapy capsules +
durvalumab + chemotherapy

United
States

Amit Kulkarni Not yet
recruiting

Interventional 2 06/22–01/
28

NCT05354102 18+ 12 BMC128 (live bio-therapeutic
product composed of 4
commensal bacterial strains)
+ nivolumab

Israel Ruth Perets Not yet
recruiting

Interventional 1 05/22–05/
23

NCT04601402 18+ 93 GEN-001 (Each capsule
containing ≥ 1×1011 CFUs) +
Avelumab

United
States

Shivaani
Kummar

Recruiting Interventional 1 10/20–01/
24

NCT03637803 18+ 132 MRx0518 + Pembrolizumab United
States

Shubham Pant Recruiting Interventional 1 and 2 01/19–03/
24

NCT05094167 18–
70

46 Kex02 (Lactobacillus and
Bifidobacterium) +
carilizumab + platinum

China Chunling Jiang Recruiting Interventional Not
applicable

10/21–12/
23

NCT04909034 20+ 30 Ms20+pembrolizumab Taiwan Amy Lee Recruiting Interventional 2 08/21-06/
30
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Overall, opinions have been divided regarding the safety of

probiotics. Systemic infections, harmful metabolic activities,

excessive immunological activation in sensitive individuals, gene

transfer, and gastrointestinal side effects are the potential dangers of

this therapeutic strategy. On the other hand, critics argue that the

overwhelming body of evidence, including a long history of safe

probiotic usage and data from clinical trials, alongside animal and

in vitro research, supports the understanding that probiotics are

generally safe for most individuals (118). In general, more

advantages than disadvantages have been observed with regard to

probiotic treatment. Ultimately, probiotics, prebiotics, postbiotics,

and synbiotics are potentially viable strategies as they are less

complicated and presumably safer than FMT, which has been

associated with increased pathogen transmission.
4.4 Bacteriophages

Non-bacterial microorganisms in the GM have received less

attention than bacteria, despite their potential importance.

Bacteriophages, also known as bacterial viruses or phages, are

obligate intracellular parasites that rely on the metabolic apparatus

of their bacterial host for multiplication (119). Bacteriophages are the

most abundant biological entities on Earth (120). Fluckiger et al.

established that E. hirae harbors a bacteriophage that can modify

immunological responses. After PD-1 inhibition, mice bearing E.

hirae bacteriophages have been observed to exhibit an increase in the

CD8+ T lymphocyte response. In patients with lung cancer, the

presence of bacteriophages in their feces and the expression of a tape

measure protein–cross-reactive antigen in tumors has been linked to

better survival following PD-1 treatment (121). Dong et al. screened a

strain of selective Fusobacterium nucleatum–binding M13

bacteriophages. The introduction of silver nanoparticles onto the

surface of the M13 bacteriophages allowed precise scavenging of pro-

tumor F. nucleatum; consequently, the host’s immune response was

enhanced via APC activation and the tumor-immunosuppressive

microenvironment was remodeled. Notably, M13-Ag combined with

PD1 inhibitors has been observed to significantly prolong OS in a

colorectal cancer mouse model (122). Therefore, the use of

bacteriophages to modulate the GM for NSCLC immunotherapy is

increas ing ly ga in ing importance in both bas ic and

translational research.
4.5 Diet

Diet plays an essential role in bridging the connection between

humans and the microbiota. The GM consumes and utilizes
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ingested nutrients for basic biological activities; therefore, diet is a

pivotal determinant of GM structure and function (123, 124).

Recent evidence suggests the use of high-fiber diets for better

outcomes in cancer immunotherapy. In a prospective cohort of

patients with melanoma that were receiving ICI therapy, intake of a

fiber-rich whole-grain diet was strongly correlated with increased

PFS. Interestingly, PFS was observed to be the highest in the group

that consumed a high-fiber diet but did not consume probiotics.

The inhibition of intratumoral IFN-g T cell responses was assumed

to be the cause of the worsened response to immunotherapy

observed in those on a low-fiber diet (125). Dietary fermentable

fiber content alters the ratio of Firmicutes to Bacteroidetes in the gut

and the lungs. The GM digests fiber, which increases the

concentration of circulating SCFAs and influencing the lung

immune environment (126). In addition to high-fiber diets,

compelling evidence has suggested that fasting-mimicking diets,

long-term calorie restrictions, and ketogenic diets may improve

anticancer immunosurveillance during immunotherapy (12, 127–

131). Overall, several studies have focused on the influence of diet

on immunotherapy for NSCLC (Table 7).
5 Discussion

Overall, this review provides new insights into the importance

of the GM in NSCLC immunotherapy. Wide differences in the

diversity and composition of the GM have been discovered

between patients with NSCLC who responded and failed to

respond to ICI therapy. The bidirectional GLA has recently

emerged as a distinct two-way interaction between the lungs

and the gut, including both microbial and immunological

interactions. Specific GM compositions may communicate with

innate and adaptive immune cells, ameliorate ICI responses, and

alleviate irAEs in NSCLC. Therefore, numerous studies have

explored the optimal bacterial environment within the gut that

best enhances immunotherapy effectiveness in NSCLC. FMT,

ATBs, PPIs, probiotics, prebiotics, postbiotics, synbiotics,

bacteriophages, and diet alterations are among the methods

currently being investigated.

To date, four major limitations have been identified regarding

the use of the GM as a therapeutic strategy. First, the cause-and-

effect relationship between GM and immunotherapy in NSCLC

remains unclear. Therefore, larger multicenter collaborations and

randomized controlled trials should be performed to identify

whether a specific signature GM is a common biomarker for

enhancing ICI response and preventing irAEs in NSCLC. Second,

it is yet to be clarified whether the current findings on the role of the

GM in modulating ICI responses in NSCLC animal models and in
TABLE 7 Clinical trials on the effects of diet in combination with ICIs for NSCLC treatment.

NCT# Age Sample Size Dietary intervention Investigator Status Study type Length

NCT04965129 20–90 50 A high protein diet supplemented with fish oil Wilza AF Peres Recruiting Interventional 09/21–12/23

NCT04009122 18+ 280 IGEN-0206 (nutritional product) Carmen Perezagua Recruiting Interventional 06/19–12/22

NCT04909034 20+ 30 Fermented soybean extract MicrSoy-20 Amy Lee Recruiting Interventional 08/21–06/24
fr
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patients with other tumor types, such as melanoma or colorectal

cancer, also apply to human patients with NSCLC. Third, further

investigations into the interaction of GM with other

immunotherapies, such as CAR-T cell therapy, dendritic cell

vaccines, and adoptive cell transfer, in NSCLC are warranted.

Finally, it is important to avoid treating diseases in isolation

because organs can interact with each other in various ways. The

mechanism of the GLA has primarily been elucidated through the

relationship between the GM and asthma, chronic obstructive

pulmonary disease, and respiratory infections. Therefore, further

research is necessary to understand the effects of the lung

microbiota on the gut and the role of the GM in the development

and treatment of lung cancer. Specifically, evaluating how the GM

modulates NSCLC immunotherapy may further elucidate the

implications of GLA interactions in this disease.

Potential risks and side effects of FMT include infection, disease

transmission, allergic reactions, etc. Patients who receive FMT may

develop intestinal or systemic infections and may develop drug or

food allergies. The application of FMT in NSCLC immunotherapy

is still in the exploratory stage and has not been widely used at

present. Potential risks and side effects of antibiotics include

disruption of gut microbiota, development of drug resistance,

resulting in intestinal problems such as diarrhea and constipation.

Long-term use of antibiotics may also lead to the development of

resistance, making antibiotics ineffective. Probiotics may cause drug

or food allergies and may interact with antibiotics or other

medications. In summary, FMT, antibiotics, and probiotics all

carry potential risks and side effects in NSCLC immunotherapy.

When using these interventions, it is necessary to weigh the pros

and cons according to the specific situation of the patient and

choose the most appropriate treatment method. Further studies are

needed to determine the long-term efficacy and safety of these

interventions (132, 133).

ICI efficacy is often limited by treatment resistance and adverse

reactions. Therefore, the development of less invasive biomarkers

can identify responders and non-responders early in treatment and

significantly improve treatment protocols. Ni et al. found that

Agathbacter, Blautia, Clostridium and Muribaculacea were more

abundant in patients with early NSCLC than in healthy controls.

Dysregulation of pathways such as sphingolipid metabolism and

sphingolipid signaling pathway may be emerging therapeutic

strategies for early NSCLC (134). Zhu et al. showed that the

metabolite butyrate of the gut microbiota, promotes the efficacy

of anti-PD-1 therapy by modulating T cell receptor (TCR) signaling

of cytotoxic CD8 T cells, and the metabolite butyrate may be a very

promising therapeutic biomarker for enhancing anti-tumor

immunity (135).Sarkar et al. found decreased abundance of

Odoribacter, Gordonibacter, Stoquefichus, Escheria-Shigella, and

Collinsella genera and increased abundance of Clostridium sensu

stricto1 in fecal samples of NSCLC patients receiving anti-PD-1

therapy. In contrast, nonresponders to anti-PD-1 immunotherapy

showed increased treatment with Prevotella, Porphyromonas,

Streptococcus, and Escherichia-Shigella,as well as decreased

abundance of Akkermannia. Gut microbiota have potential utility

as a noninvasive biomarker for NSCLC patients to predict response

to anti-PD-1 therapy in NSCLC patients and need to be validated in
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larger prospective studies (136). In the future, it is hoped that gut

microbiota and its metabolites will be used as predictive

invasiveness biomarkers for response rate to ICI therapy of

NSCLC patients, and realize clinical transformation. Therefore,

the composition and function of gut microbiota in NSCLC

patients should be clarified first, and specific microbial markers

related to immunotherapy should be searched. Animal model

experiments were conducted to test the effects and side effects of

different intervention strategies, and to explore the optimal time

and dose of intervention. Finally, testing and validation is

performed in clinical trials to determine the optimal treatment

regimen. Emerging technologies, such as chip-based gut models,

edible capsules for microbiota sampling, and metabolomic analysis

may accelerate the development of intervention strategies for

gut microbiota.
6 Conclusion

Modulation of gut microbiota homeostasis as a new approach to

treating NSCLC patients, this approach improves NSCLC

therapeutic outcomes through manipulation of gut microbiota,

such as probiotics design, FMT, dietary improvement, and

modulation of antibiotics application, but all of these approaches

lack target specificity. Gut microbiota provides new strategies for

the occurrence, development, diagnosis, treatment and prognosis of

NSCLC, however, its clinical application still faces the influence of

age, gender, disease status and environmental factors on the gut

microbiota, which also varies in different individuals, and the

immunoregulatory mechanism of gut microbiota is not yet fully

understood, which still needs to be extensively validated by a large

number of representative preclinical models and clinical trials. In

the future, a comprehensive understanding of the mechanisms of

probiotic species and gut microbiota in the host and tumor cells is

needed, which will help guide the treatment of NSCLC and improve

the prognosis.
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