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Predicting head and neck
cancer treatment outcomes
with pre-treatment quantitative
ultrasound texture features
and optimising machine
learning classifiers with
texture-of-texture features
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Daniel DiCenzo1,2,4, Christopher Kolios1,2,3,4, Ana Pejović-Milić 3

and Gregory J. Czarnota1,2,3,4*

1Czarnota Lab, Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences
Centre, Toronto, ON, Canada, 2Department of Radiation Oncology, Sunnybrook Health Sciences
Centre, Toronto ON, Canada, 3Department of Physics, Toronto Metropolitan University, Toronto,
ON, Canada, 4Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
Aim: Cancer treatments with radiation present a challenging physical toll for

patients, which can be justified by the potential reduction in cancerous tissue

with treatment. However, there remain patients for whom treatments do not

yield desired outcomes. Radiomics involves using biomedical images to

determine imaging features which, when used in tandem with retrospective

treatment outcomes, can train machine learning (ML) classifiers to create

predictive models. In this study we investigated whether pre-treatment

imaging features from index lymph node (LN) quantitative ultrasound (QUS)

scans parametric maps of head & neck (H&N) cancer patients can provide

predictive information about treatment outcomes.

Methods: 72 H&N cancer patients with bulky metastatic LN involvement were

recruited for study. Involved bulky neck nodes were scanned with ultrasound

prior to the start of treatment for each patient. QUS parametric maps and related

radiomics texture-based features were determined and used to train two ML

classifiers (support vector machines (SVM) and k-nearest neighbour (k-NN)) for

predictive modeling using retrospectively labelled binary treatment outcomes, as

determined clinically 3-months after completion of treatment. Additionally,

novel higher-order texture-of-texture (TOT) features were incorporated and

evaluated in regards to improved predictive model performance.

Results: It was found that a 7-feature multivariable model of QUS texture

features using a support vector machine (SVM) classifier demonstrated 81%

sensitivity, 76% specificity, 79% accuracy, 86% precision and an area under the

curve (AUC) of 0.82 in separating responding from non-responding patients. All
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performance metrics improved after implementation of TOT features to 85%

sensitivity, 80% specificity, 83% accuracy, 89% precision and AUC of 0.85. Similar

trends were found with k-NN classifier.

Conclusion: Binary H&N cancer treatment outcomes can be predicted with QUS

texture features acquired from index LNs. Prediction efficacy improved by

implementing TOT features following methodology outlined in this work.
KEYWORDS

quantitative ultrasound, radiomics, texture analysis, texture-of-texture, head and neck
cancer, response prediction, deep texture analysis
1 Introduction

Cancers of the oral cavity, pharynx, larynx, paranasal sinuses,

nasal cavity and salivary glands are broadly categorised as head and

neck (H&N) cancers (1). The World Health Organization (WHO)

estimated diagnosis of 930,000 new H&N cancer cases in the year

2020 (2) making them the 6th-most common type of cancer (3).

Approximately, 90% of H&N cancers are squamous cell carcinomas

(SCC) (4). Risk factors include tobacco (5) and alcohol

consumption (6), p53 (7) and p16 gene mutations (8, 9) and the

presence of human papilloma virus (HPV) genomic DNA (10).

Distant metastasis is rare at the time of diagnosis (10%), but the

majority of patients present with disease in regional lymph nodes

(LNs) in addition to a primary location (3).

Treatment plans for H&N cancer patients typically include a

combination of surgery, radiotherapy (XRT), and systemic therapy,

and are often individualised depending on disease stage, as well as

patients’ health at the time of treatment. Although different

fractionation schemes are practiced for up-front radiotherapy, the

standard objectives for H&N treatments typically include 70 Gy in

33-35 fractions to a high dose target volume for gross disease, and

63 Gy and 56 Gy in 33-35 fractions to intermediate and low dose

(risk) target volumes, respectively (11). Advances in personalised

patient care, including more accurate treatment-planning software

and innovations like intensity modulated radiation therapy (IMRT)

will likely continue to improve outcomes for patients (12). 5-Year

mortality rates are dependent on both stage and location of

tumours, with survival rates near 90% for lip cancers but below

40% for cancer of the hypopharynx (13). Despite considerable

developments, there are a subset of patients who do not exhibit

the desired response to treatment.

Tumour composition and microenvironments are widely

studied with focus on trying to understand the mechanisms from

which tumour masses exhibit heterogeneity (14). There seems to be

evidence supporting the notion that increased intratumoural

heterogeneity reduces the likelihood of successful response to

treatment (15). Tumour heterogeneity lays the foundation for the

emergence of resistance and eventually, potential disease relapse, as

the cancer tumour is made up of cells with varying characteristics

and responses to targeted treatment (15). Quantitative ultrasound
02
spectroscopic (QUS) parameters have been shown to detect

disorganisation of tissues (16–18). Exploring cancer treatment

response with QUS features can shed light on characterising

malignancies based on acoustic properties.

Diseases are associated with physical alterations in tissues that

can cause observable changes in acoustic scattering properties (17–

19). With that premise, in 1987 Lizzi et al. published seminal work

on the concept of quantitative ultrasound spectroscopy (QUS); this

is an analytical approach to determine tissue “acoustic signatures”

from the frequency content of the backscattered signal of US

radiofrequency (RF) data, that are related to the effective sizes,

concentrations, and acoustic impedances of tissue elements (19).

From QUS power spectra, various spectral parameters, like mid-

band fit (MBF), spectral slope (SS), and 0-MHz spectral intercept

(SI) can be determined. In addition, two backscatter coefficient

parameters, average scatter diameter (ASD) and average acoustic

concentration (AAC) can also be evaluated using a Gaussian

scattering model (20) and a fluid-filled sphere model (also

referred to as Anderson model) (21). QUS Parameters can be

used to effectively characterise various biological conditions,

including but not limited to apoptosis (17), evaluating hepatic

steatosis for patients with non-alcoholic fatty liver disease (22),

differentiating hepatocellular carcinoma from at-risk and normal

liver parenchyma (23), and benign and malignant thyroid

nodules (24).

Previous works by A. Dietz & S. Delorme found a relationship

between sonographically high vascularisation of LNs and a less

favourable prognosis by investigating colour Doppler images and

the correlation between lower relative colour pixel density

(hypovascularisation) and more favourable outcomes (25, 26). Lin

et al. (2013) found that when comparing QUS spectral parameters

of mouse tumours treated with Adriamycin to control tumours, SS

and MBF significantly increased (by 48% and 13%, respectively) in

comparison to the control group (p < 0.001 and p = 0.013,

respectively) (27). There have also been several investigations into

breast cancer classification (28), monitoring (29) and prediction of

treatment outcomes (30), using QUS parameters and QUS

parametric map features.

QUS Parameters can be computed for small overlapping

windows to create QUS parametric maps from which texture
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features can be determined using radiomics. The field of radiomics

was pioneered by Haralick et al. (1973) and has since expanded due

to improved imaging and computational techniques and hardware

(31). Radiomics involves determining feature data from biomedical

images based on the assumption that texture information may be

represented by the overall or ‘average’ spatial relationship of pixels

within images (31). In order to describe ‘average’ spatial

relationships, Haralick et al. introduced the concept of the gray

level co-occurrence matrix (GLCM), a newly formed matrix based

on relationships between neighbouring pixels in an image (31).

Supplementary Figure 1 demonstrates an example GLCM

calculation from a sample 5x5 pixel image of five distinct pixel

intensities. Textural feature (contrast, homogeneity, entropy, etc.)

calculations are defined for the GLCM and other similar matrices

(gray level run length matrix (GLRLM) (32), gray level size zone

matrix (GLSZM) (33), and the gray level dependence matrix

(GLDM) (34). Texture feature values can be calculated for the

entirety of an image, or for a region of interest (ROI). Once texture-

based features are matched with retrospective treatment outcome

labels, machine learning (ML) classifiers can be trained to create

predictive models.

Predictive models capable of reliable and effective prediction of

treatment outcomes could lead to marked improvements related to

personalised cancer care. Patients predicted to respond well to

treatment would be given reassurance about treatment efficacy

and ease-of-mind to undergo treatment. Such technology would

also serve to benefit patients predicted to not achieve desired

outcomes by permitting treatment interventions such as changes

in radiation dose or fractionation (e.g. dose escalation). Previously,

Tran et al. (2019) investigated LN phenotypic signals associated

with H&N cancer treatment outcomes in creating predictive models

(35). Building on the aforementioned work, improvements were

made to address some key limitations; mainly (i) increasing sample

size from n = 32 to n = 72, and (ii) using GLCM, GLRLM, GLSZM,

and GLDM features as opposed to solely GLCM features. In

addition to addressing some of the limitations of the work by

Tran et al. (2019), we also incorporated and evaluated the

effectiveness novel higher-order texture-of-texture (TOT) features

in improving ML model performance for predicting treatment

response. This study investigated the utility of quantitative

ultrasound (QUS) texture-based features in predicting the

treatment response of H&N cancer patients with metastatic LNs.

Furthermore, the effect of potentially enhancing predictive models

by implementing novel, higher-order texture-of-texture (TOT)

features was evaluated.
2 Materials and methods

2.1 Study procedures and treatment

This study was approved by the institutional Research Ethics

Board. Subjects (n = 72) were recruited and enrolled with informed

written consent obtained prior to participation. Subjects had

biopsy-confirmed diagnosis of H&N cancers being treated with

radiotherapy for gross disease, and pathologically enlarged and
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measureable LNs (detailed below). Participants in this study had a

median age of 61 years (ranging 36-82 years old). The mean age at

the time of diagnosis was 60 years with a majority (n = 67, 93%)

being males. Although there is a large discrepancy between male

and female subjects, it should be noted that a 25-year analysis of

cancer prevalence in Canada revealed that out of nearly 48,000 total

H&N cancers, 70% (~35,000) were males (36). Smoking status,

drinking status, primary tumour staging, histological analysis, and

HPV status were also noted when available. 62 Patients (n = 62,

86%) were treated with chemotherapeutics (cisplatin, carboplatin,

cetuximab, and carboplatin + etoposide) and the remaining ten (n =

10) were treated with definitive radiation alone. Table 1 summarises

patient, disease, and treatment characteristics for all subjects.

Supplementary Table 1 shows a breakdown of tumour and

treatment characteristics for each patient involved.

Gross tumour volume (GTV) segmentations were expanded by

5 mm to form the high-dose clinical target volume on the primary

and nodal volume. Furthermore, a 1 cm margin was added to the

GTV to create the clinical tumour volume (CTV56) volume. XRT

Administration was carried out using IMRT or volumetric

modulated arc therapy (VMAT) techniques available at Odette

Cancer Centre, Sunnybrook Health Sciences Centre, in Toronto,

Ontario, Canada. In order to have been considered pathologically

enlarged and measurable, a LN must have been ≥ 15 mm in “short

axis” when assessed by computed tomography (CT) scan (with CT

scan slice thickness recommended no greater than 5 mm). At

baseline and in follow-up, only the short axis was evaluated and

measured. Nodal size is normally reported as two dimensions in the

plane in which the image is obtained (for CT scan this is almost

always the axial plane; for magnetic resonance imaging (MRI) the

plane of acquisition may be axial, sagittal, or coronal). The smaller

of these measures is the “short axis”.

Patients were labeled as complete or partial responders (CR or

PR) based on clinical follow-up using contrast enhanced MR

imaging (based on Response Evaluation Criteria in Solid Tumours

(RECIST) guidelines) conducted in the first three months after

completion of treatment (37). Through visual inspection patients

were categorised as CR if the index LN was found to be <1 cm,

otherwise labeled as PR. Standard treatment protocol includes

additional follow-ups every 3-6 months for the first two years,

and every 6-12 months thereafter. Some patients may be “late

responders” (PR group in the first three months, then CR at some

later time point), however in this work the interest was in predicting

response within the first three months.
2.2 Ultrasound data acquisition

The largest metastatic LN was identified on a diagnostic CT

scan by a radiologist and referred to as the “index” LN. The index

LN was scanned at various time points during treatment (baseline,

24 hours, 1 week, 4 weeks, and 7 weeks). In this study features were

determined from the baseline scans which were acquired up to 2

weeks before starting treatment. The collected data included both

grayscale (B-mode) images and the digitised (RF) signals. Data

collection was from participating patients between 2015-2019, using
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an US device (Ultrasonix Med. Corp., BC, Canada). A linear 2D

transducer (L4-5/38 Linear 4D, Ultrasonix) was used for imaging

and RF-data collection, which had a centre frequency of

approximately 10 MHz and a sampling rate of 40 MHz. Data was

acquired across the entire LN volume, along 256 lateral scan lines

(in-plane; 3.8 cm lateral field of view) with maximum axial depth of

5 cm. To account for the depth of the LN, the acoustic focus was

adjusted for each patient individually (average depth = 1.75 cm).
2.3 QUS parameter determination

For each patient, segmentations were made, outlining the LN from

six equally spaced B-mode images with associated RF-data using in-

house MATLAB software. Following the procedures outlined by Lizzi

et al. (1987), QUS spectra were computed using individual RF lines, by

first applying a Hamming window before computing a fast Fourier

transform (FFT) to determine the frequency component of the signal

(19). An average power spectrum was then computed as the mean of

the squared spectral magnitudes before calibrating it by dividing with a

power spectrum of a tissue-mimicking phantom with known acoustic

properties to remove various frequency dependent transfer functions

and beam forming effects associated with the transducer (19).

Linear regression analysis was performed on the normalised power

spectrum to find the best-fit line within a -5 dB window (bandwidth of

3 – 8MHz) centred at the transducer frequency . From the best-fit line,

MBF, SS, and SI were computed. Additionally backscatter coefficient

parameters ASD and AAC were determined from both a Gaussian

model (20) and the fluid-filled model (also referred to as Anderson

model) (21) for purposes of comparison. Local attenuation coefficient

estimates (38) were used to calculate attenuation correction based on

point-compensation method (39). QUS Parametric maps were created

for seven QUS spectral parameters, using a sliding window technique

with a window block of 2x2 mm and a 94.1% overlap between adjacent

windows in both axial and lateral directions. In Figure 1 representative

QUS parametric maps (used to determine texture features) are shown

for a CR and a PR patient, respectively.
2.4 Texture features

Texture features were determined from the QUS parametric maps

using Pyradiomics, an open-source Python (Python Software

Foundation, Delaware, USA) package (40). Features were determined
TABLE 1 Patient characteristics for 72 patients in this study.

Patient Characteristics n (%)

Patient and Clinical Characteristics n = 72 (all subjects)

Age (years)

- Median - 61

- Mean - 60.5 ± 10.14

Gender

- Male - 67 (93.1)

- Female - 5 (6.9)

Smoking Status:

- Smoker - 48 (66.7)

- Non-smoker - 23 (31.9)

- Unknown - 1 (1.4)

Drinking Status:

- Drinker - 51 (70.8)

- Non-drinker - 15 (20.8)

- Unknown - 6 (8.3)

Tumour status

Primary Tumour(T):

- T1 - 4 (5.6)

- T2 - 23 (32)

- T3 - 7 (9.7)

- T4 - 15 (20.8)

- Unknown - 23 (32)

Histological Type:

- Squamous cell carcinoma - 67 (93)

- Small cell carcinoma - 1 (1.4)

- Nasopharyngeal carcinoma - 4 (5.5)

HPV status:

- p16(+) - 41 (56.9)

- p16(-) - 2 (2.8)

- Unknown - 29 (40.3)

Treatment Characteristics

Chemotherapy - 62 (86.1)

- Cisplatin - 55 (76.4)

o Low dose - 2 (2.8)

o Medium dose - 45 (62.5)

o High Dose - 8 (11.1)

- Carboplatin - 5 (6.9)

- Carboplatin + etoposide - 1 (1.4)

(Continued)
TABLE 1 Continued

Patient Characteristics n (%)

- Cetuximab - 1 (1.4)

No Chemotherapy - 10 (13.9)

Post Treatment (3-month assessment from MRI)

Complete Responder – locoregional control (CR) - 25 (34.7)

Partial Responder – locoregional failure (PR) - 47 (65.3)
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from GLCMs (31) as well as other matrices (since developed to build

on to the work of Haralick & colleagues), including GLRLM (32),

GLSZM (33), and GLDM (34). For each of the seven QUS parametric

maps, 68 features were determined (22 GLCM, 14 GLDM, 16 GLRLM,

& 16 GLSZM features) for a total of 476 features per patient. The

patient texture feature values were averaged across each tumour and

matched with binary treatment outcomes, retrospectively. The dataset

was used to train a predictive ML model to distinguish CR from PR

patients. Details regarding ML modeling will be described in

section 2.6.
2.5 Texture-of-texture

After preliminary model building, in order to enhance the

performance of the classifiers, the effect of incorporating higher-

order texture features was investigated. Higher-order texture
Frontiers in Oncology 05
features were calculated by creating texture-based images from

which subsequent additional textures were determined.

Informative features first determined in 5-feature multivariable

models (process described below) were used as a guide to create

new parametric maps, as presented in Figure 2. New texture

parametric maps were created with a sliding window technique

from smaller 3x3 pixel windows spanning the ROI.

As earlier, texture features were determined using

Pyradiomics from the newly formed texture parametric maps

and used along with the original five features to create a new

dataset of features for classifier training. In addition to the GLCM,

GLRLM, GLDM, and GLSZM features, first order statistics

features related distribution of pixel intensities within the QUS

texture parametric map. The same ML classifier parameters were

used to train the classifiers with the new dataset to investigate

whether performance was enhanced, and if texture-of-texture

features contributed to the outcomes.
A

B

D

E

F

C

FIGURE 1

Comparing parametric maps (used as images to determine textural features from) and US slices of one CR patient (On the left) and one PR patient
(On the right). (A) Presents the B-mode ultrasounds and accompanying LN ROIs. (B) Mid-Band Fit parametric maps (range from -10 to 40 dB). (C)
Spectral Intercept parametric maps (range from 10 to 50 dB). (D) Spectral Slope parametric maps (range from -5 to 5 dB/MHz). (E) Average Acoustic
Concentration calculated using the Gaussian model (range from 20 to 220 dB/cm3). Note that Average Acoustic Concentration was also calculated
using Anderson model but omitted from this figure for convenience). (F) Average Scatterer Diameter calculated using the Gaussian model (range
from 0 to 150 µm). Note that Average Scatterer Diameter was also calculated using Anderson model but omitted from this figure for convenience).
Scale bar is 5 mm.
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2.6 Machine learning processing

Mean QUS parameter values were calculated from ROIs for

each image and subsequently averaged between all six tumour

images to represent the entire LN mass. The differences of means

between the two groups (CR/PR) were determined by computing

the p-value in a one-tail test with results presented in Table 2.

To account for data imbalances and bias from the majority class

(35% CR/65% PR) and to avoid anomaly-type’ classification

problems (41), a synthetic minority oversampling technique

(SMOTE) was used in the pre-processing phase (41). To split the

data, a leave-one-out cross validation method and 5 k-fold training

set validation was implemented. Additional pre-processing

included z-score scaling to account for varying magnitudes of

texture feature values.

Feature selection was carried out by an iterative sequential

forward selection (SFS) in a wrapper framework based on F1

score. Model performance was evaluated based on sensitivity (%

Sn), specificity (%Sp), accuracy (%Acc), F1 score, precision,

balanced accuracy, receiver-operating characteristic (ROC) curve,

as well as area under the curve (AUC), for single-variable and

multivariable models up to and including seven features as

determined by either support vector machines (SVM) or k-

nearest neighbour (k-NN) classifiers. Next, features identified in

the five-feature multivariable model were used to create five new

texture parametric maps using the sliding window technique. The
Frontiers in Oncology 06
reason for choosing five features to create parametric maps as

opposed for example, to seven, was to keep computation time

somewhat practical, as the creation of each texture parametric map

can take hours (depending on ROI size) and must be computed for

a total of 432 ultrasound slices (6 images per patient x 72 patients).

Radiomic features of new texture parametric maps were determined

using Pyradiomics to create a new set of texture-of-texture (TOT)

features. New TOT features and initially selected five QUS texture

features were used to create a second data set which was used to

train ML classifiers to explore potential improvement of prediction

efficacy. Figure 2 presents a ROI labelled selected on a reconstructed

US B-mode image, the corresponding QUS spectral slope

parametric map, as well as a texture parametric map of a feature

from a 5-feature multivariable model (spectral slope – GLSZM –

Small Area Low Gray Level Emphasis). Creating QUS parametric

maps, as well as ML classification, were carried out with MATLAB

(Mathworks, MA, USA).
3 Results

3.1 Mean QUS values

Table 2 presents QUS mean values for whole LN ROIs and

compares CR and PR groups. A one-tailed t-test using a confidence

level of p < 0.025 demonstrated the MBF parameter to be
FIGURE 2

On the left, an US B-mode scan slice with lymph node ROI highlighted in red. In the middle, the QUS spectral slope parametric map (dB/MHz). On
the right, a texture-feature parametric map (spectral slope – GLSZM – small area low gray level emphasis) (arbitrary units) from which TOT features
are determined. Scale bar is 5 mm.
TABLE 2 Comparing QUS parameters for entire ROI of CR vs PR group and comparing respective p-value for each of the seven parameters
parametric maps were created for.

QUS Parameter (units) ROI Mean Value (CR) ROI Mean Value (PR) p-Value (1-tail)

MBF (dB) 3.474 0.622 0.02

SS (dB/MHz) -2.172 -2.050 0.30

SI (dB) 15.44 11.92 0.03

ASD_Gaussian (mm) 82.82 77.98 0.24

AAC_Gaussian (dB/cm3) 63.96 61.25 0.30

ASD_Anderson (mm) 142.9 136.7 0.10

AAC_Anderson (dB/cm3) 112.9 106.7 0.05
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significantly different between the two groups (p = 0.020). The SI

parameter showed a near-significant difference (p = 0.026) between

the two groups, just missing the p < 0.025 confidence level. The

remaining parameters, SS (p = 0.302), ASD_Gaussian (p = 0.241),

AAC_Gaussian (p = 0.304), ASD_Anderson (p = 0.098), and

AAC_Anderson (p = 0.049) were statistically insignificant

between the CR and PR groups.
3.2 Treatment outcomes prediction from
QUS texture features

Both ML algorithms used (SVM & k-NN) demonstrated an

ability to predict treatment outcomes as summarised in Table 3. The

SVM classifier model out-performed the k-NN classifier model with

nearly every metric and combination of features (up to 7-feature

multivariable model). The SVM classifier model performed best

with a 6-feature model (%Sn = 80%, %Sp = 80%, %Acc = 81%,

precision = 88% and AUC = 0.81). The k-NN classifier performed

best with a 5-feature multivariable model (%Sn = 72%, %Sp = 72%,

%Acc = 72%, precision = 83% and AUC = 0.72).
3.3 Model enhancement with TOT features

For both algorithms, selected features from the 5-feature

multivariable model were used to create QUS-texture parametric

maps. For the SVM classifier, these five features were
Frontiers in Oncology 07
“ASD_Anderson GLSZM Zone Entropy”, “SI GLDM Small

Dependence Low Gray Level Emphasis” , “SS GLDM

Small Dependence High Gray Level Emphasis”, “AAC_Gaussian

GLDM Dependence Variance”, and “AAC_Anderson GLDM Small

Dependence Emphasis”.

For the k-NN classifier, the five features used to create new

parametric maps were “ASD_Anderson GLSZM Zone Entropy”,

“ASD_Anderson GLRLM Long Run Low Gray Level Emphasis”,

“ASD_Anderson GLSZM Large Area Low Gray Level Emphasis”,

“ASD_Gaussian GLDM Low Gray Level Emphasis”, and “SS

GLSZM Small Area Low Gray Level Emphasis”.

Texture features were determined for the newly created

parametric maps and subsequently used along with the original 5

best features to create a new dataset with a total of 355 features (5

initially selected QUS texture features, and 350 higher-order TOT

features) to be analyzed by ML classifiers. Identical classifier settings

were used to evaluate the impact of incorporating higher order

texture features in conjunction with top texture features. The results

comparing QUS texture features to QUS texture + TOT features for

SVM classifier are summarised in Table 4.

The implementation of TOT features improved the

performance in classifying between CR and PR. Comparing the

results of initial 5-feature multivariable model (all QUS texture

features) to the 5-feature multivariable model (5 QUS texture

features + TOT features) from the second data set with inclusion

of TOT features for the SVM classifier demonstrated no change in

sensitivity, however specificity, accuracy, precision and AUC

improved (from 76% to 80%, 78% to 79%, 86% to 88%, and 0.82
TABLE 3 Results from two SVM classifiers trained on QUS texture features for models with 1-7 features.

Features Used %Sn %Sp %Accuracy %Precision AUC

SVM

1 65.9 80.0 70.8 86.1 0.71

2 72.3 76.0 73.6 85.0 0.74

3 74.5 76.0 75.0 85.4 0.75

4 76.6 72.0 75.0 84.7 0.75

5 78.7 76.0 77.8 86.1 0.82

6 80.1 80.0 80.6 88.4 0.81

7 80.9 76.0 79.2 86.4 0.82

k-NN

1 63.8 64.0 63.9 76.9 0.71

2 59.6 72.0 63.9 80.0 0.73

3 70.2 72.0 70.1 82.5 0.71

4 59.6 72.0 63.9 80.0 0.72

5 72.3 72.0 72.2 82.9 0.72

6 72.3 64.0 69.4 79.1 0.68

7 61.7 68.0 63.9 78.4 0.66
Features selected for models in bolded rows were used as guideline to create TOT features.
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to 0.85, respectively). Comparing the two 7-feature multivariable

models, sensitivity improved from 81% to 85%, specificity increased

from 76% to 80%, accuracy increased from 79% to 83%, precision

increased from 86% to 89% and finally AUC increased from 0.82

to 0.85.

Table 5 shows the results from the k-NN classifier. Comparing

the sets of data with a 5-feature multivariable model, the

introduction of TOT features increased sensitivity (from 72% to

78%), accuracy (from 72% to 74%) and AUC (from 0.72 to 0.75),

however specificity, and precision decreased (from 72% to 64% and

83% to 80%, respectively). Similarly, for the 7-feature multivariable

model, sensitivity, accuracy, precision, and AUC increased, and

specificity remained unchanged.

The 7-feature multivariable model trained on QUS texture

features + TOT features dataset yielded the best results, for both

classifiers. Figure 3 shows the ROC curves corresponding to the

results from Tables 4, 5. Interestingly, for the 7-feature

multivariable SVM classifier model trained on the second dataset,

of the seven selected features, four were among the five initial QUS

texture features that were concatenated with the TOT features.

These features were “ASD_Anderson GLSZM Zone Entropy”, “SI

GLDM Small Dependence Low Gray Level Emphasis” ,

“AAC_Anderson GLDM Small Dependence Emphasis”, and “SS

GLDM Small Dependence High Gray Level Emphasis”. The

remaining three features were from the newly created TOT

features, namely, “SS GLDM Small Dependence High Gray Level

Emphasis GLSZM Size Zone Non-Uniformity Normalized”,

“AAC_Anderson GLDM Small Dependence Emphasis GLCM

Autocorrelation”, and “SI GLDM Small Dependence Low Gray

Level Emphasis GLCM Cluster Prominence”. The distribution of

these features between CR and PR patients can be seen in Figure 4.
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Similar outcomes were observed with the k-NN classifier

models, wherein of the seven selected features from model trained

with the second dataset, four were from the five preliminary QUS

texture features, namely “ASD_Anderson GLSZM Zone Entropy”,

“ASD_Anderson GLSZM Large Area Low Gray Level Emphasis”,

“ASD_Anderson GLRLM Long Run Low Gray Level Emphasis”,

and “SS GLSZM Small Area Low Gray Level Emphasis”. The

remaining 3 selected features were newly created TOT features,

namely “ASD_Anderson GLRLM Long Run Low Gray Level

Emphasis First Order 90 Percentile”, “ASD_Anderson GLSZM

Zone Entropy GLSZM Zone Entropy”, and “ASD_Anderson

GLRLM Long Run Low Gray Level Emphasis First Order Robust

Mean Absolute Deviation”. The distribution of these features

between CR and PR patients can be found in Figure 5.
4 Discussion

In this study, it was found that pre-treatment QUS scans

obtained from index LNs of H&N cancer patients may yield

insight about clinical treatment endpoints. Additionally, a

methodology was proposed to improve ML prediction model

performance by implementing TOT features (results shown in

Tables 4, 5).

In the work here ASD and AAC QUS backscatter parameters

were determined using both the Gaussian model (20) and fluid-

filled, Anderson model (21). The rationale behind this decision was

due to the nature of H&N LNs, which are both fluid-filled

(favouring Anderson model) and displaying near spherical shape

(favouring Gaussian model). Feature selection was used to remove

redundant features and reduce dimensionality during classification.
TABLE 4 Comparing SVM classifier results from texture-features from 5 (first row) and 7 (third row) features vs. 5 (second row) and 7 (fourth row) TOT
features to evaluate improvement in prediction performance.

SVM Classifier

Features Used %Sn %Sp %Accuracy %Precision AUC

5 Features QUS 78.7 76.0 77.8 86.1 0.82

5 Features QUS + TOT 78.7 80.0 79.2 88.1 0.85

7 Features QUS 80.9 76.0 79.2 86.4 0.82

7 Features QUS + TOT 85.1 80.0 83.3 88.9 0.85
frontie
In bold is the model that performed best with SVM classifier.
TABLE 5 Comparing K-NN classifier results from texture-features from 5 (first row) and 7 (third row) features vs. 5 (second row) and 7 (fourth row)
TOT features to evaluate improvement in prediction performance.

k-NN Classifier

Features Used %Sn %Sp %Accuracy %Precision AUC

5 Features QUS 72.3 72.0 72.2 82.9 0.72

5 Features QUS + TOT 78.7 64.0 73.6 80.4 0.75

7 Features QUS 61.7 68.0 63.9 78.4 0.66

7 Features QUS + TOT 74.4 68.0 72.2 81.4 0.75
In bold is the model that performed best with k-NN classifier.
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The best performance from both ML classifiers explored in this

study (SVM and k-NN) was a 7-feature multivariable model based

on a combination of four QUS-texture features and three higher-

order TOT features. Despite the fact that all five originally identified

QUS texture features were available for feature selection in the

enhancement step, one was not selected, in favour of three TOT

features. This suggests that the introduction of TOT features yielded

additional phenotypic information related to treatment outcomes

about LNs that are otherwise inaccessible solely through QUS-

texture features. Interpretation of TOT features is challenging but

should not be overlooked and are posited to be related to repetitive

structures in bulky nodal structures and may be sensitive to a

heterogeneity of structures.

Both classifiers identified “ASD_Anderson GLSZM Zone

Entropy” as the most insightful feature. Zone Entropy is a

Pyradiomics texture feature determined from the GLSZM matrix,

and measures the uncertainty, or randomness, in the distribution of

zone sizes and gray levels with higher values indicating more
Frontiers in Oncology 09
heterogeneous texture patterns (40). “Zones” in GLSZM refer to

consecutive (or connected) pixels (in any direction including

diagonal) which share identical pixel intensity values (33).

Therefore, the GLSZM defines pixel relationships by considering

zones of varying pixel intensities and sizes. Identification of

“ASD_Anderson GLSZM Zone Entropy” as a significant feature

suggests that pre-treatment heterogeneity in terms of diameter of

acoustic scatterers within index LNs of H&N cancer patients may

play an important role for response to treatment for H&N

cancer patients.

For the model based on k-NN classifier, six of the seven selected

features were based on ASD_Anderson parametric maps and one

from SS parametric map. One feature, “ASD_Anderson GLSZM

Large Area Low Gray Level Emphasis” measures the proportion of

the joint distribution of large size zones with lower gray-level values

in the image. Keeping in mind that this is a texture feature extracted

from ASD parametric maps, it may be that larger areas of small

scatterer diameters within the LN play a role in treatment efficacy.
FIGURE 3

ROC curves for two tested classifiers for both 5 and 7-feature models trained on first dataset (black) and the second dataset after TOT features
introduced (blue).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1258970
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Safakish et al. 10.3389/fonc.2023.1258970
Another feature, “ASD_Anderson GLRLM Long Run Low Gray

Level Emphasis”measures the joint distribution of long run lengths

with low gray-level values. Once again, the feature was extracted

from ASD_Anderson parametric maps, suggesting that longer run

lengths [see GLRLM documentation for “run length” definition

(32)] of low gray levels (smaller scatterer diameters) of index LNs

plays a role in predicting treatment response. The final QUS texture
Frontiers in Oncology 10
feature selected in the 7-feature k-NN model is the GLSZM feature

“Small Area Low Gray Level Emphasis” based on the SS parametric

map, which is expected to be related to scatterer size (19). The

remaining three features are TOT features, two based on

ASD_Anderson GLRLM Long Run Low Gray Level Emphasis

parametric maps, and one from ASD_Anderson GLSZM Zone

Entropy parametric maps. The improved results demonstrate that

TOT features provide finer information for the predictive model,

which leads to better discrimination between CR and PR patients.

For the model based on SVM classifier, one selected feature was

“GLDM Small Dependence Low Gray Level Emphasis” extracted

from the SI parametric map. The GLDM considers the relationship

between neighbouring pixels in all directions [see GLDM

documentation for details (34)]. “Small Dependence Low Gray

Level Emphasis” is a GLDM feature which measures the joint

distribution of small dependence with lower gray-level values

(40). Theoretically, SI is related to acoustic concentration and

scatterer diameter and relative acoustic impedances of scattering

elements (19). This suggests that within the SI parametric map,

regions of sparsely distributed, lower spectral intercept values may

play a role dictating treatment response. Another selected feature

was the GLDM feature “Small Dependence Emphasis” extracted

from AAC_Anderson QUS parametric maps. “Small Dependence

Emphasis” is a measure of the distribution of small dependencies,

with higher values indicative of smaller dependence and less

homogeneous textures (40). This suggests heterogeneity of

average acoustic concentrations within the LN may provide

insight regarding treatment efficacy. The final QUS texture feature

selected in the SVM classifier model was “GLDM Small

Dependence High Gray Level Emphasis” extracted from SS

parametric maps. “Small Dependence High Gray Level Emphasis”

measures the distribution of small dependence with higher gray-

level values (40). SS is a QUS parameter related to scatterer size (19),

suggesting that small regions of higher slope values with in the LN

plays a role in treatment efficacy. The final three features are TOT

features extracted from “SS GLDM Small Dependence High Gray

Level Emphasis”, “AAC_Anderson GLDM Small Dependence

Emphasis”, and “SI GLDM Small Dependence Low Gray Level

Emphasis” parametric maps. Once again, the improved results in

discriminating between CR and PR patients suggests that TOT

features provide finer information otherwise unavailable.

Other studies have looked into the effectiveness of radiomics

features from various imaging modalities in predicting biological

endpoints related to H&N cancers, for example, Tang et al. reported

contrast-enhanced CT radiomics features acquired pre-treatment to

be useful in predicting recurrence of locally advanced esophageal

squamous cell carcinomas (42). Another investigation by Dang et al.

reported MRI texture features to be promising in predicting p53

status in H&N squamous cell carcinomas (43). In the present study,

work was built on previous findings from Tran et al. who reported

results on prediction of H&N cancer treatment outcomes using just

nine QUS GLCM features (35). The work here has improved on the

work of Tran et al. by increasing the number of patients (from n =

32 to n = 72), the number of features computed for selection (from

41 to 476) and expanded beyond just GLCM features to GLCM +
FIGURE 4

Boxplots of Z-score values for selected features of 7-feature SVM
model trained on for QUS + TOT Features dataset. PR Patients
shown in pink, CR patients shown in blue. F1 feature was
“ASD_Anderson GLSZM Zone Entropy”. F2 feature was “SI GLDM
Low Gray Level Emphasis”. F3 feature was AAC_Anderson GLDM
Small Dependence Emphasis”. F4 feature was “SS GLDM Small
Dependence High Gray Level Emphasis”. F5 feature was a TOT
feature named “SS GLDM Small Dependence High Gray Level
Emphasis GLSZM Size Zone Non-Uniformity Normalize”. F6 feature
was also a TOT feature called “AAC_Anderson GLDM Small
Dependence Emphasis GLCM Autocorrelation”. Finally, F7 feature
was also TOT feature called “SI GLDM Small Dependence Low Gray
Level Emphasis GLCM Cluster Prominence”.
FIGURE 5

Boxplots of Z-score values for selected features of 7-feature k-NN
model trained on for QUS + TOT Features dataset. PR Patients
shown in white, CR patients shown in gray. F1 feature was
“ASD_Anderson GLSZM Zone Entropy”. F2 feature was
“ASD_Anderson GLSZM Large Area Low Gray Level Emphasis”. F3
feature was AAC_Anderson GLRLM Long Run Low Gray Level
Emphasis”. F4 feature was “SS GLSZM Small Area Low Gray Level
Emphasis”. F5 feature was a TOT feature named “ASD_Anderson
GLRLM Long Run Low Gray Level Emphasis First Order 90
Percentile”. F6 feature was also a TOT feature called “ASD_Anderson
GLSZM Zone Entropy GLSZM Zone Entropy”. Finally, F7 feature was
also TOT feature called “ASD_Anderson GLRLM Long Run Low Gray
Level Emphasis First Order Robust Mean Absolute Deviation”.
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GLRLM+ GLSZM + GLDM features. Furthermore, in this study the

effect of implementing TOT features was considered for improving

response prediction by the ML algorithms. Finally, Tran et al. used

logistic regression, Naïve Bayes, and k-NN classifiers, whereas in

this study SVM and k-NN classifiers were investigated.

Due to the difference in sample size and the curse of

dimensionality (44), Tran et al. considered a maximum of three

features for their multivariable analysis, whereas in this study

models with a maximum of seven features were evaluated. Of the

three ML classifiers explored, Tran et al. report a best performance

with sensitivity of 85%, specificity of 84%, accuracy of 88%, and

AUC of 0.91 from the regression classifier with the 3-feature

multivariable model (35). The best result from the study here was

from the SVM classifier with sensitivity of 85%, specificity of 80%,

accuracy of 83%, precision of 89%, and AUC of 0.85, which was the

7-feature QUS texture features + TOT features dataset multivariable

model. The study here demonstrates a more robust and reliable

model compared to previous work, mainly because of a larger

sample size, and consideration of additional features.

Finally it is worth mentioning that patients enrolled in this

study had to undergo ultrasound scans (not required for their

treatment), solely for the purpose of advancing scientific research,

which can present a challenge when recruiting vulnerable patients.

Though results were promising, the relatively small sample size of

this study suggests that these models are not generalizable for

clinical applications. Furthermore, predictive models can

incorporate clinical features, such as HPV status, to bolster

features used to train models. However in this study only the

feasibility of radiomics features were tested, as clinical features

were not consistently available for all patients, because many

patients received diagnostic work from outside institutions.

Despite the limitations, the results are consistent with previous

work, as well as promising, particularly when considering the

possibility to improve results with the introduction of TOT features.
5 Conclusion

The study here was designed based on the hypothesis that the

index LNs of H&N cancer patients contain acoustic phenotypes that

can be correlated to the treatment response of the primary tumour

and nodal disease. Insights regarding treatment responses using

QUS texture features can potentially improve understanding of

cancerous microstructures and provide another (non-invasive) tool

at the disposal of clinicians in the aim of delivering the best

personalised care to patients. Accurate and reliable predictions

about treatment responses work to assist patients that fall into

either CR or PR group. For example, patients who are predicted to

respond well to treatment (CR) can be encouraged to forego any

reservations they might be having of undergoing treatment. Fear of

treatment can stem from risk of failure to cure, but also from the

physical toll and decrease of quality of life. Patients predicted not to

respond well to treatment (PR), can avoid undergoing ineffective

treatment and the undesirable side effects associated with it and
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have altered therapy. Ultimately a better understanding of

individual responses to a given treatment will benefit patients and

continue to build on the path of personalised medicine.
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