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Spontaneous dimerization of EGF receptors (EGFR) and dysregulation of EGFR

signaling has been associated with the development of different cancers. Under

normal physiological conditions and to maintain homeostatic cell growth, once

EGFR signaling occurs, it needs to be attenuated. Activated EGFRs are rapidly

internalized, sorted through early endosomes, and ultimately degraded in

lysosomes by a process generally known as receptor down-regulation.

Through alterations to EGFR trafficking, tumors develop resistance to current

treatment strategies, thus highlighting the necessity for combination treatment

strategies that target EGFR trafficking. This review covers EGFR structure,

trafficking, and altered surface expression of EGFR receptors in cancer, with a

focus on how therapy targeting EGFR trafficking may aid tyrosine kinase inhibitor

treatment of cancer.
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Introduction

Epidermal growth factor receptor (EGFR) is largely considered to be the most well-

studied receptor tyrosine kinase (RTK) (1–3). Following the initial discovery of epidermal

growth factor (EGF) by Stanley Cohen in 1963, the EGFR family was identified as receptors

for EGF (4, 5). Consisting of four members, ErbB1-4 (human epidermal growth factor

receptors HER1-4), both homo- and hetero-dimerization of receptors within this family

lead to downstream signaling. So far, eight EGFR (HER1) ligands have been reported.

However, there are no known ligands for EGFR family member HER2(6–10) despite

reports that HER2 undergoes dimerization with other EGF receptors and generates signals

for cell growth (11). Importantly, HER2 overexpression and mutation have been observed

in many human cancers and the presence of these abnormalities can determine clinical

treatment [reviewed in (12)].

Signaling pathways engaged by the EGFR family regulate cell growth, differentiation,

invasion, and wound healing. The signal transduction mechanism is tightly regulated by

ligand binding to extracellular domains (ECD) of EGFRs, resulting in a change in
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conformation and dimerization, passing the signal from outside the

cell to the cytoplasmic side via the transmembrane domain and

finally cross-phosphorylation by the cytosolic kinase domain (1–3).

Adapter proteins help carry out the downstream signaling events

leading to the activation of transcription factors for cell growth.

Signaling is terminated by receptor downregulation, whereby active

receptors undergo endocytosis and are sorted into the lysosome for

degradation following ubiquitination. However, some of the

receptor molecules are recycled back to the cell surface to

maintain the number of EGF receptors on the surface in a

process termed EGFR recycling (13–16) (Figure 1). The

disruption of proper EGFR signaling and trafficking leads to

diseases like cancer, where overexpression or activating mutations

within EGFR promote tumor growth. Current treatments for these

types of cancers include tyrosine kinase inhibitors (TKIs), which

inhibit downstream signaling by directly impairing EGFR tyrosine

kinase activity. However, many patients have tumors that become

non-responsive to TKIs, thus drawing the need for new treatment

strategies in EGFR-driven tumors (17–19).

In the present review, we summarize the role that EGFR

structure, dimerization, and trafficking play in signal modulation

(Figure 1). Further, we discuss how targeting of these processes in

combination may be able to overcome current treatment

limitations for tumors that overexpress EGFR or have an EGFR-

activating mutation.
Biochemical basis of activation

All four EGF receptors have a similar structure, with a nearly

620 amino acid extracellular domain (ECD), short transmembrane

domain (TM), juxtamembrane domain (JM), a 540 amino acid

intracellular region containing the kinase domain (KD), and a
Frontiers in Oncology 02
carboxy-terminal tail made of 230 amino acids with multiple

phosphorylation sites (Figure 2). The ECD consists of domains I

to IV: I and III are involved in ligand binding, and domains II and

IV are cysteine-rich domains and contain a string of disulfide

bonds. Structures of EGFR “open” and “closed” conformations

have been elucidated by X-ray crystallography (9, 20, 21). In the

closed (tethered) conformation (Figure 3), domain II forms contact

with domain IV, thereby blocking any other molecular contact with

domain II. Domains I and III form a huge groove on one side of the

molecule that can be occupied by EGFR ligands. Upon ligand

binding, domains I and III come close, promoting the extended

conformation in which domain IV moves away from domain II,

thus opening domain II and IV for interaction of its dimerization

partner (open conformation). Different possible dimers of EGFR

(e.g., EGFR-EGFR, EGFR-HER2, HER2-HER3) have a similar

extracellular dimer structure (Figure 3). Importantly, HER2,

which is not known to interact with any EGF ligands, exists in an

open conformation, thus allowing it to partner with other EGFR

molecules that have bound ligand. Dimerization of the ECD then

induces dimerization of the TM helical region through N-terminal

GxxxG-like motifs. Further, the JM domain also contacts its partner

EGFR molecule resulting in asymmetric dimerization of the kinase

domain. EGFRs that are studied in detergent micelles suggest that

the dimerization of ECD does not necessarily lead to the

dimerization of the kinase domains (23, 24). The kinase domain

contains C and N-lobes; upon dimerization, the C-lobe of one

kinase interacts with the N-lobe of the dimerization partner’s kinase

allowing for cross-phosphorylation. This results in downstream

signaling through the recruitment of adaptor proteins to the

phosphorylated tyrosine residues (25). Although the biochemical

action of EGFR is described at the molecular level, most of the

information about EGFR structure and mechanism of action is

based on the structure of individual domains since full-length EGFR
B

C

A

FIGURE 1

Schematic of EGFR Trafficking and Signaling. (A) Clathrin-mediated endocytosis of EGFR dimers and monomers under low ligand conditions
promotes receptor recycling, while ubiquitinated dimers will be degraded. (B) Distinct signaling adaptors are associated with EGFR dimers at the
plasma membrane and endosome. (C) Clathrin-independent endocytosis occurs under high ligand concentration, promotes receptor ubiquitination,
and subsequent lysosomal degradation. Created with BioRender.com.
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structure is difficult to elucidate with available experimental

methods. Therefore, one has to put the available structural pieces

together to get the purported overall structure of full-length EGFR

family members, and to infer mechanisms contributing to their

dimerization and signaling in cells.

The ECD of EGFRs is known to dimerize upon ligand addition

and induce the dimerization of the intracellular kinase domain,

however, there are reports that isolated kinase domains dimerize

and activate signaling when JM segments are present (22, 26, 27).

Therefore, it is proposed that ligand-free EGFRs can undergo

dimerization and exist as active and inactive dimers. In support of

this notion is the observation that overexpression of wild type EGFR

leads to ligand-independent activation of IRF3, rather than the ERK

or AKT pathways, which has been termed non-canonical EGFR

signaling (28). This has been further supported by changes in

distribution within the plasma membrane, with high EGFR

expression promoting oligomerization and ligand-independent

phosphorylation that appears to have no impact on ERK or AKT

signaling (28, 29). In addition to EGF-induced and ligand-

independent activation, EGFR activation can be induced by six

other ligands (30). These EGFR ligands have a varying affinity,

induce specific dimerization pairings of the four EGFRs, and lead

to distinct cellular outcomes. Thus, activation of EGFR signaling can

occur in scenarios outside of EGF addition, which leads to specific

receptor dimerization/oligomerization and varying cellular response.

The plasma membrane also plays a role in modulating EGFR

dimerization, activation, and autoinhibition. Within the plasma

membrane, cholesterol-rich lipid microdomains have been found to

promote quick movement of EGFR and HER2, which allows for

rapid dimerization and signaling upon ligand addition (31–34).

Conversely, depletion of membrane cholesterol through methyl-b-
cyclodextrin treatment leads to the accumulation of EGFR within

confined regions of the membrane and therefore promotes ligand-
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independent receptor activation (31). While these findings were in

live cells using microscopic techniques, they have limitations in

terms of what EGFR is doing at a structural level within the

membrane that recent molecular dynamics (MD) simulations

have started to fill in.

The EGFR kinase domain surface has many basic residues (27),

which are shielded by the C-terminal domain in the active dimer.

MD simulations suggest that the EGFR kinase domain is attached to

the membrane by interaction of the basic residues with anionic

lipids (35). Thus, the active site of the kinase domain is not exposed.

On the other hand, asymmetric dimers of kinases have less

interaction with anionic lipids, and the kinase domain is available

for phosphorylation, making EGFR active (36). Although EGFR

ECDs are assumed to be perpendicular to the plane formed by the

cell membrane, MD simulations studies found that the ECD of

EGFR molecules lie down on the membrane. This orientation

brings the EGF-binding site adjacent to the membrane surface

where it can interact with the membrane-bound ligand (37). This

asymmetric nature of EGFR dimers, where one of the ligands is

bound to the membrane as well as EGFR and the other only bound

to EGFR, may lead to negative cooperativity. Although MD

simulations provide some insight into the dynamic nature of

EGFR receptors and their dimers, these structures are modeled

based on X-ray crystal structure and solution structure using NMR

and modeling methods. In reality, dimerization and activation of

the kinase domain seem to depend on the microenvironment and

charges of lipid head groups facing the cytoplasmic side of the

membrane (24, 27, 35–37). Thus, signal transduction processes at

the molecular level have yet to be elucidated in detail.

Moving forward, structural elucidation of full-length EGFRs

using cryo-EM and molecular modeling may provide new insights

into the signal transduction process of EGFR family members.

Furthermore, EGFRs that lack part or full ECD have been found in

clinical studies (38–40), calling into question the importance of

ECD and conformational changes associated with ECD and TM for

kinase activity. Thus, altered or mutated forms of EGFR exist in

disease states of patients, which don’t fit into the current models,

and hence extensive structural and functional studies of EGF family

receptors are needed to address those limitations.
Regulation of EGFR trafficking
and signaling

In 1976, Carpenter and Cohen published the first paper on

EGFR trafficking, postulating that EGFR-bound growth factor could

enter human fibroblasts and be degraded within the lysosome (41).

However, little was known about the regulation of this pathway and

whether it served a purpose for receptor signaling. It is now

appreciated that along the pathway to the lysosome, several steps

participate in the regulation of EGFR trafficking and signaling,

including endocytosis , protein recycling, and protein

degradation (Figure 1A).

At the plasma membrane, active EGFR dimers generate a

conformation that leads to the trans-phosphorylation of tyrosine
FIGURE 2

A schematic diagram of EGFR structures showing monomer with
different domains labeled. ECD, extracellular domain, TM, a
transmembrane domain, KD, kinase domain, JM, juxtamembrane
domain, CT, cytoplasmic domain. Carboxy terminal tail is shown as
unstructured with P indicating phosphorylation site. Crystal
structures of different domains were used to generate the structure
of EGFRs. PDB ID: 3NJP (20), 2KS1 (21), 3GOP (22).
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residues in the cytoplasmic tail, promoting the recruitment of

numerous signaling adaptor proteins that engage pathways such

as the RAS-MAPK cascade and the phosphoinositide-3-kinase

(PI3K) pathway. In addi t ion to s ignal ing adaptors ,

phosphorylation of EGFR at Tyrosine 1068 and 1086 leads to

growth factor receptor–bound protein 2 (Grb2) binding, thus

promoting the recruitment of adaptor protein complex-2 (AP-2)

and allowing EGFR to undergo clathrin-mediated endocytosis

(CME) (42, 43). CME is also regulated by ubiquitination and

acetylation of EGFR (44), with clathrin acting as a signaling
Frontiers in Oncology 04
scaffold for the AKT pathway (45). However, recent literature

suggests endocytosis of EGFR is more complicated than the

canonical CME model, with subsets of clathrin-coated pits that

may not require AP-2, and instead rely on other endocytic adaptors,

to promote endocytosis (46, 47). A further layer of complexity to

EGFR endocytosis is added when ligand concentration is taken into

consideration. In contrast to low concentration of ligand, which

promotes CME, high concentration of ligand promotes

ubiquitination of active EGFR by the E3 ubiquitin ligase Cbl, thus

allowing it to undergo rapid clathrin-independent endocytosis
B

C

A

D

FIGURE 3

(A) Closed (left) and (B) open (right) conformation of EGFR extracellular domain and changes in conformation with respect to the membrane
surface. (C) Upon change in conformation monomers of ECD of EGFR form dimers, dimer interface with domains I to IV are shown. (D) Dimerization
of ECD results in phosphorylation of kinase domain by changes in transmembrane domain and kinase domain activation. PDB ID:1NQL (2) and 3NJP
(20), 2KS1 (21), 3GOP (22).
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(CIE) and steering it toward eventual degradation (46). Thus, a

simplified model of EGFR dimer activation and endocytosis has

been generated, however this fails to address any further clustering

of active dimers and endocytosis of EGFR monomers.

Unlike the simplified model , which only requires

phosphorylation of a dimer for signaling to occur, a more

complicated model emerges whereby this activation depends on

ligand addition and further oligomerization of EGFR (48, 49).

Under low ligand concentration, it’s been thought that ligand-

bound dimerized EGFR can trans-phosphorylate nearby dimers

that are unbound, thus amplifying the signal (48). However, this

model is apart from the traditional endocytosis model andmore work

is needed to elucidate if endocytosis of all receptors within the

oligomer would occur in a CME manner. In contrast to oligomers,

more work has been done on how inactive monomers internalize.

Unbound EGFRs are internalized at a slower rate compared to

ligand-bound EGFRs (50), which may in part be due to endocytic

regulation based on signals from active dimers. Active EGFR triggers

p38 activation, which phosphorylates EGFR monomers near Serine

1015, resulting in CME (51). Thus, ligand concentration and receptor

activation are closely linked to the regulation of endocytosis for both

active dimers and unbound monomers.

Following endocytosis, EGFR traffics to the early endosome,

where decisions are then made for receptor recycling or

degradation. Apart from these pathways, EGFRs are also known

to be transported into the nucleus after early endosomal sorting to

participate in transcriptional regulation (52, 53). While signaling is

initiated at the plasma membrane by ligand binding and

dimerization, whether the receptor continues to signal from the

endosome remains highly debated. Early literature suggested active

EGFR continued to signal from the endosome until incorporation

into intralumenal vesicles (ILVs), thus inhibiting access of the

EGFR C-terminus to cytosolic signaling effectors. The first study

to assess the relationship between signaling and cellular location

utilized mutant dynamin and proposed that phospholipase C

gamma (PLCg) and Shc signaling occur at the plasma membrane

while further EGFR phosphorylation, ERK, and PI3K signaling

derive from the endosome (54). Further literature suggested this

may be in part due to which adaptors are associated with EGFR at

these cellular locations, with some only interacting at the plasma

membrane or intracellularly and others appearing in both

populations (55). Some adaptors appeared to traffic from the

plasma membrane to the endosome with EGFR upon EGF

addition and sustain signaling throughout this process (56–58)

and adaptors/scaffolds that aid in signaling at the endosome, such

as Shoc2, have also been reported (59). Utilizing spatial proteomics,

many signaling molecules have also been found in proximity to

endosomal EGFR (60). However, the depletion of dynamin in

mouse fibroblasts suggested signaling was unimpacted and

therefore a majority of EGFR signaling may occur at the plasma

membrane (61). Further, RAS primarily localizes to the plasma

membrane and not the endosome, thus limiting where EGFR

signaling mediated by RAS can occur (62, 63). These studies

highlight that while some adaptors traffic with EGFR to the

endosome, signaling may be limited by localization of other

required components to the plasma membrane (Figure 1B). Thus,
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the debate on where signaling occurs is still ongoing but may

depend on factors like cell type, protein depletion, method of

overexpression, or technical limitations.

While at the endosome, one potential fate for EGFR is recycling

back to the plasma membrane, which is mediated by the Retromer,

Retriever, COMMD/CCDC22/CCDC93 (CCC), and WASP and

SCAR homologue (WASH) complexes (64). Depletion of these

complexes promotes lysosomal degradation of cargo (65, 66) thus

suggesting more of an active process for cargo selection in recycling

than previously appreciated (59). For unbound EGFR monomers,

this recycling is regulated by p38-mediated phosphorylation either

downstream of low-concentration EGF addition (51) or

phosphatidic acid signaling (67), though it remains unclear which

recycling machinery is necessary for this process. On the way back

to the plasma membrane, it’s also thought that any spontaneously

active monomers are shut off by protein tyrosine phosphatase 1B

(PTP1B)-mediated dephosphorylation (68). In addition to active

cargo selection, proteins that inhibit selection for degradation, like

lipocalin-2, also induce recycling and sustained EGFR activity (69).

Outside of recycling logistics for monomers, most research on

EGFR recycling and signaling has been conducted in the context

of benefitting cancer growth and progression, as discussed later.

Alternatively, endosomal EGFR may undergo selection for

lysosomal degradation. Entrance into the degradation pathway is

reliant upon EGFR ubiquitination, by ligases such as Cbl and

ZNRF1, thus allowing recognition by the endosomal sorting

complexes required for transport (ESCRTs) for incorporation into

ILV (59, 70–73). Subsequent fusion of the multivesicular body

(MVB) with the lysosome leads to EGFR degradation (74).

Mutations in the ESCRT pathway have been associated with

endosomal EGFR accumulation and enhanced signaling, but

delayed receptor turnover, thus providing some support for the

endosomal signaling model. Post-translational modification of the

ESCRT machinery, such as glycosylation of HRS/HGS, has also

been shown to play a role in regulation of EGFR degradation and

signaling (75). It’s been suggested that ligand concentration/method

of internalization dictates receptor fate, with clathrin independent

endocytosis under high ligand concentration leading to receptor

degradation (Figure 1C). Interactions with the ER may provide

some cues for determining EGFR fate, with ER resident proteins

able to keep the endosome in the perinuclear region of the cell to

promote degradation and signal termination (76, 77). Thus,

degradation and signaling are not only mediated by the ESCRT

machinery, but also by intracellular localization of the

endosomal compartment.

Spatially, the recycling and degradation machinery reside in

different microdomains within the endosome, and a present area of

focus is how cargo moves into the proper microdomain. Thus far,

there have been studies linking recycling machinery such as WASH

and receptor-mediated endocytosis -8 (RME-8) to recruitment and

activity of ESCRT-0 component HRS, though no direct interaction

has been found (78, 79). Based on actin nucleation being regulated

by WASH, the transition to ESCRT-0 and choice between cargo

recycling and degradation may be partially dependent upon actin

binding/recognition. Further, RME-8 interacts with Hsc70 to

disassemble endosomal clathrin, which is thought to be critical
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for assembly of HRS and transition to a degradative microdomain

(80, 81). Thus, coats of either actin or clathrin play a role in

determining the endosomal microdomain which cargo is

incorporated into and therefore fate of the cargo. In addition to

these coats providing a microdomain platform, studies in plants

have shown a direct interaction between ESCRT-associated ALIX

and retromer subunits (82), thus suggesting there may be additional

processes/mechanisms by which these microdomains are regulated.

Cumulatively, these microdomains are a continued area of study

which may provide the ability to modulate trafficking and signaling

of receptor cargo.
Limitations of EGFR-mediated cancer
treatment strategies

Tyrosine kinase inhibitors (TKIs) serve as the main therapy to

target EGFR in cancer and have evolved through many generations.

Imatinib was the first TKI approved for cancer therapy just over two

decades ago (83) and was followed by first-generation EGFR-

specific TKIs, gefitinib and erlotinib, thus revolutionizing targeted
Frontiers in Oncology 06
therapy by kinase inhibitors (84). Presently, there are four

generations of TKIs, with those up through the third being

approved for clinical use (Table 1) (104, 105). However, TKIs

only delay tumor growth, and most tumors develop resistance

within two years due to intrinsic or acquired changes.

Intrinsic resistance can be caused by genetic aberrations in

multiple cancer signaling pathways, as is the case non-small cell

lung cancer (NSCLC) patients with EGFR T790 mutation who do

not respond to gefitinib and instead maintain proliferative and cell

survival signaling in the presence of TKIs using alternative

pathways such as integrin signaling (106, 107). It was shown that

interaction of EGFR and integrin b4 can affect the sensitivity of

gefitinib treatment in gastric cancer (108). Third generation TKIs,

such as Osimertinib, have been developed to treat these patients

(109), however they develop drug resistance through unknown

mechanisms (110). Fourth generation inhibitors or multi-

targeting TKIs such as brigatinib and vandetanib are developed to

overcome the resistance developed by third generation TKIs.

However, brigatinib therapy seems to develop resistance due to

NTRK rearrangement in some patients (99–103). A small-molecule

EGFR inhibitor, ERAS-801 has received an orphan drug
TABLE 1 Representative EGFR tyrosine kinase inhibitors from each generation to overcome resistance and mutations of EGFR kinase domain.

TKI/year of
approval

Structure Targeted mutation/
reversible, irreversible

Possible Resistance
development

Reference

First generation

Erlotinib
2004

 

N

N

NH

O
O

O
O

Glu746-Ala750
deletion in exon 19 and the
common p.Leu858Arg
substitution in exon 21
Reversible

EGFR T790M
HER2 amplification

(84)

Gefitinib
2003

 

N

N

NH

ON

O

O

F

Cl

Glu746-Ala750 deletion in exon
19 and the common
p.Leu858Arg substitution in exon
21
Reversible

EGFR T790M
HER2 amplification

(85, 86)

Lapatinib
2007

O

NH

N

N

O

NH

F

Cl
S

CH3

O

O

Targets both EGFR and HER2
kinase
Reversible

Overexpression with activation of
other tyrosine receptor kinases
Axl, MET, IGF-1R, VEGF

(87)

Second generation

Afatinib
2013

O

NH
N

N

N

O

O

NH

F

Cl

Del19/L858R
uncommon EGFR mutations
(S768I/G719X/L861Q)
Irreversible

EGFR T790M
HER2 amplification
MET amplification

(88)

(Continued)
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TABLE 1 Continued

TKI/year of
approval

Structure Targeted mutation/
reversible, irreversible

Possible Resistance
development

Reference

Dacomitinib
2018

O

NH
N

N

N

O

NH

F

Cl

EGFR exon 19 deletion or exon
21 L858R substitution mutations
Irreversible

EGFR T790M
HER2 amplification
MET amplification

(89)
(90)

Neratinib
2017

N

O

NH

N

NH

N

CH3

CH3
O

Cl

CH

OCH3 Targets EGFR, HER1, HER2, and
HER4.
Irreversible

HER2 alteration, alterations in the
HER3/PI3K/protein kinase B, AKT
(mTOR) and MAPK signaling.

(91–93)

Third generation

Rociletinib
2022

O

NH NH

N N

F
FF

NH

O N
N

O EGFR Ex19del
L858R, T790M
Irreversible

EGFR C797S
HER2 amplification, MET
amplification
KRAS mutation

(94)
(95)

Osimertinib
2015

O

NH

NH
N

N

N

O

N

N

EGFR T790M and EGFR sensitive
L858R and Del19
Irreversible

EGFR C797S
MET amplification
HER2 amplification/mutation
PIK#CA Amplification/mutation

(96)
(97)

Olmutinib
2016

CH2

O

O

N

N

S

NH

N

NH EGFR Ex19del
L858R, T790M
Irreversible

EGFR C797S (98, 99)

Fourth generation or Multi-target TKIs

Brigatinib
2017 N

N

NH NH

N

N
N

O

P
O

Cl

EGFR Ex19de
L858R, C797S
T790M
Reversible

Possible NTRK rearrangement
(LIPI-NTRK1)

(100)
(99)

Vandetanib
2011

NH

N

N

O
CH3

O

N
CH3

F

Br

VEGFR, EGFR and RET tyrosine
kinases.
Reversible

Substitution at codon 904 in the
activation loop of the RET kinase
domain

(101–103)
F
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frontiersin.org

https://doi.org/10.3389/fonc.2023.1258371
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Schultz et al. 10.3389/fonc.2023.1258371
designation by the FDA for malignant glioma. It is an orally

available molecule that has significant CNS penetration (111).

Another small molecule tucatinib, a reversible TKI, is known to

bind to HER2 with specificity. Tucatinib in combination with

antibody trastuzumab has shown efficacy in breast cancer and

this drug was recently approved by FDA for the treatment of

HER2 positive metastatic breast cancer (112, 113). Acquired

resistance is caused by on-target secondary mutations and new

generations of TKIs were developed to overcome the resistance (86,

114), but these still lack the ability to address drug resistance

associated with altered receptor trafficking (115–117). For

example, in a subset of NSCLC the mutant EGFRs preferentially

recycle rather than degrade, leading to enhanced signaling by EGFR

and the proto-oncogene tyrosine kinase Src (14, 116, 118–121).

Cumulatively, further understanding and modulation of EGFR

trafficking in cancer may provide an additional treatment option

to bypass resistance to TKI treatment.

One of the mechanisms utilized by cancer cells to develop

resistance is to avoid ubiquitin-mediated degradation of EGFR. In

tumors harboring EGFR variant VIII, signaling is independent of

ligand addition and remains constitutively active, however

ubiquitination by the ubiquitin ligase Cbl promotes lysosomal

degradation and therefore signal termination (122, 123).

However, further EGFR mutations, which impair the interaction

with Cbl, limit incorporation into MVBs for lysosomal degradation

and instead cause prolonged signaling (124). Another way to avoid

ubiquitin-mediated degradation is relocation of EGFR to the

nucleus mediated by the tumor suppressor protein TIP30 (125,

126) and nuclear translocation signals within the juxtamembrane

region (127), thus mutation at this level would also render TKI

therapy ineffective and promote resistance.

Another mechanism of resistance is inhibition of EGFR

downregulation by HER2. HER2 can act as an inhibitor of the

downregulation of other EGFR family members due to the ECD

existing in an open conformation thereby promoting receptor

heterodimerization (2, 128–130). Overexpression of HER2 is

thought to impact EGFR trafficking in two ways: decrease

downregulation/internalization from the plasma membrane (131–

135), and/or reroute internalized EGFR from the degradation

pathway to the recycling pathway (136). Multiple proposed

mechanisms exist for how HER2 may inhibit downregulation

including inducing a conformation change, interactions with lipid

raft components (137), and inhibition of clathrin coated pits (138,

139). In contrast, HER2 may promote recycling of EGFR since it isn’t

contained in an endolysosomal compartment (138, 140–143) and is

recycled back to the plasma membrane in a sortilin-related receptor 1

(SORLA)-dependent manner (144, 145). It’s also been thought that at

least some regulation of HER2 trafficking is through the kinase

domain, with binding of Hsp90 allowing for sequestration and

preventing catalytic activity of HER2 (71, 146–148). Lastly, it was

recently shown in breast cancer cells that pharmacologic inhibition of

endosomal recycling using primaquine or knockdown of the Rab

coupling protein led to the lysosomal accumulation and degradation

of HER2 (149). These manipulations were found to synergize with

anti-HER2 therapies and overcome resistance to the TKI lapatinib,

thus suggesting that manipulating endosomal recycling could be a
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viable strategy to overcome resistance to therapies targeting the EGFR

family of receptors.

Thus far, antibodies have been designed to target HER2

trafficking mechanisms, however these rely on HER2 being the

main source of resistance for a tumor. One such antibody,

Trastuzumab, has been found to inhibit ligand-independent

activation, promote internalization, and prevent shedding of the

HER2 ECD (150–153). In the case that a truncated form is present

that lacks the ECD (p95HER2) (154–157), it’s thought that

resistance to trastuzumab can develop, but thus far clinical studies

have found no significant difference in survival among patients with

p95HER2 relative to those lacking it (40, 158–160). Pertuzumab has

also been shown to prevent dimerization of HER2 (161) and a

combination with trastuzumab produces synergistic effects (162–

166). Additionally, polyclonal, and bispecific anti-HER2 antibodies

have been shown to promote rapid internalization and subsequent

degradation of HER2 (165, 167, 168). These data show that HER2

can be targeted and regulate EGFR in cancer, however they fail to

address how trafficking of EGFR, HER2, and HER3 impacts other

receptors. EGFR trafficking in the absence of other family members

has been extensively studied, but EGFR trafficking in these

conditions is an ongoing area of research.
Combining TKIs with
EGFR trafficking inhibitors
for cancer therapy

Since the main mechanism of resistance to TKI therapy involve

vesicular trafficking, either by avoiding ubiquitin-mediated

degradation or through HER2 trafficking, it stands to reason that

a combination therapy approach could be effective. Preliminary

understanding of efficacy in part derives from HER2 antibody

studies, as discussed in the previous section, but also from

existing TKIs that can alter trafficking of HER2 at high

concentration. An example of this is Neratinib, a pan-HER TKI

(169), which inhibits kinase activity and induces the internalization

of EGFR/HER2 receptors through CME leading to their

degradation only at a high dose (170). While adjusting TKI

concentrations can be easily done in the context of tumor cell

lines, it poses a potential toxicity problem when translating to

humans. As such, further development of either TKIs that alter

trafficking at low concentration or of small molecules that can be

combined with TKIs is necessary.

One of the trafficking steps often dysregulated during TKI

resistance in endocytosis, so preliminary studies on combination

therapy have utilized molecules that inhibit CME. Through in vitro

work and mouse models, it’s become appreciated that pairing the

TKI gefitinib with endocytosis inhibitors decreases tumor cell

survival (171, 172). Thus, a model has been formed that upon

CME inhibition, EGFR undergoes macropinocytotic-dependent

internalization, thereby promoting lysosomal degradation rather

than receptor recycling (173). Depending on the molecule used to

inhibi t CME, mechanisms of internal izat ion beyond

macropinocytosis may also be utilized. This is the case with the

small molecule DPBA, which mediates flotillin-dependent
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internalization through lipid rafts rather than relying on post-

translational modification of EGFR (174), thus allowing it to

work for WT or TKI resistant tumors. However, CME is just one

step of EGFR trafficking and several other steps exist before EGFR

degradation that may also be beneficial to target for

combination therapy.

After endocytosis, EGFR moves through the endocytic system

where it may continue to signal until incorporation into a MVB for

degradation. Studies have suggested that ability to sustain EGFR

signaling from endosomes promotes apoptosis (175), however the

cell lines utilized are known to undergo EGFR-mediated death.

Additional studies have supported the notion by knockdown of

Neuropilin-2 leading to entrapment of EGFR in early endosomes

and subsequent cell death (176), though the definitive linkage

between EGFR signaling and cell death remains unclear.

Targeting this step of trafficking may prove to be the most

controversial approach to TKI resistance due to the unknowns on

whether EGFR actually signals from endosomes. Further questions

arise when considering that most endocytic machinery have been

historically considered tumor suppressors, and the sustained EGFR

signaling thought to be advantageous for survival. Thus, advanced

understanding of endosomal EGFR signaling and how it may

impact tumor viability are necessary before this strategy is viable

for combination therapy with TKIs.

Finally, nuclear translocation of EGFR is another mechanism of

TKI resistance that may be a useful target for combination therapy.

Like the strategies above for keeping EGFR at endosomes to

modulate signaling, strategies at this step of trafficking aim to

inhibit nuclear translocation and therefore keep EGFR at

endosomes. Early studies in cell lines have shown that small

molecules, such as Primaquine and 1,25-dihydroxyvitamin D,

block nuclear translocation and may promote changes in EGFR

signaling and cell death (177, 178). However, limitations of these

studies are apparent in that both treatments may have unintended

consequences for other cell processes that make it hard to discern

EGFR-dependence. Additionally, combination of these therapies

with TKIs has not yet been assessed, therefore highlighting

additional understanding required before these approaches can be

translated to patients. Though many steps in EGFR trafficking exist

that can be utilized to overcome resistance to TKI therapy, research

on combination of TKIs with endocytosis inhibitors is the most

advanced but still has a way to go before advancing to the clinic.

Thus, combination of EGFR trafficking and TKIs presents an

understudied area that has potential opportunity to benefit cancer

patients with TKI resistance.
Concluding remarks

The EGFR family of growth factor receptors remains the most

extensively studied receptor family due to its clear association with

cancer development and progression. Indeed, overexpression of

these receptors, mutation, evasion of degradation, enhanced
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recycling, and/or altered signaling pathways of EGFR results in

cancer development through enhancing downstream signaling. The

generation of detailed structures of these receptors has provided

important insight into the underlying molecular mechanisms

contributing to receptor activation/dimerization and signal

transduction. Moreover, they have provided atomic level detail on

the mechanism of action of TKIs and monoclonal antibodies

targeting the EGFR family of receptors. Many tyrosine kinase

inhibitors have been developed as therapeutic agents for cancer.

However, most EGFR-expressing tumors eventually become

resistant to these inhibitors, thus requiring new treatment

strategies. It is becoming clear that EGFR trafficking has

implications in different types of cancer and that the development

of resistance to TKIs is related to altered EGFR trafficking.

Therefore, in addition to TKI therapy, EGFR/HER2 trafficking

may be an additional target for cancer treatment. Findings in this

area could increase efficacy and overcome resistance to TKI

treatments that occur in the patient population.
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