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Macrophages represent an important component of the innate immune system.

Under physiological conditions, macrophages, which are essential phagocytes,

maintain a proinflammatory response and repair damaged tissue. However,

these processes are often impaired upon tumorigenesis, in which tumor-

associated macrophages (TAMs) protect and support the growth, proliferation,

and invasion of tumor cells and promote suppression of antitumor immunity.

TAM abundance is closely associated with poor outcome of cancer, with

impediment of chemotherapy effectiveness and ultimately a dismal therapy

response and inferior overall survival. Thus, cross-talk between cancer cells

and TAMs is an important target for immune checkpoint therapies and metabolic

interventions, spurring interest in it as a therapeutic vulnerability for both

hematological cancers and solid tumors. Furthermore, targeting of this cross-

talk has emerged as a promising strategy for cancer treatment with the antibody

against CD47 protein, a critical macrophage checkpoint recognized as the “don’t

eat me” signal, as well as other metabolism-focused strategies. Therapies

targeting CD47 constitute an important milestone in the advancement of

anticancer research and have had promising effects on not only phagocytosis

activation but also innate and adaptive immune system activation, effectively

counteracting tumor cells’ evasion of therapy as shown in the context of myeloid

cancers. Targeting of CD47 signaling is only one of several possibilities to reverse

the immunosuppressive and tumor-protective tumor environment with the aim

of enhancing the antitumor response. Several preclinical studies identified

signaling pathways that regulate the recruitment, polarization, or metabolism

of TAMs. In this review, we summarize the current understanding of the role of

macrophages in cancer progression and the mechanisms by which they

communicate with tumor cells. Additionally, we dissect various therapeutic

strategies developed to target macrophage–tumor cell cross-talk, including

modulation of macrophage polarization, blockade of signaling pathways, and
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disruption of physical interactions between leukemia cells and macrophages.

Finally, we highlight the challenges associated with tumor hypoxia and acidosis

as barriers to effective cancer therapy and discuss opportunities for future

research in this field.
KEYWORDS
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cancer progression
1 Introduction

The tumor microenvironment (TME), the environment

surrounding cancer cells, is crucial to cancer development,

providing a stage for several hallmarks of cancer like tumor

growth, uncontrolled tumor cell proliferation, evasion of growth

suppression, immune system evasion, angiogenesis, tumor

migration and invasion, tumor progression, metastasis, or

emergence of treatment resistance to occur (1, 2). The TME

consists of diverse cellular and extracellular components (3, 4).

The cellular compartment of the TME consists of stromal cells,

including cancer-associated fibroblasts (CAFs), endothelial cells

(ECs), pericytes, and mesenchymal stem cells, as well as diverse

immune cells, which typically include tumor-infiltrating

lymphocytes, microglia, macrophages, and dendritic cells (DCs)

(5, 6). This compartment of the TME can be divided further into

two functional subcategories of cells: immune-stimulating cells,

which facilitate the anticancer immune response, and

immunosuppressive cells, which inhibit the anticancer immune

response to promote tumor progression (7). The ongoing

interaction between these elements and tumor cells creates a

dynamic network that promotes tumorigenesis (5). These

interactions among different cell types occur within a unique

environment for each cancer type and cancer stage noncellular

component of the TME. The non-cellular TME consists of the

extracellular matrix (ECM), mainly including structural proteins

(e.g., collagen, elastin, and tenascin), glycosaminoglycans (e.g.,

hyaluronic acid), proteoglycans (e.g., chondroitin sulfate,

dermatan sulfate, heparin sulfate, heparan sulfate, and keratan

sulfate), matricellular proteins (e.g., osteonectin, osteopontin, and

thrombospondin), adhesion proteins (e.g., fibronectin and laminin),

and a variety of signaling chemicals (e.g., cytokines, chemokines,

and growth factors) (5, 6, 8).

TME composition, both cellular and extracellular, may change

depending on the stage of tumor progression and undergoes

continuous reorganization via several intrinsic and extrinsic

processes (9, 10). The key intrinsic factors influencing the risk of

tumor development and progression are genetic alterations,

whereas extrinsic contributors to TME remodeling are hypoxia,

acidosis, and inflammation, which impact the final composition of

both the cellular construction of TME and the extracellular TME

matrix (5).
02
Although the specific composition of a TME may depend on the

tissue origin of the tumor, independent of cancer type, increased

infiltration of tumor-associated macrophages (TAMs), monocytes,

and DCs is common to protumorigenic TMEs (11). Also,

protumorigenic TMEs are frequently accompanied by T helper 2

(Th2) cells, myeloid-derived suppressor cells (MDSCs), neutrophils

(particularly of type N2), tolerogenic DCs (with immunosuppressive

properties, priming the immune system into a tolerogenic state against

various antigens, causing clonal T-cell deletion and anergy, suppressing

memory and effector T-cell responses, and producing and activating

regulatory T cells [Tregs]), and other Tregs (5, 12) as shown in Table 1.

In comparison, antitumorigenic TMEs are often enriched in CD8+

cytotoxic T lymphocytes, Th1 cells, classically activated M1

macrophages, neutrophils, and natural killer (NK) cells.

These differences in cellular tumor composition, particularly in

the nature, density, immune functional orientation, and

distribution of immune cells within a tumor, became a further

basis for identifying immune tumor profiles associated with distinct

responses to treatment with immune checkpoint inhibitors and

therefore distinct survival and patient outcomes (3, 4, 9, 10). This

stratification of patients with solid tumors according to
TABLE 1 The components of antitumorigenic and protumorigenic TMEs
[adapted from Hourani et al. (6)].

TME

Component Antitumorigenic Protumorigenic

Macrophages M1 (CD86, TLR4) M2 (CD163, CD206)

Th cells Th1 cells Th2 cells

DCs Mature DCs Tolerogenic DCs
(CD80low, CD86low)

T cells Cytotoxic CD8+ T cells Tregs

Other cells NK cells MDSCs

Cytokines IL-2, IL-12, IFN-g IL-4, IL-6, IL-10, TGF-b,
IFN-g

Growth/angiogenic
factors

GM-CSF GM-CSF, EGF, HGF, FGF,
VEGF

Chemokines CXCL9, CXCL10 CCL2
Tolerogenic DCs consist of a heterogeneous pool of DCs with immunosuppressive properties
that prime the immune system into a tolerogenic state in response to various antigens.
GM-CSF, granulocyte-macrophage colony-stimulating factor; HGF, hepatocyte growth factor.
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composition of immune environment demonstrated the central role

of the immune system in guiding therapeutic decisions and enables

one to distinguish four types of tumors: hot, cold, altered-excluded,

and altered-immunosuppressed tumors (9, 10, 13, 14).

Hot tumors are attributed to infiltration of TMEs mostly by T

cells (15–17). They intensify the immune response, engaging it to

recognize and attack tumor cells and produce a good response to

immunotherapy, including that with immune checkpoint inhibitors

(17). Cold tumors, on the other hand, are characterized by deficient

immune cell infiltration in the TME, resulting in evasion of immune

detection and responses to immune effector cells via several

mechanisms, such as immunosuppressive growth factors and

cytokines produced by tumor cells. A hot TME is generally seen as

more favorable than cold TME in the context of cancer treatment

because it suggests that the immune system is aggressively combating

the tumor (15). Furthermore, an altered-excluded tumor is

characterized by TME infiltration of CD8+T cells located at the

edge of the invasive margin of the tumor dominated by an

abnormal vasculature (and consequent hypoxia) and a dense

stroma, while altered-immunosuppressed tumors are characterized

by the presence of a low degree of immune infiltration and an

immunosuppressive, often hypoxic TME that limits further

recruitment of immune cells and promotes an expansion of tumor

(9, 10, 13–17).

Besides differences in the cellular composition of TME,

distinctions in cytokines and secreted growth factors can also be

found in TME, which help in the identification and characterization

(8, 16–19). Most common in the latter milieu are growth factors

associated with inflammation, such as granulocyte-macrophage

colony-stimulating factor, epidermal growth factor (EGF),

hepatocyte growth factor, and fibroblast growth factor (FGF)

which are accompanied by vascular endothelial growth factor

(VEGF) and stimulate angiogenesis (3, 5, 7, 8, 12, 20, 21). A

protumorigenic TME is saturated with several supporting tumor

growth cytokines like interleukin (IL)-4, IL-6, and IL-10 as well as

transforming growth factor (TGF)-b, interferon (IFN)-g, and

chemokines such as chemokine (C-C motif) ligand 2 (CCL2) (3,

5, 7, 8, 12, 20, 21). Conversely, an antitumorigenic TME is

frequently enriched in IL-2 and IL-12 along with IFN-g,
granulocyte macrophage-stimulating factor, and chemokines like

C-X-C motif chemokine ligand 9 (CXCL9) and CXCL10 (22).

However, the role of specific cell populations and signaling

molecules in TME depends on many other factors, such as the

presence of programmed death-ligand 1 (PD-L1) receptors that are

often upregulated in tumor tissue and, through cooperation with

IFN-g, can induce tumor growth-promoting properties (23–26).

Like IFN-g, granulocyte macrophage-stimulating factor is known to

effectively elicit anticancer immune responses, but it can also trigger

tumor development and metastasis, demonstrating its context-

dependent mechanism of action (27, 28).

Remodeling of the ECM and lymphatic and blood vessels

caused by autocrine and paracrine signaling between the TME

and cancer cells may control invasion of the cells (29). CAFs and

TAMs are the two crucial cell populations impacting and

modulating the maturation and modulation of the TME,

remodeling of the ECM, and modulation of metabolism and
Frontiers in Oncology 03
angiogenesis as well as cross-talk between tumor cells and tumor-

infiltrating immune cells via the production of growth factors,

cytokines, and chemokines (30). Upon interaction with tumor

cells, CAFs secrete or shed diverse proteins such as collagens,

glycoproteins, and proteoglycans. They can also transmit

autocrine and paracrine signals, including cytokines/chemokines,

growth factors, mRNAs, microRNAs, and other proteins like

enzymes. Through secretion of these signals, CAFs can establish

the physical barrier surrounding cancer cells and thus directly

supporting cancer progression via immune cell polarization,

leading to a protumoral, immunosuppressive status (21, 31–33).

Depending on the stage of tumor progression, CAFs contribute to

the characteristics of the TME including the ECM through direct

humoral interaction with TAMs (34). They remodel the ECM via

qualitative and quantitative changes in the production of collagen,

laminins, or fibronectins or tenascins through reorganization of

protein synthesis and structure (12, 21). CAFs and cancer cells

cooperate with each other through secretion of proteolytic enzymes

such as matrix metalloproteinases (MMPs) that destroy the ECM

and control the modification and cross-talk linking of ECM

proteins (e.g., lysyl oxidases), leading to increased stiffness of

ECM and its altered composition (21, 30, 35–38). This induces

desmoplasia and fibrosis, establishing a physical barrier between

tumor cells and therapeutic drugs as well as immune cells and

enabling cancer cells to invade and metastasize (39).

CAFs may increase monocyte recruitment through secretion of

monocyte chemoattractant protein-1 and stromal cell-derived factor

1 (SDF-1) and differentiation into TAMs, particularly M2 cells (35,

38). CAFs can promote tumor development by maintaining

monocyte chemotactic protein-1-mediated macrophage infiltration

and chronic inflammation and have been associated with infiltration

of CD204+ TAMs (40, 41). CAFs and M2 macrophages were

demonstrated to cooperate with each other during cancer

progression, and they are able to alter each other’s functions

through constant cross-talk (37, 42–45).

Finally, the TME restricts the entry of any cytotoxic antitumor

substance or antitumor immune cells to the tumor cells by establishing

cellular and noncellular barriers around the malignant cells (29, 36).

Together with the vascular network, the ECM, and necrotic tissues,

CAFs may shield tumor cells from outside signaling, completing the

TME framework. Table 1 lists different components of antitumorigenic

and protumorigenic microenvironments. A remodeled TME with

rewired macrophage function is considered one of the key

mechanisms of resistance to chemotherapy and immune checkpoint

inhibitors, which we characterize and discuss below.
2 Types of macrophages and
their characteristics and
impact on tumorigenesis

Macrophages and other myeloid cells constitute more than 50%

of a tumor mass and are crucial to its development (31, 46). The

significant infiltration of macrophages in tumor metastases has

been recognized as an independent biomarker of poor prognosis (3,
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11, 13, 14, 47–50). Although macrophages exhibit high

heterogeneity, three main populations of macrophages can be

distinguished: TAMs, tissue-resident macrophages, and MDSCs

(51). Among these populations, TAMs are the most abundant

infiltrating cells in the TME (52). Because of their extreme

plasticity and ability to adapt to external stimuli, macrophages

can differentiate into specific subpopulations in response to

environmental changes, in a process known as polarization, and

perform functions dictated by the environment (51–53).

The two main types of macrophages commonly recognized are

M1, also referred to as classically activated macrophages, and M2,

alternatively activated macrophages (53). Despite the considerable

plasticity of macrophages and their capacity to differentiate through

polarization, researchers have proposed using various markers to

characterize and distinguish between M1 and M2 morphology (54,

55). The utilization of these markers has demonstrated that M1

macrophages are often characterized by the presence of CD68 and

CD80 and exhibit high expression of the MHC-II complex (56),

whereas M2 macrophages are characterized by high expression of

CD23 [the low-affinity receptor for immunoglobulin (Ig)E], CD163

(hemoglobin scavenger receptor), CD204 (class A macrophage

scavenger receptor, SR), or CD206 (mannose receptor, C type 1,

MR); a low expression of the MHC-II complex; and expression of

arginase 1 (21, 35, 36, 57).

In terms of their function, M1 macrophages are involved in

immune defense against external pathogens and promoting
Frontiers in Oncology 04
antitumor immunity (2, 53). They exert their immunostimulatory

and tumoricidal effects through the release of various chemicals and

molecules, including lipopolysaccharides, IFN-g, tumor necrosis

factor (TNF)-a, IL-12, IL-18, reactive nitrogen and oxygen

species, inducible nitric oxide synthase, CXCL9, CXCL10, and

major histocompatibility complex (MHC)-II. Additionally, they

participate in the process of antigen presentation (20, 58).

On the other hand, M2 macrophages, which naturally occur in

normal physiological conditions, are involved in Th2-mediated

immune response, particularly in humoral immunity, wound

healing, and tissue remodeling (52). However, in the presence of

tumor cells, alternatively activated M2 macrophages assume an

immunosuppressive and tumor-promoting role (52). The

characteristics of tumor-associated M2 macrophages are

orchestrated by the action of IL-4, IL-10, IL-13, macrophage

colony-stimulating factor 1 (CSF-1), CCL2, or VEGF-A (2, 22, 51,

53, 59) (Figure 1).

The specific polarization state of TAMs can be influenced by

certain chemokines and other substances secreted by tumors. The

expression pattern of surface markers in M2 macrophages is heavily

influenced by the presence of IL-4, -10, and -13 or MMPs such as

MMP-1, MMP-3, MMP-10, and MMP-14, which are secreted by

the tumor. The levels of these factors can vary among organs and

types of tumors (2, 51–53) (Figure 1). Further distinctions between

M1 and M2 macrophages can be made based on the quality and

quantity of secreted cytokines and chemokines. Upon exposure to
FIGURE 1

The role of M2 TAMs and their impact on tumorigenesis and immune system evasion. TAMs engage in several phases of tumorigenesis by secreting
growth factors, chemokines, cytokines, and TGF-b (51, 60–63). These cells can foster a susceptible to modulation microenvironment by polarizing
CD25+ T cells to Th2 and Treg phenotypes. They can also restrict the antitumor ability of NK cells and cytotoxic T cells (CD8+ T cells) by generating
TGF-b (64). Additionally, TAMs may promote the invasion of cancer cells by producing EGF and CCL2 in the TME (65).
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inflammatory signals, M1 macrophages secrete IL-1b, IL-6, IL-12,
IL-23, CXCL9, CXCL10, TNF-a, nitric oxide, and reactive oxygen

species (52, 53, 55). In contrast, in response to secretion of cytokines

by tumor cells, M2 macrophages may release hepatocyte growth

factor, TGF-b, VEGF-A, FGF-2, platelet-derived growth factors,

placental growth factor, insulin-like growth factor-1, IL-1, IL-10, IL-

8, CCL17, CCL22, SDF-1 (CXCL12), PD-L1, PD-L2, arginase, and

prostaglandin E2 (22, 48, 59, 66–68). Additionally, M2

macrophages can synthesize and release MMP-2, MMP-7, MMP-

9, MMP-13, cathepsin B and S, and serine proteolytic enzymes that

break down the ECM as well as secrete growth factors necessary for

EC proliferation and microvessel development (48), as shown

in Figure 1.

Notably, researchers have shown M1 and M2 macrophages to

have distinct angiogenic potential in vitro, with the M2 phenotype

expressing more proangiogenic cytokines and other growth factors

than does the M1 phenotype, which is discussed below in detail

(48). Furthermore, M1 and M2 macrophages can be distinguished

by their metabolic state. M2 macrophages mainly have a

preponderance of glycolysis, fatty acid synthesis, and the pentose

phosphate pathway, whereas M2 macrophages largely depend on

oxidative phosphorylation (OXPHOS) for their biosynthetic and

bioenergetic needs (69). TAMs are closely involved in angiogenesis,

suppression of the immune system, impairment of the other

immune cells’ function, and support of tumor-cell metastasis.

TAMs consist mostly of M2 macrophages and are thus thought
Frontiers in Oncology 05
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cytokines, chemokines, and enzymes, and Th2 immune response

(22, 70); therefore for the purpose of simplicity, we will further refer

to TAMs or tumor-associated M2 macrophages equally. Figure 1

provides an overview of the various roles of M2 TAMs in

tumorigenesis, including an immune system inactivation, which is

discussed in detail in the next section.
3 The role of TAMs in suppression of
immune responses

Immune surveillance against cancer involves immune cells such

as CD4+ Th cells, CD8+ cytotoxic T cells, NK cells, and DCs

(Figure 2). TAMs disrupt the function of these cells via secretion

of specific cytokines. TGF-b is one of the key regulators of

immunosuppression that may prevent the production of

cytotoxicity-promoting receptors like natural cytotoxicity

triggering receptor 3 (also known as NKp30) and NK group 2

member D protein upon binding of its receptors on the surface of

NK cells (71). TGF-b may also affect T cells by impairing their

ability to express lysing genes like granzyme A and B together with

IFN-g and FAS ligand, thus inhibiting their cytotoxic function.

TGF-b also may induce expression of FOXP3 in CD4+CD25+ T

cells, contributing to recruitment and an increase in the pool of

Tregs in the TME (72), which can weaken the immune functions of
FIGURE 2

The effects of TAMs on tumor cells include promotion of tumor growth, angiogenesis, induction of tumor infiltration and immune suppression by
Tregs, metabolic deprivation of T cells, inactivation of T cells, induction of growth and proliferation of cancer stem cells, EMT, invasion, migration,
and metastasis. TAMs encourage the growth of tumors by secreting certain substances and expressing specific proteins. MMPs, CSF-1, and EGF
produced by TAMs promote tumor invasion and migration. Moreover, TAMs release VEGF and platelet-derived growth factor, which encourage
angiogenesis and tumor growth.
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CD4+ and CD8+ T cells (73). Thymus-derived CD4+CD25+FOXP3+

Tregs may increase the pool of CD206+CD163+ macrophages that

differentiate from monocytes and upregulate CCL18 and IL-1Ra

produced by macrophages (74).

By triggering CD4+ T cells to differentiate into the Th2

phenotype, TGF-b and its receptor in DCs decrease adaptive

immune responses through apoptosis induction and reduction of

antigen-presentation ability. Thus, TGF-b changes the balance

between Th1 and Th2 cells in favor of Th2 cells and enhances the

immunosuppressive structure of the TME (63, 75, 76). In addition

to interacting with local immune cells in an inflammatory TME,

secreted TGF-b may stimulate tumor cells and MDSCs to release

IL-10. The latter could be further enhanced by synergistic

interaction of IL-10 with TGF-b and prostaglandin E2 via EP2

and EP4 receptors, which direct TAMs to further sustain the

secretion of IL-10 (77). This cascade continues to transform naïve

T cells into Tregs and inhibit the antitumor immunity maintained

by NK cells (78).

IL-10 may decrease the production of proinflammatory

cytokines such as IL-6, TNF-a, and IFN-g and thus promote

polarization of macrophages toward the protumorigenic M2

phenotype and thus ultimately enable tumor cells to evade

immune surveillance (79). IL-10 may also inhibit or downregulate

macrophage IL-2 production and thus induce macrophage

polarization into the M2 phenotype (79). Furthermore, secreted

IL-10 may induce release of PD-L1 and cytotoxic T-lymphocyte-

associated antigen-4 as well as expression and activation of the

corresponding receptors to further reduce the antitumor activity of

T cells. The binding of PD-L1, followed by its activation of

programmed cell death protein 1 (PD-1; CD279), or receptors

B7-1 (CD80), and B7-2 (CD86) on the surface of TAMs, DCs,

and B cells, triggers inhibitory signals, leading to a state of

immunological tolerance and negative regulation of T-cell

immune response, including apoptosis, anergy, and exhaustion

(80–82). PD-L1’s activation of CD80/CD86 and CD28 receptors

also causes decreased proliferation, cytokine production, and T-cell

anergy (80–82). Thus, to reactivate the immune response and

enhance antitumor results of anti-PD1 therapy, blocking or

reversing these interactions among T cells and macrophages is

crucial. This immunosuppression mechanism plays a crucial role in

tumor immune evasion.

TAMs also subvert immune surveillance by expressing cell surface

proteins or releasing other soluble factors such as arginase 1, indoleamine

2,3-dioxygnease, and inducible nitric oxide synthase, which are oxygen

and nitrogen radicals that harbor immunosuppressive functions and

inhibit proliferation of NK and T cells (83, 84). TAMs restrained T-cell-

specific response and crippled CD8+ T-cell proliferation and killing

activity via the release of extracellular vesicles (EVs), which led to tumor

immune evasion (85, 86). Investigators showed that T-cell exhaustion

was induced by leukemia-cell-derived EVs transporting the microRNA

miR-21-5p. EVs harboring miR-21-5p also enhanced CD8+ T-cell

exhaustion in mice with primary hepatocellular carcinoma by

targeting of YOD1 and activating the YAP/b-catenin signaling

pathway (87).

To induce macrophage polarization toward the M2 phenotype,

renal cell carcinoma (RCC)-derived EVs containing lncARSR
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for the microRNAs miR-34/miR-449, thus increasing signal

transducer and activator of transcription 3 (STAT3) expression as

the primary type of signaling of macrophage polarization (88). In

addition, glioblastoma-derived EVs reprogram M1 macrophages to

become TAMs and enhance protumor functions of the M2

macrophages (89). Similarly, M2-polarized TAM-derived EVs

showed an activity to influence proliferation, migration, invasion,

and tumorigenesis of meningioma tumors through activation of

TGF-b signaling, and with delivery of oncomiR-21 and AKT,

STAT3, MTOR, and ACTB mRNA expression showed to support

progression, migration, tumor sphere generation, and cisplatin

resistance of bladder cancer (52, 90). Furthermore, TAM-derived

exosomes promote the migration, growth, and proliferation of

glioblastoma cells (50). Finally, EC-derived EVs in the TME were

shown to recruit macrophages to tumors, resulting in transferring

microRNAs via EVs to M2-like macrophages and causing an

immunomodulatory phenotype that permits tumor growth (91).

In summary, TAMs govern immunosuppression by inducing

phenotypic changes in other immune cells, recruitment and

migration of myeloid DCs, stimulation of immunosuppressive cells,

and production of chemokines and cytokines that regulate both the

function of immunosuppressive cells and promotion of tumor-cell

growth, thus impairing the effectiveness of chemotherapy and

contributing to chemotherapy and immunotherapy resistance.

Hence, targeting TAMs may enhance chemotherapy and immune

therapy responses of tumor cells by boosting the immune system.
4 The roles of TAMs in tumor cell
initiation, growth, and progression

Tumorigenesis is strongly associated with inflammation. In the

process of establishing an inflammatory environment, TAMs play

an essential role (53, 73) by producing mediators that remodel the

TME or directly support tumor cell proliferation, protect tumor

cells from apoptosis, and modulate tissue composition to favor cell

migration, invasion, and metastasis. Investigators demonstrated

these functions of TAMs in solid tumors such as colon and

gastric cancer (73, 92, 93), in which underlying chronic

inflammation or activation of specific oncogenes may cause

activation and expression of proinflammatory transcription

factors. The most examined transcription factors associated with

inflammation include nuclear factor (NF)-kB, STAT3, hypoxia-
inducible factor (HIF)-1a, and HIF-2 (73). Activation of these

signaling pathways in cancer cells leads to a cascade of events

with the release of cytokines and chemokines such as TNF-a and

IL-6, which authors reported led to the recruitment, migration, and

polarization of MDSCs and monocytes; differentiation of

monocytes to macrophages; and ultimately the polarization of

macrophages toward the M2 phenotype (56, 73, 79).

Macrophages might initially produce several proinflammatory

mediators (IL-6, TNF-a, and IFN-g), growth factors (EGF and

Wnt), enzymes like proteases, and free radicals. This cocktail of

substances, chemokines, and growth factors boosts the creation of a

mutagenic microenvironment that favors and facilitates cancer
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initiation, and in consequence macrophage polarization toward M2

phenotype (81, 94). TAMs may also release other ILs such as IL-6,

IL-17, and IL-23 that can support tumor growth and progression as

shown in models of colon cancer and hepatocellular carcinoma, in

which tumor progression was associated with activation of the

STAT3 signaling pathway (95, 96). In summary, as depicted in

Figures 1, 2, the impact of TAMs on the initiation of tumorigenesis

involves secretion of diverse factors and chemokines that lead to an

accelerated tumor expansion and spread, which is discussed in the

next section.
5 The role of TAMs in angiogenesis
and lymphangiogenesis

In addition to tumor initiation and growth-supporting

activities, TAMs can promote neovascularization to maintain the

supply of nutrients and growth factors necessary for increasing the

energy and biosynthesis demands of tumor cells required for

expansion, invasion, and metastasis. In this context, angiogenesis

and lymphangiogenesis are often discussed in association with

factors like hypoxia, acidosis, and hyperosmotic pressure that,

together with angiogenic factors such as VEGF-A (97–100), TGF-

b (63), cyclooxygenase-2, placental growth factor, FGF-2 (62), EGF,

platelet-derived growth factor, insulin-like growth factor-1,

angiotensin-1, and chemokines like SDF-1, stimulate these

processes (Figure 1) (48, 66, 68, 92, 101–104). The precise

mechanism underlying cell-to-cell contacts between ECs and

macrophage subsets as well as that underlying macrophage-

stimulated angiogenesis has yet to be fully determined. However,

TAMs may contribute to these processes by controlling responses to

inflammatory stimuli through the release of angiogenesis- and

lymphangiogenesis-stimulating factors such as VEGF-C and

VEGF-D (62, 105–108). VEGF-C-mediated lymphangiogenesis

may also result from a process associated with overexpression of

MMP-2, MMP-3, and MMP-9 or MMP-13 that degrades the ECM

and thereby indirectly facilitates angiogenic invasion, linking

neovascularization with TME and matrix remodeling (48, 62, 68,

104, 109, 110). Production of proangiogenic factors such as VEGF

and FGF-2 is commonly increased in hypoxic areas and has been

linked to elevated expression of HIF-1a, a transcription factor that

plays a central role in regulating the activation of genes in response

to decreased/low oxygen levels in cells (91, 111, 112). Under

elevated hypoxic conditions, due to the uncontrolled cell growth

and tumor expansion especially in the middle of the tumor mass,

HIF-1a was shown to interact with the transcriptional co-factor

p300/CBP, activating a wide range of genes, upregulating

expression of the SLC2A1/GLUT1 receptor, and increasing

glycolytic activity (46, 111–114). This in consequence leads to

increasing distance between blood vessels and individual cells

within the tumor mass, reducing an intratumoral oxygen level,

and thus deepening further the level of hypoxia within the tumor

due to limitations in oxygen diffusion and oxygen availability for

selected cells (115). Increased hypoxia together with elevated

glycolytic activity as shown for most of solid tumors, increased

the production and secretion of VEGFs, thereby promoting
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neovascularization and finally increasing the release of TGF-a/b
to induce angiogenesis and impediment of immune cells’ tumor

growth–inhibitory properties (59, 116) as shown in Figures 1, 3 (92,

119, 120).

Researchers also demonstrated upregulated expression of VEGF-A

in tyrosine kinase with immunoglobulin and EGF homology domain 2

(Tie2)-positive macrophages. VEGF-A secreted by Tie-2-expressing

macrophages (TEMs) induced proliferation of ECs, which led to

tumor angiogenesis (121). Furthermore, Tie2 on TEMs binds to

angiopoietins 1–4, which initiates vascular development or

neoangiogenesis (122, 123) and is a homing mechanism for ECs and

vessel development (122, 123). Of note, Tie2 is frequently co-expressed

with CXCR4, a chemokine receptor for SDF-1 linked to cell migration

(124, 125). SDF-1 is a membrane-bound or released chemoattractant

cytokine that promotes inflammation, thereby primarily attracting

leukocytes, hematopoietic stem cells from adult bone marrow, and

macrophages (126). SDF-1 is predominantly expressed by ECs (127),

and its expression and secretion results in consistent recruitment of

CD11b+ monocytes/macrophages and retention of these cells in the

tumor environment (128). Besides the presence of Tie2 (109), CXCR4 or

CD11b (CD18/MAC-1) TAMs express and secrete angiogenic cytokines

like MMP-9 and MMP-13 (50) stimulating further the process of

neovascularization (129). Of note, during brain vascularization, yolk-

sac-derived macrophages expressing Tie2 make up most of tissue

macrophages and work with the endothelial tip cells to enhance

vascular anastomosis following VEGF-mediated tip-cell proliferation

and sprout formation (50). Also, EGF secretion by TAMs may activate

EGFR on tumor cells, further upregulate VEGF/VEGFR signaling, and

thus increase cancer cell proliferation and invasion (130). TAMs may

also promote angiogenesis by increasing the secretion of TGF-b and IL-
10, resulting in the proliferation of vessel ECs (131). Stimulation of ECs

by Wnt family ligand 7B (WNT7B) aberrantly expressed in TAMs,

which regulates the Wnt/b-catenin signaling pathway and VEGF

production, and thereby triggers angiogenesis, tumor progression,

growth, tumor cell invasion, and metastasis, was demonstrated in

models of luminal breast cancer (73, 132, 133). Furthermore, myeloid

Wnt7b caused an overexpression of VEGF-A in ECs, leading to

angiogenic switching and tumor neovascularization (132).

In summary, the contribution of TAMs to tumor

neovascularization provides solid evidence that TAM targeting may

diminish or reduce tumor progression and metastasis directly by

reducing TAM abundance and indirectly by impairing the release of

angiogenesis-stimulating factors. Combinatorial approaches to

targeting tumor cells such as classical chemotherapy together with

strategies aimed at targeting TAMs and neoangiogenesis may be

superior to chemotherapy or immunotherapy alone. Alternatively,

approaches targeting TAMs combined with immunotherapy

targeting EGFR or VEGFR and/or HIF-1/2 may warrant preclinical

and clinical testing and inhibit tumor expansion.
6 The role of TAMs in tumor
metastasis and invasion

The migration of tumor cells to ectopic sites requires both

angiogenesis and lymphangiogenesis (134, 135). In line with TAMs’
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involvement in angiogenesis, a plethora of evidence has emphasized the

importance of TAMs to tumor invasion and metastasis (136). For

example, neovascularization is essential for metastasis, enabling cancer

cells to spread from the primary tumor to distant sites. It enables cancer

cells to enter blood or lymphatic vessels, allowing them to adhere to

vessel’s walls, penetrate barriers, and establish secondary tumors. The

tumor vasculature’s permeability and angiogenesis create a supportive

microenvironment for cancer cell survival and growth. Given that

metastasis is the main cause of death in cancer patients, targeting

tumors at this stage is an urgent need. A common feature of cancer cells

is their ability to move and release digestive enzymes that enable escape

from the primary tumor and to break into the vascular and lymphoid

systems to further colonize distant sites (85, 93, 133, 137).

Invasion and metastasis can also be conferred via initiation of

epithelial-to-mesenchymal transition (EMT), a process enabling

epithelial cells to acquire mesenchymal features (138). EMT is a

crucial biological process in cancer development in which epithelial

cells become more motile and invasive mesenchymal-like cells. This

process facilitates invasion, metastasis, and therapeutic resistance of

cancer cells. Cancer cells thus lose adhesion, become more motile,

and resist apoptosis. EMT also aids in angiogenesis and immune

evasion, making tumors more resistant to various treatments. EMT is

linked to resistance to various treatments, including chemotherapies

and targeted therapies. Understanding and targeting EMT in cancer

research may lead to potential techniques for reducing metastasis,

increasing therapy responses, and improving outcomes. Recent

studies demonstrated that EMT is regulated by TAMs, further

facilitating metastasis (132, 139).
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TAMs interact with cancer cells, promoting EMT-related

genetic alterations and facilitating cell migration and invasion.

They also contribute to ECM remodeling and promote an

immunosuppressive milieu, supporting EMT indirectly by

suppressing immune responses. This interaction creates an EMT-

friendly microenvironment, enabling cancer cells to penetrate

tissues, enter the circulation, and metastasize to other organs.

EGF production by tumor-infiltrating M2 TAMs within the TME

can stimulate the NF-kB, STAT3, EGFR, and extracellular signal-

regulated kinase signaling axes in tumor cells, promoting their

invasive traits (140, 141). For instance, TAMs increase cancer cell

invasion and capability for metastasis through induction of EMT by

interfering with JAK2/STAT3/miR-506-3p/FoxQ1 regulation of

colorectal cancer development (139). Additionally, EGF may

prevent expression of the long noncoding RNA LIMIT, increasing

the capacity for cancer cells to move (142).

The expression of EGF by TAMs may be adversely affected by

CSF-1 synthesized by tumor cells, which may enhance the

metastatic potential of tumor cells (143). EGF secreted by TAMs

activates the EGFR/extracellular signal-regulated kinase 1/2 signal

pathway in some types of cancer cells, which results in the

promotion of EMT (144). Additionally, authors suggested that

TGF-b generated by these TAMs in lung cancers boosts the

expression of SOX9 and triggers EMT, thereby causing tumor cell

migration (145). TAMs also support tumor metastasis through

increased expression and release of MMPs such as MMP-2 and

MMP-9 (143). MMPs together with VEGF-C, activates the CCL2/

CCR2 signaling pathway and attracts circulating monocytes into the
FIGURE 3

Effects of hypoxia and acidosis on TAMs. The TME is influenced by hypoxia and acidosis, which significantly impact TAMs. Hypoxia induces an M2-
like phenotype, supporting tumor growth, whereas acidosis shifts TAMs toward immunosuppression and reduces proinflammatory cytokine output.
These factors contribute to tissue remodeling, ECM disintegration, and angiogenesis (92, 117–119). Together, hypoxia and acidosis shape TAM
activities, promoting tumor growth, blood vessel formation, and immune system evasion (119).
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TME, thereby promoting tumor growth, expansion, and metastasis

(132, 137, 146). These infiltrating monocytes may facilitate tumor

growth, expansion, and metastasis by releasing tumor-promoting

factors. For example, monocytes can secrete growth factors such as

VEGF-C, which induce angiogenesis and lymphangiogenesis,

resulting in the creation of new blood vessels that deliver oxygen

and nutrients to tumors. These cells can also produce cytokines and

chemokines, which attract additional immune cells to the TME,

where they dampen the immune response and promote tumor

growth. Furthermore, monocytes can develop into TAMs, which

are already demonstrated to enhance tumor progression by

releasing a variety of substances that encourage tumor cell

proliferation, invasion, and metastasis (147).

Activation of the JAK2/STAT3/miR-506-3p/FoxQ1 axis may also

result in the generation of CCL2 and thereby facilitate the

recruitment of macrophages (139). Furthermore, increased CCL2

expression in the TME is accompanied by increased CCR2 expression

on TAMs and by the polarization of macrophages toward the M2

phenotype, whereas CCL2 overexpression and high TCF4 expression

correlate with cancer metastasis to lymph nodes and have been linked

to poor prognosis because the TCF4/CCL2/CCR2 regulation axis

regulated TAM polarization (146). Of note, preclinical studies

demonstrated M2 macrophages’ potent induction of an invasive

phenotype in previously healthy epithelial cells through the release

of CCL2 and upregulation of endoplasmic reticulum oxidoreductase

1a as well as MMP-9, leading to acquisition of an invasive EMT

phenotype (101, 148–151). TAMs may also release CCL5, which,

through activation of the b-catenin/STAT3 signaling pathway,

significantly promoted invasion, metastasis, and EMT in studies

using prostate cancer cells (24, 86, 146, 150–152). Of note, CCL5,

which is released by malignant phyllodes tumors, can trigger

recruitment and repolarization of TAMs through activation of the

CCR5 receptor and the AKT signaling pathway.

Furthermore, TAM-secreted CCL18 can bind to the membrane-

associated phosphatidylinositol transfer protein 3 receptor, which

further facilitates differentiation and invasion of myofibroblasts (83).

Infiltration of TAMs and invasion and metastasis of colorectal cancer

cells were promoted by the phosphatase of regenerating liver-3

(PRL3)-stimulated upregulation of cytokine CCL26 and activation

of CCR3 receptor (85). Whereas EMT and metastasis induction in a

model of non-small cell lung cancer (NSCLC) were facilitated by

upregulation of ab-crystallin upon co-culture of TAMs with cancer

cells (153), phosphorylated STAT3 with upregulation of

cyclooxygenase-2 and MMP-9 led to EMT induction, invasion, and

metastasis in animal models of osteosarcoma (154).

Taken together, these findings demonstrate that TAMs can

express and release a variety of factors to induce EMT. Therefore,

targeting TAMs, even in advanced stages of cancer development,

may have life-extending benefits for patients.
7 The role of TAMs in
chemoresistance

Depending on the tumor type, most cancer treatments consist

of a combination of chemotherapy, immune therapy, hormonal
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therapy, immune checkpoint blockade (ICB), and/or radiotherapy.

Acquired resistance to treatment is the most common reason for

treatment failure, and researchers have extensively investigated the

contribution of TMEs including TAMs to treatment resistance.

Macrophages can be prompted by their environment to adopt

multiple phenotypes, and most TAMs are commonly polarized

toward a cancer-promoting phenotype, which confers treatment

resistance (102, 152). Treatment resistance may either reduce or

completely impair the effectiveness of therapy. Investigators have

identified several mechanisms of resistance conferred by TAMs.

Changes in the profiles of secreted cytokines, expression of different

receptors, activation of transcription factors and signaling pathways

mostly associated with inflammation or hypoxia, changes in

polarization of TAMs, rewiring of metabolism, and initiation of

dynamic changes in the microvasculature are only some of the

resistance mechanisms (Figure 4). Overall, TAMs limit the

effectiveness of cancer therapies, triggering detrimental reactive

responses to tumor-induced tissue damage cues and rapidly

reprogramming the TME toward a proremodeling state (53, 56,

120, 158). For instance, in prostate cancer models, secretion of

CCL5, activation of STAT3, and upregulation of the transcription

factor Nanog resulted in chemotherapeutic drug resistance, whereas

secretion of CXCL12 and activation of CXCR4 by TAMs occurred

following combined docetaxel/androgen deprivation therapy in

cases of castration-resistant prostate cancer tumors with poor

response (84, 103, 159).

Researchers found markedly greater TAM abundance in patients

with NSCLC who experienced progressive disease upon treatment

with an EGFR tyrosine kinase inhibitor (137) than in those with

nonprogressive disease. Moreover, as described previously, high

TAM counts were significantly associated with poor progression-

free and overall survival, suggesting that TAMs are related to

reduced treatment responsiveness after administration of not only

EGFR tyrosine kinase inhibitors but also several commonly

used treatment combinations (159) and mediate resistance to

antiangiogenic therapies via compensatory pathways such as

cathepsin B and angiopoietin-2. Also, TAMs are key players in the

antitumor activity of selected monoclonal antibodies (mAbs) such as

rituximab (anti-CD20), trastuzumab (anti-HER2), cetuximab (anti-

EGFR), and daratumumab (anti-CD38), as they express FcgR to

perform tumor-cell killing and phagocytosis (127, 160). However,

functional polymorphisms in human FcgRIIIA that affect the killing

ability of macrophages correlate with low rates of response to

treatment with mAbs in patients with lymphoma, breast cancer, or

myeloma (127, 160).

In addition, the effects of hormonal therapy on disease

progression and survival are impacted by inflammatory pathways

orchestrated by macrophages. Inflammatory cytokines such as IL-1

and IL-6 can activate estrogen or androgen receptor signaling on

tumor cells, linking inflammation to tumor growth and endocrine

resistance (159). A new level of therapeutic intervention was

introduced with the development of ICB. However, shortly after

its introduction into the therapeutic armament, authors reported

new resistance mechanisms mainly driven by macrophages. For

instance, as key cell types participating in tumor-extrinsic pathways

of primary and adaptive resistance, macrophages express several
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immunosuppressive molecules, including checkpoint ligands such

as PD-L1, PD-L2, poliovirus receptor (CD155), and TIGIT ligands.

Researchers showed these and other molecules to be overexpressed

and to impede the efficacy of ICB for NSCLC and other types of

cancer (83, 84, 151). Also, whereas PD-L1 expression in tumor-

infiltrating immune cells but not macrophages correlated with

positive response to anti-PD-L1/2 therapy, expression of PD-1 in

macrophages was negatively correlated with their ability to

phagocytose tumor cells (58, 81, 161, 162). Another inhibitory

receptor found on macrophages is VISTA, which cooperates with

negative regulators of T and NK cells such as P-selectin

glycoprotein ligand 1 and acts as a T-cell checkpoint-inhibitory

ligand. Thus, targeting VISTA with mAbs led to transcriptional and

functional changes that produced increased antigen presentation,

activation, and migration (22, 163). Another aspect of resistance to

ICB is the cellular composition of tumors. The presence of tumor-

infiltrating neutrophils together with tumor-infiltrating

macrophages accompanied by T-cell elimination/depletion has

contributed to the lack of response of liver cancer cells to ICB

(164). For instance, abundant M2 macrophages in renal cell cancer

were associated with resistance to ICB. In particular, the presence of

a macrophage subpopulation expressing TIM4 suppressed CD8+ T-

cell responses, impairing the efficacy of ICB. However, ICB efficacy
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may be restored by targeting TIM4+ macrophages via anti-TIM4

antibody-mediated blockade (165).

Additionally, a new dimension of complexity in the

effectiveness of and resistance to immunotherapies was revealed

by studies of the microbiome, suggesting that the specific

composition of the microbiome shapes the components of

the TEM and thus enhances or impairs therapy response. The

composition of the microbiota and the cellular composition of

the TEM may result from complex cross-talk and exchange of

cytokines and oncometabolites among the microbiota, tumor cells,

and cellular immune environment. For instance, abundant and

diverse gut bacteria enriched for Bacteroides species, shaped tumor

myeloid infiltration, and thus increased the effectiveness of anti-

cytotoxic T-lymphocyte-associated antigen and anti-PD-1 therapy

for melanoma (166). Taken together, these findings suggest that

macrophages, particularly TAMs, have an important influence on

the activity of chemotherapy, radiotherapy, antiangiogenic agents,

hormonal therapy, and ICB. Their role is complex, as they

frequently serve as inhibitors of antineoplastic activity. Despite

progress in dissecting the role of macrophages in conventional

antineoplastic treatment modalities, the actual translation of these

findings into more effective cancer treatments remains challenging.

Depletion of macrophages can potentiate various chemotherapeutic
FIGURE 4

The Hypoxia pathway. Overactivated STAT3 and NF-kB activate the transcription of HIF-1a, which has resulted in the overexpression of HIF-1a (116).
In combination with HIF-1b, HIF-1a triggers the transcription of TGF-a and TGF-b. Moreover, HIF-1a indirectly activates VEGF, leading to
angiogenesis via overactivation of TGF-a. HIF is a transcription factor that plays a central role in regulating the activation of genes in response to low
oxygen levels in cells. HIF-dependent mechanisms influence gene expression by affecting epigenetic factors such as DNA methylation and histone
acetylation (155). HIF binds to DNA and associates with distinct nuclear co-factors under low-oxygen conditions. Oxygen depletion causes HIF-a to
interact with the transcriptional co-factor p300/CBP. This association activates a wide range of genes, initiating diverse adaptive processes such as
glycolysis (SLC2A1/GULT1), angiogenesis (VEGF-A), and angiogenesis and loss of growth-inhibitory effects (TGFa/b) (156, 157).
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and immunotherapeutic strategies. Several preclinical and clinical

trials combining different therapeutic strategies, such as immune

checkpoint inhibitors and anti-CSF-1R antibodies or other TAM-

centered therapeutic strategies in combination with chemotherapy,

are currently under way and are discussed below.
8 TAM-targeted therapies

Macrophages, the most prevalent immune cells within the

TME, have a dual function in immunomodulation (19, 51). As

discussed above, macrophages in cancer patients are an

incredibly diverse mixture ranging from tumor suppressors (M1

phenotype) to tumor protectors (M2 phenotype) (19). Via

sequestration of the release of proinflammatory cytokines and

display of more than immunostimulatory markers, classically

activated macrophages (M1 phenotype) support anticancer

immunity (6, 19, 51). In contrast, M2 macrophages, which

constitute most of TAMs, have a low antigen-presenting

capacity and strong immunosuppressive features and produce

higher numbers of proangiogenic cytokines than M1

macrophages (103, 167). Thus, limiting the number of TAMs or

switching TAMs within the TME to the M1 phenotype is essential

for cancer therapy because TAMs’ overall activity promotes tumor

development and metastasis (19, 51). Figure 5 summarizes

selected therapeutic strategies targeting TAMs.
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8.1 Blockade of TAMs migration/depletion
of TAMs from the TME

8.1.1 The CCL2/CCR2 axis
Blocking the CCL2 or CCR2 signaling pathway, an axis that

draws circulating monocytes into the TME and induces their

differentiation into macrophages, is one way to eliminate TAMs

from the TME (101, 148–151). CCL2 blockade can stop tumor

spread, angiogenesis, and growth, and researchers have

demonstrated CCL2 restriction in animal studies to increase the

antitumor effects of cytotoxic T lymphocytes and decrease the

number of TAMs in the TME (168). Additionally, a CCR2

antagonist has exhibited tumor-burden-reducing efficacy in

animal models of adenoid cystic carcinoma of the salivary glands

by reducing the number of infiltrated TAMs (168). Studies

demonstrated that targeting the CCL2/CCR2 axis with the

antibody carlumab (CNTO 888) as well as with a specific

inhibitor of the CCR2 receptor (PF-04136309) specifically blocks

the CCL2-mediated activation and migration of macrophages into

tumors and tumor’s infiltration by macrophages in patients with

diverse types of cancers (149).

8.1.2 CSF-1 and CSF-1R
Another valuable target for the removal of TAMs from the TME

is CSF-1R. CSF-1 is a cytokine that is essential for the survival,

proliferation, and differentiation of mononuclear phagocytes (84,
FIGURE 5

TAM-targeting strategies. These treatment approaches aim to either activate the antitumor behavior of TAMs or limit macrophage infiltration,
survival, and protumoral actions. Identification of therapeutic antibodies using Fc receptors (FcRs) on TAMs is a key step in the macrophage-
mediated antibody-dependent cellular cytotoxicity process. The CD47/SIRPa axis and CD24/SIGLEC10 pathway are both parts of the don’t eat me
signal for tumor cells. Activating macrophage-mediated antibody-dependent cellular cytotoxicity phagocytosis is possible with antibodies against the
CD47/SIRPa and CD24/SIGLEC10 pathways (antibody-dependent cellular phagocytosis). Don’t eat me signal pathways, repolarization, limiting and
reducing the infiltration and survival of tumor cells, and ICB with antibodies are just a few of the major therapeutic approaches used to target TAMs.
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159, 169). CSF-1R is a tyrosine kinase transmembrane receptor that

belongs to the CSF-1/platelet-derived growth factor receptor family

of protein tyrosine kinases. It has an important role in the formation

and maintenance of microglia in the brain (84, 159, 169, 170). CSF-

1R promotes myeloid cell survival when activated by two ligands,

CSF-1 and IL-34. Inhibiting CSF-1/CSF-1R prevented murine M2

macrophages from differentiating, proliferating, and surviving in

one study (169). In addition, blockade of the CSF-1/CSF-1R axis

with the specific CSF-1R inhibitors PLX3397, BLZ945, and

GW2580 direct ly impacted macrophage viabi l i ty and

differentiation, improving their function as well as antigen

presentation ability. Furthermore, CSF-1R inhibitors induced

repolarization of macrophages toward the M1 phenotype and

thereby boosted the antitumor T-cell response (84, 171). In an

animal model of glioblastoma, CSF-1R blockade demonstrated

significant potential to reduce tumor growth, suggesting that CSF-

1R inhibitors can block TAM-mediated immunosuppression and

make tumor cells more susceptible to chemotherapeutics (120). For

instance, treatment with PLX3397 prevented the differentiation of

myeloid monocytes into TAMs and improved the response of

glioblastoma to ionizing radiotherapy, which delayed the

recurrence of glioblastoma (152, 172). Authors reported that the

number of TAMs and polymorphonuclear MDSCs in the TME

were successfully reduced by the co-targeting of CSF-1R and

CXCR2 inhibitors. Importantly, in diverse animal models of

cancer, this drug combination reduced tumor burdens and

inhibited tumor growth (54, 168, 173).

Also, antibodies against CSF-1 and CSF-1R are used to target

macrophages by inhibiting their recruitment and depleting and re-

educating them. Given promising results in preclinical data,

investigators are further evaluating this combinatorial approach

in the setting of breast cancer and other solid tumors in ongoing

clinical studies (172). Even though CSF-1R inhibition enhances

TAMs’ ability to present antigens in animal models of aggressive

pancreatic ductal adenocarcinoma, it may cause exhausted

phenotypes of cytotoxic T cells, highlighting the importance of

combining immune checkpoint inhibitors and CSF-1R inhibitors in

treating these tumors (172).
8.2 Polarization of M2 TAMs into tumor-
suppressive macrophages

Given the fact that protumor macrophages (M2 phenotype)

create an immune-resistant TME whereas antitumor macrophages

(M1 phenotype) stop or slow down cancer growth and metastasis,

potential strategies for cancer therapy include switching M2

macrophages to the M1 phenotype (120, 162, 173, 174). This

change in phenotype may be helpful for cancer treatment because

M1 macrophages create an immune-vulnerable microenvironment

for cancer cells. Additionally, changing the phenotype of M2

macrophages may stop cancer cells from growing and forming

metastases (173, 175). Various substances and modalities to change

the state of TAMs within the TEM were investigated including T-

cell immunoglobulin and mucin domain 3 and 4 blockade and

treatment with macrophage receptor with collagenous structure
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(MARCO) or Toll-like receptor (TLR) agonists (145, 176–178).

TIMs are phosphatidylserine receptors mainly expressed on antigen

−presenting cells that are involved in the recognition and

efferocytosis of apoptotic cells. They are expressed in immune

cells such as NK, T, B, and mast cells and participate in multiple

aspects of immune regulation but are also abnormally expressed in

cancer cells, contributing to immunosuppression (64, 179, 180).

Studies demonstrated that blockade of TIMs improved the

anticancer effectiveness of T-cell responses in cancer patients and

enhanced the immune cells’ stimulatory properties (64, 180).

Investigators achieved similar effects by targeting the scavenger

receptor MARCO, which reversed the immunosuppressive effects of

TAMs and reduced tumor progression in several murine models of

solid tumors (181–183).

Also, use of phosphoinositide 3-kinase g (PI3Kg) inhibitors such
as IPI-549, mammalian target of rapamycin inhibitors, CD40

agonists, TLR agonists, and class IIa histone deacetylase (HDAC)

inhibitors helps repolarize TAMs toward the proinflammatory M1

state (171). Specifically, HDAC inhibitors improved the

effectiveness of both chemotherapeutic drugs and immune

checkpoint inhibitors in breast cancer treatment by inducing M1

polarization of TAMs (81, 184). The phenotype switch toward M1

was also achieved through PI3Kg suppression in pancreatic ductal

adenocarcinoma, a tactic used to modify the TAM phenotype in

solid tumors like melanoma, pancreatic cancer, and lung cancer.

They also observed that blocking the PI3Kg/Akt signaling pathway
could decrease the recruitment of integrin a4-dependent MDSCs,

increase the recruitment of mature DCs, impede macrophage

polarization toward the M2 phenotype, and strengthen T-cell

anticancer defenses (185). BKM120 and IPI-549 are two highly

effective PI3K inhibitors with direct modifying effects on

macrophages and anticancer effectiveness alone or in combination

with immune checkpoint inhibitors (83, 90).

Use of TLR agonists has also produced positive results in

reversing TAM polarization toward the M1 phenotype. For

instance, TLR3 stimulation enhanced the production of MHC-II

and other co-stimulatory elements on macrophages by activating the

IFN-a/b signaling pathway, exhibited M2/M1 polarization-changing

properties, and switched M2 macrophages to the M1 phenotype

(186). Also, TLR4 and IFN-g receptors on macrophages are

commonly involved in M1 activation. The major signals associated

with M1 macrophage polarization are STAT1 and NF-kB.
Immunomodulatory compounds such as Lachnum polysaccharide

and glycocalyx-mimicking nanoparticles can interact with TLRs,

influencing TAMs to release IL-12, exhibit the M1 phenotype, or

reverse the M2 phenotype (158, 187). Of note, glycocalyx-mimicking

nanoparticles are internalized by TAMs via lectin receptors,

stimulating production of IL-12 and inhibiting production of IL-10,

arginase 1, and CCL22 to activate macrophages’ antitumor responses

(187, 188). This macrophage phenotype reversion was further

controlled by suppressing STAT6 and activating NF-kB
phosphorylation (187). Furthermore, glycocalyx effectively reduced

tumor burdens in in vivo studies and had positive synergistic effects

when combined with anti-PD-L1 therapy (145, 187).

Additional targeted nanocarriers have demonstrated efficacy by

conveying mRNA-encoding transcription factors responsible for M1
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polarization to the M2 phenotype (189, 190). In addition, nanoparticle

injections prepared with mRNAs expressing IFN-regulatory factor 5

along with IKKb switched M2 subsets to antitumor M1 macrophages

in animal studies of ovarian cancer, melanoma, and glioblastoma (142).

Lately, targeted delivery of chlorogenic acid (CHA) encapsulated in

mannosylated liposomes can reduce the immune-suppressive effects of

the TME on glioblastoma cells by causing TAMs with the M2

phenotype to adopt an M1 state (191). Remodeling of the TAM

phenotype was also caused by infusion of IL-12 in hepatocellular

carcinoma models. IL-12 injection lowered the expression of STAT3

and c-Myc, which led to induction of the M1 phenotype in

macrophages (192). In another study of hepatocellular carcinoma,

IL-37 converted M2 TAMs into M1 cells by inhibiting the IL-6/STAT3

signaling pathway (163). Also, studies using ureido tetrahydrocarbazole

derivatives confirmed the potent transformation ofM2macrophages to

the M1 phenotype to instill antitumor activity both in vitro and in vivo.

According to Pei et al. (193), the ureido tetrahydrocarbazole derivatives

were effective at slowing the growth of tumors in tumor-bearing mouse

models and had effective results when combined with anti-PD-1

antibodies. Considering all of these data, altering the phenotype of

TAMs to become M1 cells appears to be an effective tactic for

increasing the sensitivity of tumor cells to both chemotherapeutic

drugs and immunotherapies.
8.3 Checkpoints for macrophage-
induced phagocytosis

Investigators have identified several tumor-phagocytosis-related

checkpoints, including the CD47/signal regulatory protein a (SIRPa)
axis, the PD-1/PD-L1 axis, the MHC-I/leukocyte immunoglobulin-

like receptor subfamily B (LILRB1) axis, and the CD24/SIGLEC10

axis. This was followed by the development of several mAbs or

protein fusions directed against these checkpoints, with some of them

exhibiting promising effectiveness in ongoing clinical trials.

8.3.1 CD47/SIRPa checkpoint
The first checkpoint to be connected to tumor phagocytosis was

CD47/SIRP cross-talk, commonly referred to as the don’t eat me

signal (123). CD47 was first described as a membrane protein in

healthy red blood cells (123). Previous studies revealed that

senescent red blood cells with reduced CD47 expression are

swiftly removed by the macrophages residing in the splenic red

pulp, liver tissue, or bone marrow erythroblastic island (6, 72, 194–

196). However, in normal erythroid cells, CD47 expression prevents

clearance by attaching to the macrophage inhibitory receptor SIRPa
(128, 176, 197–199). Recent reports pointed to SIRPa as a

membrane protein belonging to the immunoglobulin superfamily

that is primarily expressed by myeloid cells like macrophages and

other DCs (54). The mechanism behind inhibition of phagocytosis

by macrophages was further dissected with the discovery that

macrophages and SIRPa interact with CD47 expressed on nearby

cells, causing the SIRPa cytoplasmic immunoreceptor to

phosphorylate its tyrosine-based inhibitory motif. Src homology 1

and 2 phosphatases are subsequently recruited because of this

mechanism (200).
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Inhibition of phagocytosis results from the downstream signaling

cascade’s prevention of myosin-IIA aggregation at the phagocytic

synapse (200). As a result, the CD47/SIRPa axis is mainly thought

of as a don’t eat me signal that enables CD47-expressing cells to avoid

being phagocytosed by macrophages (200). In contrast, cells lacking

CD47 are quickly destroyed by wild-type macrophages (201). Thus,

most cell types, including erythroblasts, platelets, and hematopoietic

stem cells, express CD47 on their surfaces to avoid being phagocytosed

by macrophages (200). However, a similar mechanism of elevating the

expression of CD47, and thereby inhibiting macrophage phagocytosis,

was found in numerous hematological and solid tumors (129, 198,

202–206). These findings demonstrate that CD47/SIRPa cross-talk acts

as a protective immunological checkpoint associated with phagocytosis.

Furthermore, authors documented a substantial positive connection

between high CD47 expression and poor prognosis for cancer (125,

203, 207–209), leading to several approaches aimed at blockade of this

signaling axis. CD47-targeting approaches include the anti-CD47

antibodies Hu5F9-G4 (NCT02216409), SRF231 (NCT035123), and

IBI188 (NCT03763149) and the anti-SIRPa antibody BI-765063

(NCT03990233). The anti-CD47 mAb Magrolimab is reported to be

the first therapeutic drug to target macrophages (54). These findings

demonstrate that suppression of CD47/SIRP cross-talk may indeed

improve antitumor activity of macrophages and that using this

approach in combination with other therapies may further improve

results of immunotherapy (127, 128). Furthermore, clinical studies

demonstrated the significance of blocking the CD47/SIRP interaction

in animals bearing xenograft models with a variety of hematological

cancers, such as acute myeloid leukemia, myelodysplastic syndrome,

and refractory non-Hodgkin lymphoma (47, 97, 124, 177, 200, 210).

The results of the studies described above demonstrated that anti-

CD47 antibodies facilitate tumor-cell detection and phagocytosis by

macrophages (211). Furthermore, macrophage removal reversed

tumor development following CD47 blockage, demonstrating that

macrophages are essential for suppressing the proliferation of cancer

cells after CD47 dampening. Targeting cancer cells with CD47

blockage is carried out using four major strategies (54, 126, 127,

208). (1) Direct killing of cancerous cells. Anti-CD47 mAbs cause

tumor cells to die via a process unrelated to caspases (212). (2)

Macrophage-regulated antibody-dependent cellular phagocytosis. The

use of anti-CD47 mAbs reduces CD47/SIRPa cross-talk, thereby

causing macrophages to phagocytose tumor cells (213). Furthermore,

inhibiting CD47/SIRPa cross-talk causes tumor cells to be

phagocytosed by all macrophage populations, particularly M1 and

M2c macrophages (214–216). That study also demonstrated that

preventing CD47/SIRPa cross-talk causes a variety of polarized

macrophages to engulf tumor cells and that this action is necessary

for producing FcgRs (217). This suggests that inhibiting CD47

efficiently causes the diverse macrophage population seen in in vivo

studies to start destroying tumor cells. Enhancement of antigen

presentation ability and CD8+ T-cell proliferation in vitro are

primarily caused by increased cancer cell phagocytosis brought on by

the interruption of CD47/SIRPa cross-talk. (3) T-cell-induced

immunological responses and DC-mediated antigen presentation.

Studies demonstrated that anti-CD47 mAbs stimulate DCs to

phagocytose tumor cells, which is followed by antigen presentation

to CD8+ T cells to trigger an anticancer adaptive immune response
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(217). (4) NK-cell-modulated antibody-dependent cellular cytotoxicity

and complement-dependent cytotoxicity. SIRPa is a notable

suppressor of NK-cell-modulated cytotoxicity, whereas anti-CD47

mAbs kill cancerous cells via the antibody-dependent cellular

cytotoxicity and complement-dependent cytotoxicity pathways (197).

Consequently, preventing CD47/SIRPa cross-talk stimulates the innate

and adaptive immune responses, resulting in tumor-cell apoptosis.

Table 2 includes a list of potential targets and the phases of clinical

trials of cancer treatments using these targets performed thus far. Also,

in several preclinical studies, researchers have investigated potential

therapeutic approaches combining anti-CD47 strategies with anti-

CD20 strategies for lymphoma, anti-HER2 strategies for breast

cancer, and anti-EGFR strategies for colorectal cancer. The results of

these studies indicated that the mechanisms of action of these tumor-

opsonizing mAbs can be greatly potentiated by anti-CD47 strategies

(240–245). Concerns related to CD47 expression in healthy platelets

and red blood cells led to the development of antibodies with weaker

anti-CD47 properties and selective SIRPa inhibitors. Several anti-

CD47 agents, such as TTI-621 (NCT03530683), TTI-622

(NCT02890368), and ALX148 (NCT04675333), have undergone

clinical trial evaluation. In addition to the use of immunomodulatory

agents, targeting immune checkpoint pathways could constitute an

additional approach. A series of bispecific antibodies combining anti-

CD47 specificity with anti-PD-L1, -EGFR, -CD19, or -CD20 activity

may preserve tumor-specific phagocytosis-stimulating activities while

sparing the host cells that do not express the tumor antigen, thus

limiting toxicity. As discussed above, M2 TAMs may possess only low

capacity for phagocytosis or the ability to present antigens to cytotoxic

T lymphocytes, and thus showing impaired immunological activity.

Treatment with antibodies targeting CD47 may be a tactic to help

TAMs regain their immunological characteristics. By blocking the

connection between CD47 and SIRPa, anti-CD47 antibodies may

improve macrophages’ ability to fight tumors (246, 247). Blocking the

CD47/SIRPa pathway had promising results in treatment of several

solid tumors and hematological cancers such as glioblastoma,

lymphoma, and breast cancer and may compel TAMs to

phagocytose tumor cells (246, 248–255). Other strategies for

harnessing or restoring antitumor properties of macrophages are

discussed below.

8.3.2 Other checkpoint signaling pathways
Additional don’t eat me signals have been identified, such as

SIGLEC1 (CD169), the PD-1/PD-L1 axis (161), LILRB, and

targeting scavenger antigens. SIGLEC1 (sialoadhesin/CD169) is a

membrane protein that binds to sialic acid and mediates cell–cell

interactions. CD169 is expressed by a fraction of macrophages that

undergo M2 polarization and is upregulated in human cancer cells.

As observed with CD47, expression of CD169 correlates with a

dismal prognosis in cancer patients (126, 256). Depletion of

CD169+ TAMs was effective in reducing tumor burdens and

metastasis in mouse models of breast cancer, whereas targeting of

SIGLEC7 and SIGLEC9 led to a significant reduction in tumor

burdens in transgenic mice expressing the human transgenes for

SIGLEC7 and SIGLEC9 but lacking expression of the murine

homolog Siglec-E that were transplanted with murine B16 and

B16-FUT3 lung cancer cells (257). SIGLEC proteins contain
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immunoreceptor tyrosine-based inhibitory motifs in the

cytoplasmic tail, which, through their inhibitory and suppressive

activation signals, regulate the functions of several immune cells

(51). Another molecule that is frequently overexpressed by diverse

tumor types is CD24. Binding of CD24 to SIGLEC10, which is

overexpressed by TAMs, leads to phagocytosis inhibition (256).

Experimental targeting of SIGLEC10 with mAb against SIGLEC10

restored the phagocytosis properties of macrophages in preclinical

models of ovarian cancer (51).

Another approach to stimulating macrophages to regain their

antitumor activity may be inhibition of LILRB, a receptor that

engages with MHC-I protein (256). Suppression of MHC-I

molecules is one of the best-known mechanisms cancer cells use to

circumvent recognition by T cells (51, 258). The expression of MHC-I

protein by tumor cells was shown to correlate with the level of tumor

resistance to anti-CD47 therapy. Of note, like SIGLECs and CD24,

LILRB was shown to contain an immunoreceptor tyrosine-based

inhibitory motif that exerts an inhibitory activity on immune cells

and to be widely expressed by immune cells and enriched in TAMs.

Anti-CD47 therapy resistance of tumor cells may be restored by

treatment with an LILRB1-blocking antibody. Furthermore, LILRB

antagonists such as MK-4830 (NCT03564691), a humanmAb directed

against LILRB2, in conjunction with IL-4 or macrophage colony-

stimulating factor, may alter the ECM composition, limit the

recruitment of Tregs to the TME, inhibit the function of MDSCs,

and enhance proinflammatory activation and phagocytic activity of

macrophages (30, 256, 258, 259). In phase 1 dose-escalation studies in

patients with advanced solid tumors, treatment withMK-4830 alone or

in combination with anti-PD-1 therapy produced durable responses

that correlated with enhanced cytotoxic T-lymphocyte-mediated

antitumor immune response. Therapeutic approaches are also

targeting LILRB4, and blockade of it had potent activity in reshaping

tumor-infiltrating T cells and reversing the M2-suppressive phenotype

of TAMs (258).

Other molecules abundantly expressed in TAMs include several

types of scavenging receptors. These receptors not only identify

specific types of TAMs but also are apparent therapeutic targets

with the aim of potentiation of a proinflammatory switch toward

the M1 phenotype. Specifically, researchers observed significant

correlation between expression of CD163 and progression of several

types of solid tumors (139, 167, 260). CD163 enables macrophages

to remove erythrocyte debris by binding to haptoglobin. Of note,

depletion of CD163+ TAMs resulted in tumor regression in a mouse

model of anti-PD-1-resistant melanoma (261–264). Furthermore,

depletion of CD163+ TAMs led to restoration of cytotoxic T-cell

and inflammatory monocyte activity, leading to resensitization of

tumor cells to anti-PD-1 therapy (265).

Other receptors highly expressed on TAMs, related to the M2

phenotype, are mannose receptor 1 (CD206) and MARCO (181–

183). CD206 is a macrophage scavenger receptor that binds to

several endogenous ligands in addition to pathogen moieties such as

tumor mucins (186, 213). CD206 engages on macrophages

maintaining the endocytosis and phagocytosis, and thus immune

homeostasis by scavenging unwanted mannoglycoproteins;

however, through their interactions with tumor mucins or upon

an agonist anti-mannose receptor mAbs, they induced an
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immunosuppressive phenotype with increased production of

cytokines such IL-10 by TAMs (74, 94). Treatment with RP-182

peptide, which binds to CD206/mannose receptor 1 and induces a

conformational switch of the receptor, partially depletes CD206+

macrophages and reprograms the remaining TAMs into antitumor

M1-like effectors with increased inflammatory cytokine production

and the ability to phagocytose cancer cells (6, 266). In murine

cancer models, RP-182 suppressed tumor growth, extended

survival, and synergized with combined immunotherapy (266). Of
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note, targeting MARCO with mAbs induced mainly an antitumor

immune response through reprogramming of TAMs (267).

Immunosuppressive M2-like macrophages also express the

receptor Clever-1 (stabilin-1), an adhesion and scavenger receptor.

Clever-1 binds to several ligands, primarily lipoproteins and

carbohydrates, mediating endocytosis of scavenged material and its

delivery to the endosomal compartment, ultimately resulting in

suppression of macrophages and impaired activation of Th1

lymphocytes (268, 269). Antibody blockade of Clever-1 with FP-1305
TABLE 2 Clinical trials of macrophage-targeting therapies for cancer.

Target Treatment Phase Cancer Type
Trial
Status Reference

CSF-1R Emactuzumab 2 Breast cancer Closed (18, 172)

JNJ-40346527 3 Tenosynovial solid tumors Closed (18, 218, 219)

Cabiralizumab 1 Pancreatic cancer Open (18)

Cabiralizumab + APX005 + nivolumab 1 Melanoma, non-small cell lung cancer, renal cell
carcinoma

Active (18)

Cabiralizumab (FPA008) + nivolumab
(Opdivo)

1/2 Advanced solid tumors Closed (18)

Cabiralizumab (FPA008) + nivolumab
(Opdivo)

2 Head and neck tumors Active (18)

Cabiralizumab (FPA008) + nivolumab
(Opdivo)

2 Lymphoma Active (18)

Emactuzumab + PD-L1 inhibitor
(atezolizumab)

1/2 Advanced solid tumors Open (18)

CD47/
SIRPa

Hu5F9-G4 1 Solid tumors Closed (220)

Magrolimab 1/2 Acute myeloid leukemia Closed (88)

CD40/
CD40L

APX005M 1/2 Pancreatic cancer Closed (221, 222)

Selicrelumab 1/2 Melanoma, pancreatic cancer Open (49, 223, 224)

CD68 ADG116 1/2 Solid tumors, melanoma, head and neck cancer Closed (57, 225–228)

CCR2 PF-04136309 1 Pancreatic cancer Closed (57, 98, 146, 149–
151)

CCX872 1/2 Solid tumors Closed (57, 98, 146, 149–
151)

TLR7/8/9 GSK2831781 1 Solid tumors Closed (57, 98, 146, 149–
151)

IMO-2125 1/2 Melanoma, head and neck cancer Closed (57, 98, 146, 149–
151)

CD206 ANG4043 1 Solid tumors Closed (229)

ATM/TTK AZD1390 1/2 Solid tumors Closed (230, 231)

CFI-402257 1/2 Advanced solid tumors Closed (232–234)

CD47 TTI-621 1/2 Solid tumors and hematological cancers Open (198)

AO-176 1 Solid tumors Closed (235)

CC-90002 + nivolumab (Opdivo) 1b/2 Advanced solid tumors Open (236)

Hu5F9-G4 + rituximab 1 Non-Hodgkin lymphoma Open (237, 238) (220)

CD115/
CSF1R

LY3022855 1 Solid tumors Closed (18, 84, 159, 169)

PD-1/PD-L1 Lenvatinib and pembrolizumab 1 Solid tumors Closed (239)
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caused a phenotypic switch in TAMs from immunosuppressive to

proinflammatory and activation of T-cell responses and delayed tumor

growth in preclinical studies (269–272). These preclinical results led to

a phase 1 trial to determine the safety and preliminary effectiveness of

FP-1305, a humanized anti-Clever-1 antibody administered to heavily

pretreated patients with metastatic solid tumors (269). Encouraging

results of this trial indicated a proinflammatory switch of monocytes,

enhanced capability of macrophages to cross-present scavenged

antigens, and activation of T cells (270). TAMs also express PD-1,

which inhibits phagocytosis and tumor immunity, impairing the PD-1/

PD-L1 axis in macrophages. Of note, PD-L1 expression in cancer cells

may concomitantly enable evasion from not only T-cell cytotoxicity

but also macrophage-mediated phagocytosis (273–275). Therefore,

blockade of the PD-1/PD-L1 axis may enhance an antitumor

immunity of both adaptive and innate mechanisms.

Of note, the receptors PD-1, LILRB1, and SIRPa all contain an

immunoreceptor tyrosine-based inhibitory motif domain, which

may be instrumental for downstream signals that inhibit

phagocytosis (258, 259, 274, 276, 277). Based on this, in studies

aimed at monitoring response in patients with cancer undergoing

treatment with immune checkpoint inhibitors, researchers should

consider the myeloid compartment as a potential target and

predictive biomarker (104, 160). TAMs were also shown to

upregulate triggering receptor expressed on myeloid cells 2 (104,

237, 274, 278). This protein scavenges large molecules like

lipoproteins and phospholipids as well as cell debris. Targeting of

triggering receptor expressed on myeloid cells+ TAMs led to

restricted tumor growth and resensitization to anti-PD-1 therapy.

Investigators recently evaluated PY414, a humanized mAb targeting

triggering receptor expressed on myeloid cells 2+ macrophages, in a

phase 1 clinical trial in patients with advanced solid tumors

(NCT04691375) (237, 278). Finally, another ligand strongly

upregulated in M2 macrophages and expressed in TAMs is P-

selectin glycoprotein ligand-1 (279). This protein has high affinity

for VISTA (B7-H5 and PD-1H) and selectins, and upon activation,

it contributes to T-cell dysfunction in cancer patients (280).

Targeting of P-selectin glycoprotein ligand-1 should be a subject

of further investigation.
8.4 Targeting epigenetic and metabolic
changes in TAMs

Therapy resistance may be a consequence of metabolic rewiring

in both tumor cells and cellular immune compartment of TME.

Downstream metabolic rewiring of macrophage function following

polarization changes involves complex changes in amino acid, lipid,

and iron metabolism (19, 69, 134, 196, 281, 282). This complex

series of events provides potential targets to rewire macrophage

function at the metabolic level. One of the promising approaches to

harnessing the antitumor potential of macrophages is epigenetic

regulation by class IIa HDACs. TMP195, a selective class IIa HDAC

inhibitor, exhibited the ability to effectively modify the transcription

profile of macrophages, resulting in macrophage-mediated

reduction of tumor growth in a breast cancer model (81, 184).

Another HDAC inhibitor, tefinostat (CHR-2845), is cleaved to an
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active acid form CHR-2847 via nonspecific esterase liver

carboxylesterase 1, an enzyme selectively present only in

monocytoid-lineage cells and some hepatocytes. Because of this

feature, tefinostat has been successfully tested in a phase 1 clinical

trial in patients with advanced hematological cancers such as

myelodysplastic syndrome and chronic myeloid leukemia

(NCT00820508). Also, carboxylesterase 1 may be used as an

elegant tool for developing drugs with macrophage-selective

targeting features.

Also, hypoxia and acidosis (Figures 3, 4) play a crucial role in

the TME and can modulate the function of TAMs. For instance, the

oxygen demand of initially fast-proliferating tumor cells may

enhance the hypoxic gradient across tumor tissue, forcing both

tumor cells and immune cells to adapt to new conditions. Metabolic

wiring may therefore promote nonoxidative pathways of energy

generation, which leads to increased tumor acidification. Hypoxia

can trigger the expression of genes like TNF-a, IL-18, and H1F-1 in

TAMs, which may cause inflammation, angiogenesis, and tumor

growth. Both hypoxia and acidification were shown to promote

polarization of macrophages toward the M2 phenotype and

therefore may consolidate the protumorigenic milieu. Therapeutic

interventions impeding hypoxia or hypoxia-inducible changes such

as blockade of HIF-2 with belzutifan in renal cell cancer cells and

use of hypoxia-activated prodrugs may constitute an important

backbone of macrophage-targeted therapies (111, 116, 283).

Another opportunity for targeting TAMs and antitumor

therapy may be blockade of other metabolic pathways, such as

OXPHOS. Given the fact that M2 macrophages and some subsets of

hematological cancers and stem cell populations in solid tumors

rely more on OXPHOS than other metabolic pathways for

biosynthetic and bioenergetic demands, selective blockade of

OXPHOS (281, 284) may be synergistic together with anti-CD47

therapy, in both achieving direct eradication of OXPHOS-

dependent tumor cells and reshaping the TME through

elimination of protumorigenic, OXPHOS-dependent M2

macrophages. Along this line, treatment with the respiratory

complex I inhibitor metformin, an antidiabetic agent, reduced the

density of TAMs, remodulated their function in the TME, and

increased their phagocytic function, and its antitumor efficacy has

been tested in several clinical trials for the treatment of diverse types

of cancer (260).

M2 TAMs are often characterized by increased consumption of

glutamine, which is essential for biosynthetic processes and redox

balance. Thus, combined small-molecule inhibitors such as CB-839

and DON downstream from glutamine receptors may be

therapeutic options for modulation of myelosuppressive cells

(285). Another amino acid of great interest in macrophage

targeting is tryptophan. Increased consumption of tryptophan by

TAMs owing to elevated expression of the enzyme indoleamine 2,3-

dioxygenase 1 results in reduced tryptophan access for T cells and

accumulation of kynurenine, leading to severe impairment of

cytotoxic T-cell function, and inhibits T lymphocytes division and

favors T-cell differentiation toward Treg generation (286). Whereas

some results of ongoing clinical trials testing indoleamine 2,3-

dioxygenase 1 inhibitors alone or combined with other agents

such as pembrolizumab have been negative, results for other
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combinations using anti-PD-1 agents are pending (190, 239,

287–292).

Another metabolic vulnerability of TAMs is lipid metabolism.

Researchers showed that TAMs possess a defective mechanism of lipid

utilization that is most likely linked to activation of immunosuppressive

pathways and mediated by the oxysterol receptor and transcription

factor LXR (293). Strategies targeting LXR such as exposure to LXR

agonists have induced anti-inflammatory actions and reduced the pool

of macrophages in affected lesions. Another group of lipid derivatives,

prostaglandins, particularly tumor-derived prostaglandin E2, blocked

early activation of NK cells and inflammatory activation of myeloid

cells, consolidating the immune-suppressive phenotypes of the TME

(77). Furthermore, altered prostaglandin pathways have negatively

impacted the effectiveness of ICB, which could be reversed and

enhanced by use of prostaglandin G/H synthase 2 (cyclooxygenase-

2) inhibitors or antagonists of the prostaglandin E2 receptors EP1 and

EP2 (51, 77).

Another metabolic factor facilitating cancer therapy resistance

is acidosis, particularly lactic acidosis. Lactic acid produced by

tumor cells as a by-product of glycolysis can lead to upregulation

of the CD206 and CD163 genes in TAMs, which is linked to M2

polarization and immunosuppression. Lactate functionally

polarizes macrophages toward an M2-like phenotype and leads to

elevated expression of arginase 1 (294) (Figure 4), suggesting that

targeting glycolysis in general or lactate flux inhibition in particular

positively influences TAM polarization and activity. Other

synergistic effects of metabolic interventions that may impair

acidosis-driven TAM polarization toward the M2 phenotype or

reuse of lactate in solid tumors can be achieved via selective

blockade of lactate transporters such as monocarboxylate

transporters 1–4 (MCT1–4) (295) or inhibition of glycolysis

pathways, for which novel MCT receptor family inhibitors

warrant further investigation on their efficacy to inhibit lactate

release into TME. Recently, authors discussed the role of metabolic

reprogramming in the context of ICB failure. Therefore, combined

metabolic and immune interventions may be novel, promising

solutions for counteracting the ICB resistance (282).

Moreover, hypoxia and acidosis can negatively impact the

secretion of cytokines such as IL-10 by TAMs, which can hinder the

immune response and promote tumor survival. Overall, the effects of

hypoxia and acidosis on TAMs are multifaceted and rely on specific

genes and cytokines. Comprehending these effects can provide valuable

insight into the mechanisms of tumor immune evasion and may open

doors for developing innovative immunotherapeutic strategies for

cancer as summarized in Figures 3–5.
8.5 Chimeric antigen receptor
macrophages

As described above, TAMs can make up almost half of the

cellular mass of a tumor (31, 46). However, the TAM pool

undergoes continuous restructuring through the recruitment of

new circulating monocytes (35, 74, 82). Compared with

hematological cancers, which are effectively targeted in many

cases by chimeric antigen receptor (CAR) T cells, treatment of
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solid tumors with CAR-T therapy owing to vascular remodeling,

hypoxia, and acidosis is often less effective (7, 57, 80, 120, 129, 177).

Given the constant trafficking of monocytes into tumors,

macrophage-based cell therapies may constitute a feasible

alternative to overcome obstacles to treat solid tumors, associated

with the use of CAR T cells (15, 57, 80, 120, 129, 177). Thus,

engineering macrophages to deliver cytokines or nanoparticles to

the TME or equipping them with specific receptors may be a

promising therapeutic approach. Researchers have looked at using

monocytes replenished with drug-loaded nanoparticles or capable

of delivering IFN-a to a tumor site and consequently activating an

immune response in preclinical studies. They subjected

hematopoietic progenitors under the Tie2 promoter to IFNA1

gene transduction. Tie2-expressing monocytes, which have a high

level of tumor-homing ability, successfully migrated to tumors and

delivered IFN-a to the TME, triggering the activation of immune

cells and inhibiting tumor growth and angiogenesis (108, 145, 177).

Furthermore, studies using soft particles as “backpacks”

containing cytokines demonstrated that backpacks were stuck on

macrophage surfaces, causing acquisition of the M1 phenotype

regardless of the presence of an immunosuppressive TME and

leading to significant reduction of tumor growth and metastatic

burdens (296). Another approach to modify macrophages was

genetic engineering of myeloid cells to express IL-12. This

approach elicited a type 1 immune response and reduced

metastasis and primary tumor growth (51, 297).

Although transducing human macrophages remains a challenge

in developing mononuclear-phagocyte-based cellular therapies for

cancer, investigators recently developed several innovative therapies

to overcome this obstacle. New-generation CAR macrophages

armed with receptors recognizing carcinoembryonic antigen-

related cell adhesion molecule 5, CD19, CD22, HER2, and CD5

to improve macrophage’s detection and clearance in patients with

hematological malignancies and solid tumors are undergoing

preclinical and clinical evaluation (80, 105–108, 145, 177). Despite

first promising results, there is still an unmet need to enhance CAR-

macrophage-mediated phagocytosis of tumor cells and to provide a

solution on maintaining the M1 shape and functions in a stable way

regardless of tumor environment together with improving the

trafficking of CAR-M into primary and metastatic tumors that

should be further investigated.
9 Future recommendations
and conclusions

The cross-talk between macrophages and tumor cells plays a

critical role in cancer progression and represents a promising target

for cancer treatment. However, further research is needed to

understand the molecular mechanisms underlying this complex

cell–cell communication. Modulation of macrophage polarization,

blockade of signaling pathways, and disruption of physical

interactions among macrophages and tumor cells are strategies

developed to target this cross-talk. The preclinical and clinical

evidence supporting the effectiveness of these strategies is

promising. To provide better, more targeted, safe, effective cell-
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specific therapeutic strategies, more research is warranted to fully

understand the molecular mechanisms of these processes. In fact,

combinatorial therapies that target multiple aspects of the

macrophage–tumor cell cross-talk may be more effective than

single-agent therapies, such as modulation of macrophage

polarization, blockade of signaling pathways, and disruption of

physical interactions. In addition, development of imaging

techniques together with in vitro and in vivo studies of potential

biomarkers to monitor the presence, activation state, and function

of macrophages in tumors will aid in selecting patients who could

benefit from macrophage-targeted therapies. Preclinical and clinical

studies of TAMs in cancer should focus on the specific roles of

macrophages in different types of tumors to identify the most

promising tumor-type-specific targets for therapy. Development

of in vitro and in vivo models that accurately recapitulate the

complex interactions between macrophages and tumor cells will

be essential to further our understanding of this cross-talk and test

new therapeutic strategies. Finally, further study is needed to

understand the potential side effects and toxicity of macrophage-

targeted therapy, mainly when combined with other cancer

treatments. Careful monitoring of potential side and toxic effects

therefore is essential when developing macrophage-targeted

therapies, particularly in combination with other cancer treatments.
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